51
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
52
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
53
|
Zhou R, Li L, Zhang Y, Liu Z, Wu J, Zeng D, Sun H, Liao W. Integrative analysis of co-expression pattern of solute carrier transporters reveals molecular subtypes associated with tumor microenvironment hallmarks and clinical outcomes in colon cancer. Heliyon 2024; 10:e22775. [PMID: 38163210 PMCID: PMC10754711 DOI: 10.1016/j.heliyon.2023.e22775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yue Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| |
Collapse
|
54
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
55
|
Li M, Cheng J, Wang H, Shi J, Xun X, Wang Y, Lu W, Hu J, Bao Z, Hu X. Tissue-specific antioxidative response and metabolism of paralytic shellfish toxins in scallop (Chlamys farreri) mantle with Alexandrium dinoflagellate exposure. MARINE POLLUTION BULLETIN 2024; 198:115854. [PMID: 38043209 DOI: 10.1016/j.marpolbul.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Bivalves show remarkable capacity to acclimate paralytic shellfish toxins (PSTs) produced by dinoflagellates, severely affecting fishery industry and public health. Here, transcriptomic response to PSTs-producing dinoflagellate (Alexandrium minutum) was investigated in Zhikong scallop (Chlamys farreri) mantle. The PSTs accumulated in C. farreri mantle continually increased during the 15 days exposure, with "oxidation-reduction" genes induced compared to the control group at the 1st and 15th day. Through gene co-expression network analysis, 16 PSTs-responsive modules were enriched with up- or down-regulated genes. The concentration of GTXs, major PSTs in A. minutum and accumulated in scallops, was correlated with the up-regulated magenta module, enriching peroxisome genes as the potential mantle-specific PSTs biomarker. Moreover, Hsp70B2s were inhibited throughout the exposure, which together with the expanded neurotransmitter transporter SLC6As, may play essential roles on neurotransmitter homeostasis in scallop mantle. These results paved the way for a comprehensive understanding of defensive mechanism and homeostatic response in scallop mantle against PSTs.
Collapse
Affiliation(s)
- Moli Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China; National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jiaoxia Shi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Yangrui Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jingjie Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
56
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
57
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
58
|
Zhong X, Moresco JJ, Diedrich JK, Pinto AM, SoRelle JA, Wang J, Keller K, Ludwig S, Moresco EMY, Beutler B, Choi JH. Essential role of MFSD1-GLMP-GIMAP5 in lymphocyte survival and liver homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2314429120. [PMID: 38055739 PMCID: PMC10723049 DOI: 10.1073/pnas.2314429120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Antonio M. Pinto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Jeffrey A. SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
59
|
Khan A, Unlu G, Lin P, Liu Y, Kilic E, Kenny TC, Birsoy K, Gamazon ER. GeneMAP: A discovery platform for metabolic gene function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570588. [PMID: 38106122 PMCID: PMC10723489 DOI: 10.1101/2023.12.07.570588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Organisms maintain metabolic homeostasis through the combined functions of small molecule transporters and enzymes. While many of the metabolic components have been well-established, a substantial number remains without identified physiological substrates. To bridge this gap, we have leveraged large-scale plasma metabolome genome-wide association studies (GWAS) to develop a multiomic Gene-Metabolite Associations Prediction (GeneMAP) discovery platform. GeneMAP can generate accurate predictions, even pinpointing genes that are distant from the variants implicated by GWAS. In particular, our work identified SLC25A48 as a genetic determinant of plasma choline levels. Mechanistically, SLC25A48 loss strongly impairs mitochondrial choline import and synthesis of its downstream metabolite, betaine. Rare variant testing and polygenic risk score analyses have elucidated choline-relevant phenomic consequences of SLC25A48 dysfunction. Altogether, our study proposes SLC25A48 as a mitochondrial choline transporter and provides a discovery platform for metabolic gene function.
Collapse
|
60
|
Zhang Y, Weh KM, Tripp BA, Clarke JL, Howard CL, Sunilkumar S, Howell AB, Kresty LA. Cranberry Proanthocyanidins Mitigate Reflux-Induced Transporter Dysregulation in an Esophageal Adenocarcinoma Model. Pharmaceuticals (Basel) 2023; 16:1697. [PMID: 38139823 PMCID: PMC10747310 DOI: 10.3390/ph16121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Yun Zhang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Katherine M. Weh
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Bridget A. Tripp
- Bioinformatics Core Research Facility, Center for Biotechnology, University of Nebraska—Lincoln, N300 Beadle Center, Lincoln, NE 68588, USA;
| | - Jennifer L. Clarke
- Department of Statistics and Department of Food Science Technology, Quantitative Life Sciences Initiative, University of Nebraska—Lincoln, 253 Food Innovation Center, Lincoln, NE 68583, USA;
| | - Connor L. Howard
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Shruthi Sunilkumar
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019, USA;
| | - Laura A. Kresty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| |
Collapse
|
61
|
Zhang Y, Liu Z, Li L, Zeng D, Sun H, Wu J, Zhou R, Liao W. Co-expression pattern of SLC transporter genes associated with the immune landscape and clinical outcomes in gastric cancer. J Cell Mol Med 2023; 27:4181-4194. [PMID: 37909856 PMCID: PMC10746955 DOI: 10.1111/jcmm.18003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Solute carrier (SLC) transporters play a dual role in the occurrence and progression of tumours by acting as both suppressors and promoters. However, the overall impact of SLC transcriptome signatures on the tumour microenvironment, biological behaviour and clinical stratification of gastric cancer has not been thoroughly investigated. Therefore, we comprehensively analysed the expression profiles of the SLC transporter family members to identify novel molecular subtypes in gastric cancer. We identified two distinct SLC subtypes, SLC-S1 and SLC-S2, using non-negative matrix factorization. These subtypes were markedly linked with the tumour microenvironment landscape, biological pathway activation and distinct clinical features of gastric cancer. Furthermore, a new scoring model, the SLC score, was developed to quantify the SLC subtypes. High SLC scores indicated a pattern of 'SLC-S2', characterized by stromal infiltration and activation, poor prognosis and insensitivity to chemotherapy and immunotherapy, but high sensitivity to imatinib. The SLC score could serve as a supplement to the Tumour Node Metastasis (TNM) staging system to guide personalized treatment strategies and predict prognosis for patients with gastric cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhihong Liu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lingbo Li
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dongqiang Zeng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiying Sun
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Rui Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
62
|
Papalazarou V, Newman AC, Huerta-Uribe A, Legrave NM, Falcone M, Zhang T, McGarry L, Athineos D, Shanks E, Blyth K, Vousden KH, Maddocks ODK. Phenotypic profiling of solute carriers characterizes serine transport in cancer. Nat Metab 2023; 5:2148-2168. [PMID: 38066114 PMCID: PMC10730406 DOI: 10.1038/s42255-023-00936-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Serine is a vital amino acid in tumorigenesis. While cells can perform de novo serine synthesis, most transformed cells rely on serine uptake to meet their increased biosynthetic requirements. Solute carriers (SLCs), a family of transmembrane nutrient transport proteins, are the gatekeepers of amino acid acquisition and exchange in mammalian cells and are emerging as anticancer therapeutic targets; however, the SLCs that mediate serine transport in cancer cells remain unknown. Here we perform an arrayed RNAi screen of SLC-encoding genes while monitoring amino acid consumption and cell proliferation in colorectal cancer cells using metabolomics and high-throughput imaging. We identify SLC6A14 and SLC25A15 as major cytoplasmic and mitochondrial serine transporters, respectively. We also observe that SLC12A4 facilitates serine uptake. Dual targeting of SLC6A14 and either SLC25A15 or SLC12A4 diminishes serine uptake and growth of colorectal cancer cells in vitro and in vivo, particularly in cells with compromised de novo serine biosynthesis. Our results provide insight into the mechanisms that contribute to serine uptake and intracellular handling.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK.
- Francis Crick Institute, London, UK.
| | - Alice C Newman
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Alejandro Huerta-Uribe
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Nathalie M Legrave
- Francis Crick Institute, London, UK
- Metabolomics Platform, Luxembourg Institute of Health, Department of Cancer Research, Strassen, Luxembourg
| | - Mattia Falcone
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tong Zhang
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Emma Shanks
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Oliver D K Maddocks
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
63
|
Stanchev LD, Møller-Hansen I, Lojko P, Rocha C, Borodina I. Screening of Saccharomyces cerevisiae metabolite transporters by 13C isotope substrate labeling. Front Microbiol 2023; 14:1286597. [PMID: 38116525 PMCID: PMC10729909 DOI: 10.3389/fmicb.2023.1286597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
The transportome of Saccharomyces cerevisiae comprises approximately 340 membrane-bound proteins, of which very few are well-characterized. Elucidating transporter proteins' function is essential not only for understanding central cellular processes in metabolite exchange with the external milieu but also for optimizing the production of value-added compounds in microbial cell factories. Here, we describe the application of 13C-labeled stable isotopes and detection by targeted LC-MS/MS as a screening tool for identifying Saccharomyces cerevisiae metabolite transporters. We compare the transport assay's sensitivity, reproducibility, and accuracy in yeast transporter mutant cell lines and Xenopus oocytes. As proof of principle, we analyzed the transport profiles of five yeast amino acid transporters. We first cultured yeast transporter deletion or overexpression mutants on uniformly labeled 13C-glucose and then screened their ability to facilitate the uptake or export of an unlabeled pool of amino acids. Individual transporters were further studied by heterologous expression in Xenopus oocytes, followed by an uptake assay with 13C labeled yeast extract. Uptake assays in Xenopus oocytes showed higher reproducibility and accuracy. Although having lower accuracy, the results from S. cerevisiae indicated the system's potential for initial high-throughput screening for native metabolite transporters. We partially confirmed previously reported substrates for all five amino acid transporters. In addition, we propose broader substrate specificity for two of the transporter proteins. The method presented here demonstrates the application of a comprehensive screening platform for the knowledge expansion of the transporter-substrate relationship for native metabolites in S. cerevisiae.
Collapse
Affiliation(s)
| | | | | | | | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
64
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558283. [PMID: 37790566 PMCID: PMC10542114 DOI: 10.1101/2023.09.18.558283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | - Yuqi Shi
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | | | - Nathan D. Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, 1050 Brussel, Belgium
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, 1050 Brussel, Belgium
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| |
Collapse
|
65
|
Aaes TL, Burgoa Cardás J, Ravichandran KS. Defining solute carrier transporter signatures of murine immune cell subsets. Front Immunol 2023; 14:1276196. [PMID: 38077407 PMCID: PMC10704505 DOI: 10.3389/fimmu.2023.1276196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.
Collapse
Affiliation(s)
- Tania Løve Aaes
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Javier Burgoa Cardás
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kodi S. Ravichandran
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
66
|
Gao S, Gong G, Wang X, Gao X, Guo X, Luo Y, Li S, Zhang Y, Lin S. Classification of SLC family-related genes involved in ferroptosis predicts lung cancer prognosis and immunotherapy response. Sci Rep 2023; 13:20032. [PMID: 37973895 PMCID: PMC10654497 DOI: 10.1038/s41598-023-47328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Lung adenocarcinoma, the most frequent type of lung cancer, is the leading cause of cancer-related deaths worldwide. Ferroptosis, controlled cell death that involves a high degree of iron-dependent lipid peroxidation, has been linked to tumor therapy sensitivity, patient prognosis, and cancer development. The solute carrier superfamily has over 400 members and comprises the largest class of transporters in the human genome. Solute carrier proteins can facilitate the movement of different substrates across biological membranes, which is crucial for physiological activities, including ferroptosis. Here, we developed a new model to further explore the role of the solute carrier family in ferroptosis in the lung adenocarcinoma immunological milieu. We used consensus clustering to classify patients with lung cancer into two subgroups (cluster1 and cluster2). Patients in the cluster1 subtype had a better prognosis and higher immune cell infiltration ratios than those in the cluster2 subtype. Furthermore, to evaluate the prognosis, the immune cell infiltration ratio, and the medication sensitivity of patients with lung adenocarcinoma, we developed gene scores related to the solute carrier family. In conclusion, we successfully developed a model incorporating the solute carrier family and ferroptosis to predict survival and the impact of immunotherapy on patients with lung cancer.
Collapse
Affiliation(s)
- Shun Gao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guotao Gong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyi Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xinrui Gao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xuanzhu Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuyao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Zhang
- Department of Oncology, Luzhou Municipal People's Hospital, Luzhou, Sichuan, China.
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
67
|
Ruffinatti FA, Scarpellino G, Chinigò G, Visentin L, Munaron L. The Emerging Concept of Transportome: State of the Art. Physiology (Bethesda) 2023; 38:0. [PMID: 37668550 DOI: 10.1152/physiol.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The array of ion channels and transporters expressed in cell membranes, collectively referred to as the transportome, is a complex and multifunctional molecular machinery; in particular, at the plasma membrane level it finely tunes the exchange of biomolecules and ions, acting as a functionally adaptive interface that accounts for dynamic plasticity in the response to environmental fluctuations and stressors. The transportome is responsible for the definition of membrane potential and its variations, participates in the transduction of extracellular signals, and acts as a filter for most of the substances entering and leaving the cell, thus enabling the homeostasis of many cellular parameters. For all these reasons, physiologists have long been interested in the expression and functionality of ion channels and transporters, in both physiological and pathological settings and across the different domains of life. Today, thanks to the high-throughput technologies of the postgenomic era, the omics approach to the study of the transportome is becoming increasingly popular in different areas of biomedical research, allowing for a more comprehensive, integrated, and functional perspective of this complex cellular apparatus. This article represents a first effort for a systematic review of the scientific literature on this topic. Here we provide a brief overview of all those studies, both primary and meta-analyses, that looked at the transportome as a whole, regardless of the biological problem or the models they used. A subsequent section is devoted to the methodological aspect by reviewing the most important public databases annotating ion channels and transporters, along with the tools they provide to retrieve such information. Before conclusions, limitations and future perspectives are also discussed.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Visentin
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
68
|
Kalienkova V, Peter MF, Rheinberger J, Paulino C. Structures of a sperm-specific solute carrier gated by voltage and cAMP. Nature 2023; 623:202-209. [PMID: 37880361 PMCID: PMC10620091 DOI: 10.1038/s41586-023-06629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martin F Peter
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Jan Rheinberger
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
69
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
70
|
Hussain SI, Muhammad N, Shah SUD, Fardous F, Khan SA, Khan N, Rehman AU, Siddique M, Wasan SA, Niaz R, Ullah H, Khan N, Muhammad N, Mirza MU, Wasif N, Khan S. Structural and functional implications of SLC13A3 and SLC9A6 mutations: an in silico approach to understanding intellectual disability. BMC Neurol 2023; 23:353. [PMID: 37794328 PMCID: PMC10548666 DOI: 10.1186/s12883-023-03397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Intellectual disability (ID) is a condition that varies widely in both its clinical presentation and its genetic underpinnings. It significantly impacts patients' learning capacities and lowers their IQ below 70. The solute carrier (SLC) family is the most abundant class of transmembrane transporters and is responsible for the translocation of various substances across cell membranes, including nutrients, ions, metabolites, and medicines. The SLC13A3 gene encodes a plasma membrane-localized Na+/dicarboxylate cotransporter 3 (NaDC3) primarily expressed in the kidney, astrocytes, and the choroid plexus. In addition to three Na + ions, it brings four to six carbon dicarboxylates into the cytosol. Recently, it was discovered that patients with acute reversible leukoencephalopathy and a-ketoglutarate accumulation (ARLIAK) carry pathogenic mutations in the SLC13A3 gene, and the X-linked neurodevelopmental condition Christianson Syndrome is caused by mutations in the SLC9A6 gene, which encodes the recycling endosomal alkali cation/proton exchanger NHE6, also called sodium-hydrogen exchanger-6. As a result, there are severe impairments in the patient's mental capacity, physical skills, and adaptive behavior. METHODS AND RESULTS Two Pakistani families (A and B) with autosomal recessive and X-linked intellectual disorders were clinically evaluated, and two novel disease-causing variants in the SLC13A3 gene (NM 022829.5) and the SLC9A6 gene (NM 001042537.2) were identified using whole exome sequencing. Family-A segregated a novel homozygous missense variant (c.1478 C > T; p. Pro493Leu) in the exon-11 of the SLC13A3 gene. At the same time, family-B segregated a novel missense variant (c.1342G > A; p.Gly448Arg) in the exon-10 of the SLC9A6 gene. By integrating computational approaches, our findings provided insights into the molecular mechanisms underlying the development of ID in individuals with SLC13A3 and SLC9A6 mutations. CONCLUSION We have utilized in-silico tools in the current study to examine the deleterious effects of the identified variants, which carry the potential to understand the genotype-phenotype relationships in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Syeda Iqra Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Salah Ud Din Shah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Fardous Fardous
- Department of Medical Lab Technology, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Niamatullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil U Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Siddique
- Department of Zoology, Government Post Graduate College for Women, Satellite Town, Gujranwala, Pakistan
| | - Shoukat Ali Wasan
- Department of Botany, Faculty of Natural Sciences, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
| | - Rooh Niaz
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Hafiz Ullah
- Gomal Center of Biochemistry and Biotechnology (GCBB), Gomal University D. I. Khan, D. I. Khan, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 1C4, Canada
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
71
|
Nies AT, König J, Leuthold P, Damme K, Winter S, Haag M, Masuda S, Kruck S, Daniel H, Spanier B, Fromm MF, Bedke J, Inui KI, Schwab M, Schaeffeler E. Novel drug transporter substrates identification: An innovative approach based on metabolomic profiling, in silico ligand screening and biological validation. Pharmacol Res 2023; 196:106941. [PMID: 37775020 DOI: 10.1016/j.phrs.2023.106941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Solute carrier (SLC) transport proteins are fundamental for the translocation of endogenous compounds and drugs across membranes, thus playing a critical role in disease susceptibility and drug response. Because only a limited number of transporter substrates are currently known, the function of a large number of SLC transporters is elusive. Here, we describe the proof-of-concept of a novel strategy to identify SLC transporter substrates exemplarily for the proton-coupled peptide transporter (PEPT) 2 (SLC15A2) and multidrug and toxin extrusion (MATE) 1 transporter (SLC47A1), which are important renal transporters of drug reabsorption and excretion, respectively. By combining metabolomic profiling of mice with genetically-disrupted transporters, in silico ligand screening and in vitro transport studies for experimental validation, we identified nucleobases and nucleoside-derived anticancer and antiviral agents (flucytosine, cytarabine, gemcitabine, capecitabine) as novel drug substrates of the MATE1 transporter. Our data confirms the successful applicability of this new approach for the identification of transporter substrates in general, which may prove particularly relevant in drug research.
Collapse
Affiliation(s)
- Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Leuthold
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Katja Damme
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Satohiro Masuda
- Department of Clinical Pharmacology & Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Stephan Kruck
- Department of Urology, University Hospital Tuebingen, Germany
| | - Hannelore Daniel
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Britta Spanier
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Germany.
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Germany
| |
Collapse
|
72
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
73
|
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W, Wei S. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int 2023; 23:222. [PMID: 37775731 PMCID: PMC10543265 DOI: 10.1186/s12935-023-03082-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
74
|
Schlessinger A, Zatorski N, Hutchinson K, Colas C. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities. Trends Biochem Sci 2023; 48:801-814. [PMID: 37355450 PMCID: PMC10525040 DOI: 10.1016/j.tibs.2023.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023]
Abstract
Solute carrier (SLCs) transporters mediate the transport of a broad range of solutes across biological membranes. Dysregulation of SLCs has been associated with various pathologies, including metabolic and neurological disorders, as well as cancer and rare diseases. SLCs are therefore emerging as key targets for therapeutic intervention with several recently approved drugs targeting these proteins. Unlocking this large and complex group of proteins is essential to identifying unknown SLC targets and developing next-generation SLC therapeutics. Recent progress in experimental and computational techniques has significantly advanced SLC research, including drug discovery. Here, we review emerging topics in therapeutic discovery of SLCs, focusing on state-of-the-art approaches in structural, chemical, and computational biology, and discuss current challenges in transporter drug discovery.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Nicole Zatorski
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keino Hutchinson
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria.
| |
Collapse
|
75
|
Dvorak V, Casiraghi A, Colas C, Koren A, Tomek T, Offensperger F, Rukavina A, Tin G, Hahn E, Dobner S, Frommelt F, Boeszoermenyi A, Bernada V, Hannich JT, Ecker GF, Winter GE, Kubicek S, Superti-Furga G. Paralog-dependent isogenic cell assay cascade generates highly selective SLC16A3 inhibitors. Cell Chem Biol 2023; 30:953-964.e9. [PMID: 37516113 PMCID: PMC10437005 DOI: 10.1016/j.chembiol.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023]
Abstract
Despite being considered druggable and attractive therapeutic targets, most of the solute carrier (SLC) membrane transporters remain pharmacologically underexploited. One of the reasons for this is a lack of reliable chemical screening assays, made difficult by functional redundancies among SLCs. In this study we leveraged synthetic lethality between the lactate transporters SLC16A1 and SLC16A3 in a screening strategy that we call paralog-dependent isogenic cell assay (PARADISO). The system involves five isogenic cell lines, each dependent on various paralog genes for survival/fitness, arranged in a screening cascade tuned for the identification of SLC16A3 inhibitors. We screened a diversity-oriented library of ∼90,000 compounds and further developed our hits into slCeMM1, a paralog-selective and potent SLC16A3 inhibitor. By implementing chemoproteomics, we showed that slCeMM1 is selective also at the proteome-wide level, thus fulfilling an important criterion for chemical probes. This study represents a framework for the development of specific cell-based drug discovery assays.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andrea Casiraghi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Claire Colas
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Tatjana Tomek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Fabian Offensperger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gary Tin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Elisa Hahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sarah Dobner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andras Boeszoermenyi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Viktoriia Bernada
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
76
|
Chen W, Wang Y, Gu H, Zhang Y, Chen C, Yu T, Chen T. Molecular characteristics, clinical significance, and immune landscape of extracellular matrix remodeling-associated genes in colorectal cancer. Front Oncol 2023; 13:1109181. [PMID: 37621680 PMCID: PMC10446763 DOI: 10.3389/fonc.2023.1109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background Extracellular matrix (ECM) remodeling is one of the hallmark events in cancer and has been shown to be closely related to tumor immunity. Immunotherapy has evolved as an important tool to treat various cancers and improve patient prognosis. The positive response to immunotherapy relies on the unique interaction between cancer and the tumor microenvironment (TME). However, the relationship between ECM remodeling and clinical outcomes, immune cell infiltration, and immunotherapy in colorectal cancer (CRC) remains unknown. Methods We systematically evaluated 69 ECM remodeling-associated genes (EAGs) and comprehensively identified interactions between ECM remodeling and prognosis and the immune microenvironment in CRC patients. The EAG_score was used to quantify the subtype of ECM remodeling in patients. We then assessed their value in predicting prognosis and responding to treatment in CRC. Results After elaborating the molecular characteristics of ECM remodeling-related genes in CRC patients, a model consisting of two ECM remodeling-related genes (MEIS2, SLC2A3) was developed for predicting the prognosis of CRC patients, Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) analysis verified its reliable predictive ability. Furthermore, we created a highly reliable nomogram to enhance the clinical feasibility of the EAG_score. Significantly differences in TME and immune function, such as macrophages and CD8+ T cells, were observed between high- and low-risk CRC patients. In addition, drug sensitivity is also strongly related to EAG_score. Conclusion Overall, we developed a prognostic model associated with ECM remodeling, provided meaningful clinical implications for immunotherapy, and facilitated individualized treatment for CRC patients. Further studies are needed to reveal the underlying mechanisms of ECM remodeling in CRC.
Collapse
Affiliation(s)
- Wenlong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiwen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cong Chen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
77
|
Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab 2023; 35:1101-1113. [PMID: 37390822 PMCID: PMC10527949 DOI: 10.1016/j.cmet.2023.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
78
|
Dvorak V, Superti-Furga G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin Drug Discov 2023; 18:1099-1115. [PMID: 37563933 DOI: 10.1080/17460441.2023.2244760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
79
|
Cornelissen F, Markert G, Deutsch G, Antonara M, Faaij N, Bartelink I, Noske D, Vandertop WP, Bender A, Westerman BA. Explaining Blood-Brain Barrier Permeability of Small Molecules by Integrated Analysis of Different Transport Mechanisms. J Med Chem 2023; 66:7253-7267. [PMID: 37217193 PMCID: PMC10259449 DOI: 10.1021/acs.jmedchem.2c01824] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) represents a major obstacle to delivering drugs to the central nervous system (CNS), resulting in the lack of effective treatment for many CNS diseases including brain cancer. To accelerate CNS drug development, computational prediction models could save the time and effort needed for experimental evaluation. Here, we studied BBB permeability focusing on active transport (influx and efflux) as well as passive diffusion using previously published and self-curated data sets. We created prediction models based on physicochemical properties, molecular substructures, or their combination to understand which mechanisms contribute to BBB permeability. Our results show that features that predicted passive diffusion over membranes overlap with features that explain endothelial permeation of approved CNS-active drugs. We also identified physical properties and molecular substructures that positively or negatively predicted BBB transport. These findings provide guidance toward identifying BBB-permeable compounds by optimally matching physicochemical and molecular properties to BBB transport mechanisms.
Collapse
Affiliation(s)
- Fleur
M.G. Cornelissen
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Greta Markert
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Ghislaine Deutsch
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Maria Antonara
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Noa Faaij
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Imke Bartelink
- Department
of Pharmacy, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - David Noske
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - W. Peter Vandertop
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Bart A. Westerman
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Window
Consortium (www.window-consortium.org)
| |
Collapse
|
80
|
Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, Pasolli HA, Liu Y, Gamazon ER, Alwaseem H, Hite RK, Birsoy K. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab 2023; 35:1057-1071.e12. [PMID: 37100056 PMCID: PMC10367582 DOI: 10.1016/j.cmet.2023.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yeeun Son
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lishu Yue
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
81
|
Handa K, Sakamoto S, Kageyama M, Iijima T. Development of a 2D-QSAR Model for Tissue-to-Plasma Partition Coefficient Value with High Accuracy Using Machine Learning Method, Minimum Required Experimental Values, and Physicochemical Descriptors. Eur J Drug Metab Pharmacokinet 2023:10.1007/s13318-023-00832-w. [PMID: 37266860 DOI: 10.1007/s13318-023-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The demand for physiologically based pharmacokinetic (PBPK) model is increasing currently. New drug application (NDA) of many compounds is submitted with PBPK models for efficient drug development. Tissue-to-plasma partition coefficient (Kp) is a key parameter for the PBPK model to describe differential equations. However, it is difficult to obtain the Kp value experimentally because the measurement of drug concentration in the tissue is much harder than that in plasma. OBJECTIVE Instead of experiments, many researchers have sought in silico methods. Today, most of the models for Kp prediction are using in vitro and in vivo parameters as explanatory variables. We thought of physicochemical descriptors that could improve the predictability. Therefore, we aimed to develop the two-dimensional quantitative structure-activity relationship (2D-QSAR) model for Kp using physicochemical descriptors instead of in vivo experimental data as explanatory variables. METHODS We compared our model with the conventional models using 20-fold cross-validation according to the published method (Yun et al. J Pharmacokinet Pharmacodyn 41:1-14, 2014). We used random forest algorithm, which is known to be one of the best predictors for the 2D-QSAR model. Finally, we combined minimum in vitro experimental values and physiochemical descriptors. Thus, the prediction method for Kp value using a few in vitro parameters and physicochemical descriptors was developed; this is a multimodal model. RESULTS Its accuracy was found to be superior to that of the conventional models. Results of this research suggest that multimodality is useful for the 2D-QSAR model [RMSE and % of two-fold error: 0.66 and 42.2% (Berezohkovsky), 0.52 and 52.2% (Rodgers), 0.65 and 34.6% (Schmitt), 0.44 and 61.1% (published model), 0.41 and 62.1% (traditional model), 0.39 and 64.5% (multimodal model)]. CONCLUSION We could develop a 2D-QSAR model for Kp value with the highest accuracy using a few in vitro experimental data and physicochemical descriptors.
Collapse
Affiliation(s)
- Koichi Handa
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan.
| | - Seishiro Sakamoto
- Pharmaceutical Development Coordination Department, Teijin Pharma Limited, 3-2-1, Kasumigaseki Common Gate West Tower, Kasumigaseki Chiyoda-ku, Tokyo, 100-8585, Japan
| | - Michiharu Kageyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan
| | - Takeshi Iijima
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan
| |
Collapse
|
82
|
He J, Zhu Q, Han P, Zhou T, Li J, Wang X, Cheng J. Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder ( Paralichthys olivaceus). BIOLOGY 2023; 12:784. [PMID: 37372069 DOI: 10.3390/biology12060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Low temperature is among the important factors affecting the distribution, survival, growth, and physiology of aquatic animals. In this study, coordinated transcriptomic responses to 10 °C acute cold stress were investigated in the gills, hearts, livers, and spleens of Japanese flounder (Paralichthys olivaceus), an important aquaculture species in east Asia. Histological examination suggested different levels of injury among P. olivaceus tissues after cold shock, mainly in the gills and livers. Based on transcriptome and weighted gene coexpression network analysis, 10 tissue-specific cold responsive modules (CRMs) were identified, revealing a cascade of cellular responses to cold stress. Specifically, five upregulated CRMs were enriched with induced differentially expressed genes (DEGs), mainly corresponding to the functions of "extracellular matrix", "cytoskeleton", and "oxidoreductase activity", indicating the induced cellular response to cold shock. The "cell cycle/division" and "DNA complex" functions were enriched in the downregulated CRMs for all four tissues, which comprised inhibited DEGs, suggesting that even with tissue-specific responses, cold shock may induce severely disrupted cellular functions in all tissues, reducing aquaculture productivity. Therefore, our results revealed the tissue-specific regulation of the cellular response to low-temperature stress, which warrants further investigation and provides more comprehensive insights for the conservation and cultivation of P. olivaceus in cold water.
Collapse
Affiliation(s)
- Jiayi He
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Qing Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Tianyu Zhou
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Juyan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, 169 Qixingnan Road, Ningbo 315832, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
83
|
Gorgoglione R, Seccia R, Ahmed A, Vozza A, Capobianco L, Lodi A, Marra F, Paradies E, Palmieri L, Coppola V, Dolce V, Fiermonte G. Generation of a Yeast Cell Model Potentially Useful to Identify the Mammalian Mitochondrial N-Acetylglutamate Transporter. Biomolecules 2023; 13:biom13050808. [PMID: 37238678 DOI: 10.3390/biom13050808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The human mitochondrial carrier family (MCF) consists of 53 members. Approximately one-fifth of them are still orphans of a function. Most mitochondrial transporters have been functionally characterized by reconstituting the bacterially expressed protein into liposomes and transport assays with radiolabeled compounds. The efficacy of this experimental approach is constrained to the commercial availability of the radiolabeled substrate to be used in the transport assays. A striking example is that of N-acetylglutamate (NAG), an essential regulator of the carbamoyl synthetase I activity and the entire urea cycle. Mammals cannot modulate mitochondrial NAG synthesis but can regulate the levels of NAG in the matrix by exporting it to the cytosol, where it is degraded. The mitochondrial NAG transporter is still unknown. Here, we report the generation of a yeast cell model suitable for identifying the putative mammalian mitochondrial NAG transporter. In yeast, the arginine biosynthesis starts in the mitochondria from NAG which is converted to ornithine that, once transported into cytosol, is metabolized to arginine. The deletion of ARG8 makes yeast cells unable to grow in the absence of arginine since they cannot synthetize ornithine but can still produce NAG. To make yeast cells dependent on a mitochondrial NAG exporter, we moved most of the yeast mitochondrial biosynthetic pathway to the cytosol by expressing four E. coli enzymes, argB-E, able to convert cytosolic NAG to ornithine. Although argB-E rescued the arginine auxotrophy of arg8∆ strain very poorly, the expression of the bacterial NAG synthase (argA), which would mimic the function of a putative NAG transporter increasing the cytosolic levels of NAG, fully rescued the growth defect of arg8∆ strain in the absence of arginine, demonstrating the potential suitability of the model generated.
Collapse
Affiliation(s)
- Ruggiero Gorgoglione
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Roberta Seccia
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Eleonora Paradies
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
84
|
Lindberg FA, Nordenankar K, Forsberg EC, Fredriksson R. SLC38A10 Deficiency in Mice Affects Plasma Levels of Threonine and Histidine in Males but Not in Females: A Preliminary Characterization Study of SLC38A10−/− Mice. Genes (Basel) 2023; 14:genes14040835. [PMID: 37107593 PMCID: PMC10138244 DOI: 10.3390/genes14040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed to fully understand their function and possible role as therapeutic targets. SLC38A10, a poorly characterized solute carrier, is preliminary characterized here. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of the whole brain and found seven differentially expressed genes in SLC38A10-deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in knockout males, whereas no amino acid levels were affected in females, suggesting that SLC38A10−/− might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in the brain, liver, lung, muscle, and kidney, but no differences were found. Relative telomere length measurement was also taken, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in the whole brain.
Collapse
|
85
|
Zhu Q, Li M, Lu W, Wang Y, Li X, Cheng J. Transcriptomic Modulation Reveals the Specific Cellular Response in Chinese Sea Bass ( Lateolabrax maculatus) Gills under Salinity Change and Alkalinity Stress. Int J Mol Sci 2023; 24:ijms24065877. [PMID: 36982950 PMCID: PMC10056482 DOI: 10.3390/ijms24065877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Salinity and alkalinity are among the important factors affecting the distribution, survival, growth and physiology of aquatic animals. Chinese sea bass (Lateolabrax maculatus) is an important aquaculture fish species in China that can widely adapt to diverse salinities from freshwater (FW) to seawater (SW) but moderately adapt to highly alkaline water (AW). In this study, juvenile L. maculatus were exposed to salinity change (SW to FW) and alkalinity stress (FW to AW). Coordinated transcriptomic responses in L. maculatus gills were investigated and based on the weighted gene co-expression network analysis (WGCNA), 8 and 11 stress-responsive modules (SRMs) were identified for salinity change and alkalinity stress, respectively, which revealed a cascade of cellular responses to oxidative and osmotic stress in L. maculatus gills. Specifically, four upregulated SRMs were enriched with induced differentially expressed genes (DEGs) for alkalinity stress, mainly corresponding to the functions of "extracellular matrix" and "anatomical structure", indicating a strong cellular response to alkaline water. Both "antioxidative activity" and "immune response" functions were enriched in the downregulated alkaline SRMs, which comprised inhibited alkaline specific DEGs, revealing the severely disrupted immune and antioxidative functions under alkalinity stress. These alkaline-specific responses were not revealed in the salinity change groups with only moderately inhibited osmoregulation and induced antioxidative response in L. maculatus gills. Therefore, the results revealed the diverse and correlated regulation of the cellular process and stress response in saline-alkaline water, which may have arisen through the functional divergence and adaptive recruitment of the co-expression genes and will provide vital insights for the development of L. maculatus cultivation in alkaline water.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Moli Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Yapeng Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xujian Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
86
|
Freissmuth M. Regulated Rapid Round Trips: Endocytotic Cycling of the Dopamine Transporter Shapes Motor Learning. J Biol Chem 2023; 299:104618. [PMID: 36935007 PMCID: PMC10124912 DOI: 10.1016/j.jbc.2023.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The level of dopamine transporters (DATs) in the neuronal plasma membrane shapes learning and motor coordination in mice. Mechanisms underlying the regulated internalization of DAT and its return to the cell surface have been intensively studied in heterologous cells and in neuronal cell bodies. However, whether this cycling also happens in synaptic boutons, or axon terminals, thought to be the major functional site for DAT expression, was an open question that Kearney and colleagues recently addressed in the JBC. They showed that DAT cycling in the presynaptic specialization of dopaminergic neurons is subject to control by a cell-autonomous loop comprising dopamine autoreceptors and metabotropic glutamate receptors. These results should inform future studies in neural development and motor learning.
Collapse
Affiliation(s)
- Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
87
|
Masrati G, Kessel A, Ben-Tal N. Cation/proton antiporters: novel structure-driven pharmaceutical opportunities. Trends Pharmacol Sci 2023; 44:258-262. [PMID: 36934025 DOI: 10.1016/j.tips.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Cation/proton antiporters (CPAs) regulate cells' salt concentration and pH. Their malfunction is associated with a range of human pathologies, yet only a handful of CPA-targeting therapeutics are presently in clinical development. Here, we discuss how recently published mammalian protein structures and emerging computational technologies may help to bridge this gap.
Collapse
Affiliation(s)
- Gal Masrati
- Tel Aviv University, George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv, Israel
| | - Amit Kessel
- Tel Aviv University, George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv, Israel
| | - Nir Ben-Tal
- Tel Aviv University, George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv, Israel.
| |
Collapse
|
88
|
Bongers BJ, Sijben HJ, Hartog PBR, Tarnovskiy A, IJzerman AP, Heitman LH, van Westen GJP. Proteochemometric Modeling Identifies Chemically Diverse Norepinephrine Transporter Inhibitors. J Chem Inf Model 2023; 63:1745-1755. [PMID: 36926886 PMCID: PMC10052348 DOI: 10.1021/acs.jcim.2c01645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Solute carriers (SLCs) are relatively underexplored compared to other prominent protein families such as kinases and G protein-coupled receptors. However, proteins from the SLC family play an essential role in various diseases. One such SLC is the high-affinity norepinephrine transporter (NET/SLC6A2). In contrast to most other SLCs, the NET has been relatively well studied. However, the chemical space of known ligands has a low chemical diversity, making it challenging to identify chemically novel ligands. Here, a computational screening pipeline was developed to find new NET inhibitors. The approach increases the chemical space to model for NETs using the chemical space of related proteins that were selected utilizing similarity networks. Prior proteochemometric models added data from related proteins, but here we use a data-driven approach to select the optimal proteins to add to the modeled data set. After optimizing the data set, the proteochemometric model was optimized using stepwise feature selection. The final model was created using a two-step approach combining several proteochemometric machine learning models through stacking. This model was applied to the extensive virtual compound database of Enamine, from which the top predicted 22,000 of the 600 million virtual compounds were clustered to end up with 46 chemically diverse candidates. A subselection of 32 candidates was synthesized and subsequently tested using an impedance-based assay. There were five hit compounds identified (hit rate 16%) with sub-micromolar inhibitory potencies toward NET, which are promising for follow-up experimental research. This study demonstrates a data-driven approach to diversify known chemical space to identify novel ligands and is to our knowledge the first to select this set based on the sequence similarity of related targets.
Collapse
Affiliation(s)
- Brandon J Bongers
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Huub J Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,Oncode Institute, Jaarbeursplein 6, Utrecht 3521 AL, The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
89
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
90
|
Prognostic 7-SLC-Gene Signature Identified via Weighted Gene Co-Expression Network Analysis for Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4364654. [PMID: 36844876 PMCID: PMC9957622 DOI: 10.1155/2023/4364654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
Background Solute carrier (SLC) proteins play an important role in tumor metabolism. But SLC-associated genes' prognostic significance in hepatocellular carcinoma (HCC) remained elusive. We identified SLC-related factors and developed an SLC-related classifier to predict and improve HCC prognosis and treatment. Methods From the TCGA database, corresponding clinical data and mRNA expression profiles of 371 HCC patients were acquired, and those of 231 tumor samples were derived from the ICGC database. Genes associated with clinical features were filtered using weighted gene correlation network analysis (WGCNA). Next, univariate LASSO Cox regression studies developed SLC risk profiles, with the ICGC cohort data being used in validation. Result Univariate Cox regression analysis revealed that 31 SLC genes (P < 0.05) were related to HCC prognosis. 7 (SLC22A25, SLC2A2, SLC41A3, SLC44A1, SLC48A1, SLC4A2, and SLC9A3R1) of these genes were applied in developing a SLC gene prognosis model. Samples were classified into the low-andhigh-risk groups by the prognostic signature, with those in the high-risk group showing a significantly worse prognosis (P < 0.001 in the TCGA cohort and P=0.0068 in the ICGC cohort). ROC analysis validated the signature's prediction power. In addition, functional analyses showed enrichment of immune-related pathways and different immune status between the two risk groups. Conclusion The 7-SLC-gene prognostic signature established in this study helped predict the prognosis, and was also correlated with the tumor immune status and infiltration of different immune cells in the tumor microenvironment. The current findings may provide important clinical indications for proposing a novel combination therapy consists of targeted anti-SLC therapy and immunotherapy for HCC patients.
Collapse
|
91
|
Huttunen J, Kronenberger T, Montaser AB, Králová A, Terasaki T, Poso A, Huttunen KM. Sodium-Dependent Neutral Amino Acid Transporter 2 Can Serve as a Tertiary Carrier for l-Type Amino Acid Transporter 1-Utilizing Prodrugs. Mol Pharm 2023; 20:1331-1346. [PMID: 36688491 PMCID: PMC9906736 DOI: 10.1021/acs.molpharmaceut.2c00948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane transporters are the key determinants of the homeostasis of endogenous compounds in the cells and their exposure to drugs. However, the substrate specificities of distinct transporters can overlap. In the present study, the interactions of l-type amino acid transporter 1 (LAT1)-utilizing prodrugs with sodium-coupled neutral amino acid transporter 2 (SNAT2) were explored. The results showed that the cellular uptake of LAT1-utilizing prodrugs into a human breast cancer cell line, MCF-7 cells, was mediated via SNATs as the uptake was increased at higher pH (8.5), decreased in the absence of sodium, and inhibited in the presence of unselective SNAT-inhibitor, (α-(methylamino)isobutyric acid, MeAIB). Moreover, docking the compounds to a SNAT2 homology model (inward-open conformation) and further molecular dynamics simulations and the subsequent trajectory and principal component analyses confirmed the chemical features supporting the interactions of the studied compounds with SNAT2, which was found to be the main SNAT expressed in MCF-7 cells.
Collapse
Affiliation(s)
- Johanna Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Thales Kronenberger
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Ahmed B. Montaser
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Adéla Králová
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,
| |
Collapse
|
92
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
93
|
Bhat S, El-Kasaby A, Kasture A, Boytsov D, Reichelt JB, Hummel T, Sucic S, Pifl C, Freissmuth M, Sandtner W. A mechanism of uncompetitive inhibition of the serotonin transporter. eLife 2023; 12:e82641. [PMID: 36648438 PMCID: PMC9883013 DOI: 10.7554/elife.82641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ameya Kasture
- Department of Neurobiology, University of ViennaViennaAustria
| | - Danila Boytsov
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Julian B Reichelt
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Thomas Hummel
- Department of Neurobiology, University of ViennaViennaAustria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Christian Pifl
- Center for Brain Research, Medical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
94
|
Abstract
Membrane transporter proteins are divided into channels/pores and carriers and constitute protein families of physiological and pharmacological importance. Several presently used therapeutic compounds elucidate their effects by targeting membrane transporter proteins, including anti-arrhythmic, anesthetic, antidepressant, anxiolytic and diuretic drugs. The lack of three-dimensional structures of human transporters hampers experimental studies and drug discovery. In this chapter, the use of homology modeling for generating structural models of membrane transporter proteins is reviewed. The increasing number of atomic resolution structures available as templates, together with improvements in methods and algorithms for sequence alignments, secondary structure predictions, and model generation, in addition to the increase in computational power have increased the applicability of homology modeling for generating structural models of transporter proteins. Different pitfalls and hints for template selection, multiple-sequence alignments, generation and optimization, validation of the models, and the use of transporter homology models for structure-based virtual ligand screening are discussed.
Collapse
Affiliation(s)
- Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Mari Gabrielsen
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kurt Kristiansen
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
95
|
Wang X, Hong M. Protein Kinases and Cross-talk between Post-translational Modifications in the Regulation of Drug Transporters. Mol Pharmacol 2023; 103:9-20. [PMID: 36302660 DOI: 10.1124/molpharm.122.000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 02/03/2023] Open
Abstract
Drug transporters are modulators for drug absorption, distribution, and excretion. Key drug transporters including P-glycoprotein and breast cancer resistance protein of the ABC superfamily; organic anion transporting polypeptide 1B1 and 1B3, organic anion transporter 1 and 3, and organic cation transporter 2, as well as multidrug and toxin extrusion 1 and 2 of the SLC superfamily have been recommended by regulatory agencies to be investigated and evaluated in drug-drug interaction (DDI) studies due to their important roles in determining the efficacy, toxicity and DDI of various drugs. Drug transporters are subjected to multiple levels of control and post-translational modifications (PTMs) provide rapid and versatile ways of regulation. Under pathologic and/or pharmacological conditions, PTMs may be altered in the cellular system, leading to functional changes of transporter proteins. Phosphorylation is by far the most actively investigated form of PTMs in the regulation of transporters. Further, studies in recent years also found that protein kinases coordinate with other PTMs for the dynamic control of these membrane proteins. Here we summarized the regulation of major drug transporters by protein kinases and their cross-talking with other PTMs that may generate a complex regulatory network for fine-tuning the function of these important drug processing modulators. SIGNIFICANCE STATEMENT: Kinases regulate drug transporters in versatile manners; Kinase regulation cross-talks with other PTMs, forming a complex network for transporter regulation; Pathological and/or pharmacological conditions may alter PTMs and affect transporter function with different molecular mechanisms.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (X.W. and M.H.), and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China (M.H.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China (X.W. and M.H.), and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China (M.H.)
| |
Collapse
|
96
|
Lindberg FA, Roman E, Fredriksson R. Behavioral profiling of SLC38A10 knockout mice using the multivariate concentric square field TM test. Front Behav Neurosci 2022; 16:987037. [PMID: 36620864 PMCID: PMC9815452 DOI: 10.3389/fnbeh.2022.987037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction SLC38A10 is a gene that encodes the SLC38A10 protein, also known as SNAT10. The SLC38 family is evolutionary old, and SLC38A10 is one of the oldest members of the family. It is ubiquitously expressed, and its substrates are glutamine, glutamate, alanine, aspartate, and serine. However, little is known about its biological importance. Methods In the current study, an SLC38A10 knockout mouse was run in the multivariate concentric square field TM (MCSF) test. The MCSF test gives the mouse a choice of areas to explore; sheltered areas, elevated and illuminated areas, or open spaces, and a behavioral profile is obtained. The multivariate data obtained were analyzed (i) for each parameter, (ii) parameters grouped into functional categories, and (iii) with a principal component analysis. Results In the trend analysis, knockout mice had a decreased exploratory behavior compared to controls but did not show a distinct grouping in the principal component analysis. Discussion There was not a pronounced difference in the behavioral profile in SLC38A10 knockout mice compared to their wild-type controls, although subtle alterations in zones associated with exploratory behavior and risk assessment in female and male knockout mice, respectively, could be observed. These results imply that a loss of function of the SLC38A10 protein in mice does not drastically alter behavior in the MSCF test.
Collapse
Affiliation(s)
- Frida A. Lindberg
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden,*Correspondence: Frida A. Lindberg,
| | - Erika Roman
- Neuropharmacology and Addiction, Uppsala University, Uppsala, Sweden,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
97
|
Rebsamen M, Girardi E, Sedlyarov V, Scorzoni S, Papakostas K, Vollert M, Konecka J, Guertl B, Klavins K, Wiedmer T, Superti-Furga G. Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions. Life Sci Alliance 2022; 5:e202201404. [PMID: 36114003 PMCID: PMC9481932 DOI: 10.26508/lsa.202201404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Solute carrier (SLC) transporters control fluxes of nutrients and metabolites across membranes and thereby represent a critical interface between the microenvironment and cellular and subcellular metabolism. Because of substantial functional overlap, the interplay and relative contributions of SLCs in response to environmental stresses remain poorly elucidated. To infer functional relationships between SLCs and metabolites, we developed a strategy to identify SLCs able to sustain cell viability and proliferation under growth-limiting concentrations of essential nutrients. One-by-one depletion of 13 amino acids required for cell proliferation enabled gain-of-function genetic screens using a SLC-focused CRISPR/Cas9-based transcriptional activation approach to uncover transporters relieving cells from growth-limiting metabolic bottlenecks. Among the transporters identified, we characterized the cationic amino acid transporter SLC7A3 as a gene that, when up-regulated, overcame low availability of arginine and lysine by increasing their uptake, whereas SLC7A5 was able to sustain cellular fitness upon deprivation of several neutral amino acids. Moreover, we identified metabolic compensation mediated by the glutamate/aspartate transporters SLC1A2 and SLC1A3 under glutamine-limiting conditions. Overall, this gain-of-function approach using human cells uncovered functional transporter-nutrient relationships and revealed that transport activity up-regulation may be sufficient to overcome environmental metabolic restrictions.
Collapse
Affiliation(s)
- Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Konstantinos Papakostas
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuela Vollert
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Guertl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
98
|
Rehman HM, Chen S, Zhang S, Khalid M, Uzair M, Wilmarth PA, Ahmad S, Lam HM. Membrane Proteomic Profiling of Soybean Leaf and Root Tissues Uncovers Salt-Stress-Responsive Membrane Proteins. Int J Mol Sci 2022; 23:13270. [PMID: 36362058 PMCID: PMC9655375 DOI: 10.3390/ijms232113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Cultivated soybean (Glycine max (L.)), the world's most important legume crop, has high-to-moderate salt sensitivity. Being the frontier for sensing and controlling solute transport, membrane proteins could be involved in cell signaling, osmoregulation, and stress-sensing mechanisms, but their roles in abiotic stresses are still largely unknown. By analyzing salt-induced membrane proteomic changes in the roots and leaves of salt-sensitive soybean cultivar (C08) seedlings germinated under NaCl, we detected 972 membrane proteins, with those present in both leaves and roots annotated as receptor kinases, calcium-sensing proteins, abscisic acid receptors, cation and anion channel proteins, proton pumps, amide and peptide transporters, and vesicle transport-related proteins etc. Endocytosis, linoleic acid metabolism, and fatty acid biosynthesis pathway-related proteins were enriched in roots whereas phagosome, spliceosome and soluble NSF attachment protein receptor (SNARE) interaction-related proteins were enriched in leaves. Using label-free quantitation, 129 differentially expressed membrane proteins were found in both tissues upon NaCl treatment. Additionally, the 140 NaCl-induced proteins identified in roots and 57 in leaves are vesicle-, mitochondrial-, and chloroplast-associated membrane proteins and those with functions related to ion transport, protein transport, ATP hydrolysis, protein folding, and receptor kinases, etc. Our proteomic results were verified against corresponding gene expression patterns from published C08 RNA-seq data, demonstrating the importance of solute transport and sensing in salt stress responses.
Collapse
Affiliation(s)
- Hafiz Mamoon Rehman
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shengjie Chen
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shoudong Zhang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Memoona Khalid
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Shakeel Ahmad
- Seed Center, Ministry of Environment, Water & Agriculture, Riyadh 14712, Saudi Arabia
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
99
|
A structure and evolutionary-based classification of solute carriers. iScience 2022; 25:105096. [PMID: 36164651 PMCID: PMC9508557 DOI: 10.1016/j.isci.2022.105096] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022] Open
Abstract
Solute carriers are an operationally defined diverse family of membrane proteins involved in the transport of nutrients, metabolites, xenobiotics, and drugs. Here, we provide an integrative classification of solute carriers by combining evolutionary information with proteome-wide structure models recently made available through the AlphaFold resource. Analyses of orthologous relations among 455 protein-coding genes currently classified as human solute carriers, over the fully sequenced genomes of 2,100 species, suggest no more than approximately 180 independent evolutionary origins. Structural comparative analyses provided further insight revealing a total of 24 structurally distinct transmembrane folds, increasing by approximately 40% the number of previously described SLC structural folds. In addition, a structural comparative analysis identified a new human solute carrier member and revealed details of noncanonical ones. Our analyses uncover new ancestral relations between solute carrier genes, provide insights into the evolution of remote homologs and a platform to test hypotheses of functional deorphanization.
Collapse
|
100
|
Li F, Yin J, Lu M, Mou M, Li Z, Zeng Z, Tan Y, Wang S, Chu X, Dai H, Hou T, Zeng S, Chen Y, Zhu F. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2022; 51:D1288-D1299. [PMID: 36243961 PMCID: PMC9825453 DOI: 10.1093/nar/gkac813] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy and safety of drugs are widely known to be determined by their interactions with multiple molecules of pharmacological importance, and it is therefore essential to systematically depict the molecular atlas and pharma-information of studied drugs. However, our understanding of such information is neither comprehensive nor precise, which necessitates the construction of a new database providing a network containing a large number of drugs and their interacting molecules. Here, a new database describing the molecular atlas and pharma-information of drugs (DrugMAP) was therefore constructed. It provides a comprehensive list of interacting molecules for >30 000 drugs/drug candidates, gives the differential expression patterns for >5000 interacting molecules among different disease sites, ADME (absorption, distribution, metabolism and excretion)-relevant organs and physiological tissues, and weaves a comprehensive and precise network containing >200 000 interactions among drugs and molecules. With the great efforts made to clarify the complex mechanism underlying drug pharmacokinetics and pharmacodynamics and rapidly emerging interests in artificial intelligence (AI)-based network analyses, DrugMAP is expected to become an indispensable supplement to existing databases to facilitate drug discovery. It is now fully and freely accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
| | | | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Correspondence may also be addressed to Su Zeng.
| | - Yuzong Chen
- Correspondence may also be addressed to Yuzong Chen.
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|