51
|
Caslin HL, Bhanot M, Bolus WR, Hasty AH. Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunol Rev 2020; 295:101-113. [PMID: 32237081 PMCID: PMC8015437 DOI: 10.1111/imr.12853] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages comprise a majority of the resident immune cells in adipose tissue (AT) and regulate both tissue homeostasis in the lean state and metabolic dysregulation in obesity. Since the AT environment rapidly changes based upon systemic energy status, AT macrophages (ATMs) must adapt phenotypically and metabolically. There is a distinct dichotomy in the polarization and bioenergetics of in vitro models, with M2 macrophages utilizing oxidative phosphorylation (OX PHOS) and M1 macrophages utilizing glycolysis. Early studies suggested differential polarization of ATMs, with M2-like macrophages predominant in lean AT and M1-like macrophages in obese AT. However, recent studies show that the phenotypic plasticity of ATMs is far more complicated, which is also reflected in their bioenergetics. Multiple ATM populations exist along the M2 to M1 continuum and appear to utilize both glycolysis and OX PHOS in obesity. The significance of the dual fuel bioenergetics is unclear and may be related to an intermediate polarization, their buffering capacity, or the result of a mixed population of distinct polarized ATMs. Recent evidence also suggests that ATMs of lean mice serve as a substrate buffer or reservoir to modulate lipid, catecholamine, and iron availability. Furthermore, recent models of weight loss and weight cycling reveal additional roles for ATMs in systemic metabolism. Evaluating ATM phenotype and intracellular metabolism together may more accurately illuminate the consequences of ATM accumulation in obese AT, lending further insight into obesity-related comorbidities in humans.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Monica Bhanot
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt Medical Center, Nashville, TN, USA
| | - W Reid Bolus
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
52
|
Casimiro I, Hanlon EC, White J, De Leon A, Ross R, Moise K, Piron M, Brady MJ. Reduction of IL-6 gene expression in human adipose tissue after sleeve gastrectomy surgery. Obes Sci Pract 2020; 6:215-224. [PMID: 32313680 PMCID: PMC7156876 DOI: 10.1002/osp4.396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE There is increasing evidence that immune cell interactions in adipose tissue contribute to the development of metabolic dysfunction. Pro-inflammatory cytokines have been shown to mediate insulin resistance, and the presence of macrophages is a salient feature in the development of obesity. The present study aimed to evaluate adipocyte size and macrophage activation in women before and 3 months after laparoscopic vertical sleeve gastrectomy (VSG). METHODS Subcutaneous abdominal adipose tissue biopsies were obtained from women scheduled to undergo VSG. Histological evaluation of adipocytes and macrophages was performed as well as cytokine expression quantification before and after VSG-induced weight loss. RESULTS Weight loss following VSG resulted in a reduction in adipocyte size as well as a decrease in interleukin (IL)-6 cytokine mRNA expression in subcutaneous adipose tissue. There was no change in the presence of crownlike structures after weight loss. CONCLUSIONS Early weight loss after VSG is associated with a reduction in adipocyte size and a decline in IL-6 gene expression in local adipose tissue. Macrophage infiltration and crownlike density structures persist in adipose tissue from tissues impacted by excess body weight 3 months after VSG-induced weight loss.
Collapse
Affiliation(s)
- Isabel Casimiro
- Department of Medicine, Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| | - Erin C. Hanlon
- Department of Medicine, Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| | - Jeremy White
- Committee on Molecular Metabolism & NutritionUniversity of ChicagoChicagoIllinois
| | - Avelino De Leon
- Committee on Molecular Metabolism & NutritionUniversity of ChicagoChicagoIllinois
| | - Ruby Ross
- Department of Medicine, Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| | - Katiannah Moise
- Committee on Molecular Metabolism & NutritionUniversity of ChicagoChicagoIllinois
| | - Matthew Piron
- Department of Medicine, Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| | - Matthew J. Brady
- Department of Medicine, Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
- Committee on Molecular Metabolism & NutritionUniversity of ChicagoChicagoIllinois
| |
Collapse
|
53
|
He B, Wang X, Jin X, Xue Z, Ni Y, Zhu J, Wang C, Jin Y, Fu Z. β‐Cypermethrin
Alleviated the Inhibitory Effect of Medium from
RAW
264.7 Cells on
3T3‐L1
Cell Maturation into Adipocytes. Lipids 2020; 55:251-260. [DOI: 10.1002/lipd.12234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Bingnan He
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xia Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xini Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zimeng Xue
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Jianbo Zhu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Caiyun Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yuanxiang Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| |
Collapse
|
54
|
Zlatska AV, Vasyliev RG, Gordiienko IM, Rodnichenko AE, Morozova MA, Vulf MA, Zubov DO, Novikova SN, Litvinova LS, Grebennikova TV, Zlatskiy IA, Syroeshkin AV. Effect of the deuterium on efficiency and type of adipogenic differentiation of human adipose-derived stem cells in vitro. Sci Rep 2020; 10:5217. [PMID: 32251307 PMCID: PMC7089999 DOI: 10.1038/s41598-020-61983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, we performed an adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro with different deuterium content (natural, low and high) in the culture medium during differentiation process with parallel analysis of the gene expression, metabolic activity and cell viability/toxicity. After ADSCs differentiation into adipocytes we have done the analysis of differentiation process efficiency and determined a type of resulting adipocytes (by morphology, gene expression, UCP1 protein detection and adipokine production analysis). We have found that high (5 × 105 ppm) deuterium content significantly inhibit in vitro adipogenic differentiation of human ADSCs compared to the groups with natural (150 ppm) and low (30 ppm) deuterium content. Importantly, protocol of differentiation used in our study leads to white adipocytes development in groups with natural (control) and high deuterium content, whereas deuterium-depleted differentiation medium leads to brown-like (beige) adipocytes formation. We have also remarked the direct impact of deuterium on the cellular survival and metabolic activity. Interesting, in deuterium depleted-medium, the cells had normal survival rate and high metabolic activity, whereas the inhibitory effect of deuterated medium on ADSCs differentiation at least was partly associated with deuterium cytotoxicity and inhibitory effect on metabolic activity. The inhibitory effect of deuterium on metabolic activity and the subsequent decrease in the effectiveness of adipogenic differentiation is probably associated with mitochondrial dysfunction. Thus, deuterium could be considered as an element that affects the substance chirality. These findings may be the basis for the development of new approaches in the treatment of obesity, metabolic syndrome and diabetes through the regulation of adipose-derived stem cell differentiation and adipocyte functions.
Collapse
Affiliation(s)
- Alona V Zlatska
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine.,Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine
| | - Roman G Vasyliev
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Inna M Gordiienko
- Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine.,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine, 45 Vasylkivska Str., Kyiv, 03022, Ukraine
| | - Anzhela E Rodnichenko
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Maria A Morozova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Maria A Vulf
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Dmytro O Zubov
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Svitlana N Novikova
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Larisa S Litvinova
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Tatiana V Grebennikova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Federal Research Center of Epidemiology and Microbiology named Gamalei, Moscow, Russian Federation
| | - Igor A Zlatskiy
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine. .,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Anton V Syroeshkin
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
55
|
Obesity Promotes Cooperation of Cancer Stem-Like Cells and Macrophages to Enhance Mammary Tumor Angiogenesis. Cancers (Basel) 2020; 12:cancers12020502. [PMID: 32098183 PMCID: PMC7072330 DOI: 10.3390/cancers12020502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is correlated with worsened prognosis and treatment resistance in breast cancer. Macrophage-targeted therapies are currently in clinical trials, however, little is known about how obesity may impact treatment efficacy. Within breast adipose tissue, obesity leads to chronic, macrophage-driven inflammation, suggesting that obese breast cancer patients may benefit from these therapies. Using a high fat diet model of obesity, we orthotopically transplanted cancer cell lines into the mammary glands of obese and lean mice. We quantified changes in tumor invasiveness, angiogenesis and metastasis, and examined the efficacy of macrophage depletion to diminish tumor progression in obese and lean mice. Mammary tumors from obese mice grew significantly faster, were enriched for cancer stem-like cells (CSCs) and were more locally invasive and metastatic. Tumor cells isolated from obese mice demonstrated enhanced expression of stem cell-related pathways including Sox2 and Notch2. Despite more rapid growth, mammary tumors from obese mice had reduced necrosis, higher blood vessel density, and greater macrophage recruitment. Depletion of macrophages in obese tumor-bearing mice resulted in increased tumor necrosis, reduced endothelial cells, and enhanced recruitment of CD8+ T cells compared to IgG-treated controls. Macrophages may be an important clinical target to improve treatment options for obese breast cancer patients.
Collapse
|
56
|
Fernø J, Strand K, Mellgren G, Stiglund N, Björkström NK. Natural Killer Cells as Sensors of Adipose Tissue Stress. Trends Endocrinol Metab 2020; 31:3-12. [PMID: 31597606 DOI: 10.1016/j.tem.2019.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023]
Abstract
Adipose tissue macrophages (ATMs) orchestrate low-grade chronic adipose tissue inflammation, linking obesity and insulin resistance. Whereas factors contributing to macrophage accumulation in adipose tissue are established, little is known regarding signals that link adipocyte stress to proinflammatory activation of macrophages. Natural killer (NK) cells are specialized innate lymphocytes that identify and respond to stressed cells. In this Opinion, we discuss the possibility of NK cells to function as sensors recognizing adipose tissue stress. We further summarize recent literature suggesting NK cells to play an important role in development of insulin resistance via secretion of cytokines that stimulate proinflammatory polarization of ATMs. This suggests adipose tissue-resident NK cells as a pharmacological target for the treatment of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
57
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
58
|
Mishra J, Simonsen R, Kumar N. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity. J Biol Chem 2019; 294:18337-18348. [PMID: 31653704 DOI: 10.1074/jbc.ra119.007758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer resistance protein (BCRP) is a member of ATP-binding cassette (ABC) transporter proteins whose primary function is to efflux substrates bound to the plasma membrane. Impaired intestinal barrier functions play a major role in chronic low-grade inflammation (CLGI)-associated obesity, but the regulation of BCRP during obesity and its role in maintaining the intestinal barrier function during CLGI-associated obesity are unknown. In the present study, using several approaches, including efflux assays, immunoprecipitation, immunoblotting, immunohistochemistry, paracellular permeability assay, FACS, cytokine assay, and immunofluorescence microscopy, we report that obese individuals have compromised intestinal BCRP functions and that diet-induced obese mice recapitulate these outcomes. We demonstrate that the compromised BCRP functions during obesity are because of loss of Janus kinase 3 (JAK3)-mediated tyrosine phosphorylation of BCRP. Our results indicate that JAK3-mediated phosphorylation of BCRP promotes its interactions with membrane-localized β-catenin essential not only for BCRP expression and surface localization, but also for the maintenance of BCRP-mediated intestinal drug efflux and barrier functions. We observed that reduced intestinal JAK3 expression during human obesity or JAK3 knockout in mouse or siRNA-mediated β-catenin knockdown in human intestinal epithelial cells all result in significant loss of intestinal BCRP expression and compromised colonic drug efflux and barrier functions. Our results uncover a mechanism of BCRP-mediated intestinal drug efflux and barrier functions and establish a role for BCRP in preventing CLGI-associated obesity both in humans and in mice.
Collapse
Affiliation(s)
- Jayshree Mishra
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M Health Science Center, Kingsville, Texas 78363.
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M Health Science Center, Kingsville, Texas 78363
| |
Collapse
|
59
|
Von Ah Morano AE, Dorneles GP, Peres A, Lira FS. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. J Cell Physiol 2019; 235:3169-3188. [PMID: 31565806 DOI: 10.1002/jcp.29228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Immune cells are bioenergetically expensive during activation, which requires tightly regulated control of metabolic pathways. Both low and high glycemic conditions can modulate immune function. States of undernourishment depress the immune system, and in the same way, excessive intake of nutrients, such as an obesity state, compromise its functioning. Multicellular organisms depend on two mechanisms to survive: the regulation and ability to store energy to prevent starvation and the ability to fight against infection. Synergic interactions between metabolism and immunity affect many systems underpinning human health. In a chronic way, the breakdown of glycemic homeostasis in the body can influence cells of the immune system and consequently contribute to the onset of diseases such as type II diabetes, obesity, Alzheimer's, and fat and lean mass loss. On the contrary, exercise, recognized as a primary strategy to control hyperglycemic disorders, also induces a coordinated immune-neuro-endocrine response that acutely modulates cardiovascular, respiratory, and muscle functions and the immune response to exercise is widely dependent on the intensity and volume that may affect an immunodepressive state. These altered immune responses induced by exercise are modulated through the "stress hormones" adrenaline and cortisol, which are a threat to leukocyte metabolism. In this context, carbohydrates appear to have a positive acute response as a strategy to prevent depression of the immune system by maintaining plasma glucose concentrations to meet the energy demand from all systems involved during strenuous exercises. Therefore, herein, we discuss the mechanisms through which exercise may promotes changes on glycemic homeostasis in the metabolism and how it affects immune cell functions under higher or lower glucose conditions.
Collapse
Affiliation(s)
- Ana E Von Ah Morano
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Gilson P Dorneles
- Department of Basic Health Sciences, Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Department of Basic Health Sciences, Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| |
Collapse
|
60
|
Kane H, Lynch L. Innate Immune Control of Adipose Tissue Homeostasis. Trends Immunol 2019; 40:857-872. [DOI: 10.1016/j.it.2019.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
|
61
|
Naik A, Monjazeb AM, Decock J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front Immunol 2019; 10:1940. [PMID: 31475003 PMCID: PMC6703078 DOI: 10.3389/fimmu.2019.01940] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has been heralded as a breakthrough cancer treatment demonstrating tremendous success in improving tumor responses and survival of patients with hematological cancers and solid tumors. This novel promising treatment approach has in particular triggered optimism for triple negative breast cancer (TNBC) treatment, a subtype of breast cancer with distinct clinical features and poor clinical outcome. In early 2019, the FDA granted the first approval of immune checkpoint therapy, targeting PD-L1 (Atezolizumab) in combination with chemotherapy for the treatment of patients with locally advanced or metastatic PD-L1 positive TNBC. The efficacy of immuno-based interventions varies across cancer types and patient cohorts, which is attributed to a variety of lifestyle, clinical, and pathological factors. For instance, obesity has emerged as a risk factor for a dampened anti-tumor immune response and increased risk of immunotherapy-induced immune-related adverse events (irAEs) but has also been linked to improved outcomes with checkpoint blockade. Given the breadth of the rising global obesity epidemic, it is imperative to gain insight into the immunomodulatory effects of obesity in the peripheral circulation and within the tumor microenvironment. In this review, we resolve the impact of obesity on breast tumorigenesis and progression on the one hand, and on the immune contexture on the other hand. Finally, we speculate on the potential implications of obesity on immunotherapy response in breast cancer. This review clearly highlights the need for in vivo obese cancer models and representative clinical cohorts for evaluation of immunotherapy efficacy.
Collapse
Affiliation(s)
- Adviti Naik
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Arta Monir Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, University of California, Sacramento, Sacramento, CA, United States
| | - Julie Decock
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
62
|
Montserrat-de la Paz S, Naranjo MC, Millan-Linares MC, Lopez S, Abia R, Biessen EAL, Muriana FJG, Bermudez B. Monounsaturated Fatty Acids in a High-Fat Diet and Niacin Protect from White Fat Dysfunction in the Metabolic Syndrome. Mol Nutr Food Res 2019; 63:e1900425. [PMID: 31343843 DOI: 10.1002/mnfr.201900425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Obesity is a principal causative factor of metabolic syndrome. Niacin potently regulates lipid metabolism. Replacement of saturated fatty acids by MUFAs or inclusion of omega-3 long-chain PUFAs in the diet improves plasma lipid levels. However, the potential benefits of niacin in combination with MUFAs or omega-3 long-chain PUFAs against white adipose tissue (WAT) dysfunction in the high fat diet (HFD)-induced metabolic syndrome are unknown. METHODS AND RESULTS Male Lepob/ob LDLR-/- mice are fed a chow diet or HFDs based on milk cream (21% kcal), olive oil (21% kcal), or olive oil (20% kcal) plus 1% kcal from eicosapentaenoic and docosahexaenoic acids, including immediate-release niacin (1% w/v) in drinking water, for 8 weeks. Mice are then phenotyped. Dietary MUFAs are identified as positive regulators of adipose NAD+ signaling pathways by triggering NAD+ biosynthesis via the salvage pathway. This coexists with overexpression of genes involved in recognition of NAD+ and fatty acids, a surrounding lipid environment dominated by exogenous oleic acid and an alternatively activated macrophage profile, which culminate in a healthy expansion of WAT and improvement of several hallmarks that typify the metabolic syndrome. CONCLUSION Niacin in combination with dietary MUFAs can favor WAT homeostasis in the development of HFD-induced obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009, Seville, Spain
| | - Maria C Naranjo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | | | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Cell Biology, School of Biology, University of Seville, 41012, Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Cardiovascular Research Institute of Maastricht (CARIM), University of Maastricht, 6200, Maastricht, The Netherlands
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Cell Biology, School of Biology, University of Seville, 41012, Seville, Spain
| |
Collapse
|
63
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
64
|
Ginhoux F, Guilliams M. Editorial for Cellular Immunology special issue on "Tissue Macrophages". Cell Immunol 2019; 330:1-4. [PMID: 30126544 DOI: 10.1016/j.cellimm.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), A⁎STAR, 8A Biomedical Grove, Immunos Building, Level3, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Martin Guilliams
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
65
|
Chylikova J, Dvorackova J, Cizkova K, Lacey H, Kamarad V. Macrophages of the subcutaneous and omental fatty tissue in obese patients: Immunohistochemical phenotyping of M2 subtypes in relation to type 2 diabetes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:133-137. [PMID: 30967686 DOI: 10.5507/bp.2019.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Macrophages are linked to the initiation of the chronic inflammation believed to underlie the changes taking place in the white fatty tissue of obese people. Both the number of macrophages, but their functional status, play an important role in the development of inflammation. Classically, macrophages are divided into two types: pro-inflammatory (M1) and anti-inflammatory (M2) types, and based on current immunological studies, further views on the functional distribution of macrophages are suggested. In this study, we evaluated the M1 and M2 macrophages ratio in obese subjects with, or without diabetes. To identify all macrophages, we used CD68 expression, while CD204 expression is typically used for the M2 macrophage. MATERIALS AND METHODS During bariatric surgery, carried out in obese people with and without type 2 diabetes (T2D), we obtained subcutaneous adipose tissue from the navel and omental adipose tissue. We also obtained the same tissue from people with a physiological range of BMI from a judicial autopsy. Applying immunohistochemical staining anti-CD68 and anti-CD204, we carried out a quantitative evaluation of the number of macrophages. RESULTS We found CD68+ and CD204+ positive macrophages in perivascular spaces and between fat cells, both isolated and in larger infiltrates. They were also present in so-called "crown-like structures" (CLS) around dying adipocytes. Quantitative analysis showed an increased number of macrophages in all obese patients compared to the control group of non-obese, individuals without T2D. The most striking observation was the macrophage increase in the visceral fatty tissue of diabetics. The number of CD68 and CD204 positive macrophages was statistically significantly smaller in patients without T2D. CONCLUSION We demonstrated a significantly greater number of macrophages in visceral adipose tissue, especially in patients with T2D. Our results also show a positive correlation between the presence of T2D and the total number of macrophages; a significantly greater number of macrophages were found in visceral adipose tissue, especially in patients with T2D.
Collapse
Affiliation(s)
- Jaroslava Chylikova
- Department of Histology and Embryology, Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Jana Dvorackova
- Department of Pathology, Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Helena Lacey
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Vojtech Kamarad
- Department of Histology and Embryology, Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
66
|
Lefere S, Tacke F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep 2019; 1:30-43. [PMID: 32149275 PMCID: PMC7052781 DOI: 10.1016/j.jhepr.2019.02.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, and a major cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is intimately linked with other metabolic disorders characterized by insulin resistance. Metabolic diseases are driven by chronic inflammatory processes, in which macrophages perform essential roles. The polarization status of macrophages is itself influenced by metabolic stimuli such as fatty acids, which in turn affect the progression of metabolic dysfunction at multiple disease stages and in various tissues. For instance, adipose tissue macrophages respond to obesity, adipocyte stress and dietary factors by a specific metabolic and inflammatory programme that stimulates disease progression locally and in the liver. Kupffer cells and monocyte-derived macrophages represent ontologically distinct hepatic macrophage populations that perform a range of metabolic functions. These macrophages integrate signals from the gut-liver axis (related to dysbiosis, reduced intestinal barrier integrity, endotoxemia), from overnutrition, from systemic low-grade inflammation and from the local environment of a steatotic liver. This makes them central players in the progression of NAFLD to steatohepatitis (non-alcoholic steatohepatitis or NASH) and fibrosis. Moreover, the particular involvement of Kupffer cells in lipid metabolism, as well as the inflammatory activation of hepatic macrophages, may pathogenically link NAFLD/NASH and cardiovascular disease. In this review, we highlight the polarization, classification and function of macrophage subsets and their interaction with metabolic cues in the pathophysiology of obesity and NAFLD. Evidence from animal and clinical studies suggests that macrophage targeting may improve the course of NAFLD and related metabolic disorders.
Collapse
Affiliation(s)
- Sander Lefere
- Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
- Department of Hepatology/Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Corresponding author. Address: Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
67
|
Stafeev I, Podkuychenko N, Michurina S, Sklyanik I, Panevina A, Shestakova E, Yah'yaev K, Fedenko V, Ratner E, Vorotnikov A, Menshikov M, Yashkov Y, Parfyonova Y, Shestakova M. Low proliferative potential of adipose-derived stromal cells associates with hypertrophy and inflammation in subcutaneous and omental adipose tissue of patients with type 2 diabetes mellitus. J Diabetes Complications 2019; 33:148-159. [PMID: 30482492 DOI: 10.1016/j.jdiacomp.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are among the most important morbidity factors. In this study we tested the hypothesis that low proliferative potential of adipose derived stromal cells (ADSC) associates with reduced formation of new fat depots, excess accumulation of fat in the functional adipocytes and their hypertrophy, resulting in fat inflammation and insulin resistance. METHODS We screened two groups of obese patients with or without T2DM, matched for BMI, age, and duration of obesity to test the hypothesis that hypertrophy and decreased renewal of adipocytes may underlie transition from obesity to T2DM. All patients were matched for carbohydrate metabolism (fasting blood glucose level, glycated hemoglobin, HOMA-IR index and M-index). The subcutaneous and omental fat tissue biopsies were obtained during bariatric surgery from obese individuals with or without T2DM. The morphology and immunophenotype of subcutaneous and omental fat was assessed in frozen tissue sections. ADSC were isolated from both types of fat tissue biopsies and screened for morphology, proliferative potential and inflammatory status. RESULTS The non-diabetic patients had normal carbohydrate metabolism and moderate insulin resistance measured by HOMA-IR and hyperinsulinemic clamp (M-index), while T2DM patients were extremely insulin resistant by both indexes. The average size of diabetic adipocytes was higher than that of non-diabetic in both subcutaneous and omental fat tissues, indicating adipocyte hypertrophy in T2DM. Both these tissues contained higher level of macrophage infiltration and increased M1-like to M2-like ratio of macrophage subpopulations, suggesting increased fat inflammation in T2DM. This was confirmed by increased activatory phosphorylation of stress-induced JNK1/2 in diabetic ADSC. CONCLUSION These results suggest that blunted proliferation and increased hypertrophy of diabetic ADSC may lead to reduced insulin sensitivity via increased inflammation mediated by M1 macrophages and JNK1/2 pathway.
Collapse
Affiliation(s)
- I Stafeev
- National Medical Research Centre for Cardiology, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia; Endocrinology Research Centre, Moscow, Russia.
| | - N Podkuychenko
- National Medical Research Centre for Cardiology, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia; Endocrinology Research Centre, Moscow, Russia
| | - S Michurina
- National Medical Research Centre for Cardiology, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia
| | - I Sklyanik
- Endocrinology Research Centre, Moscow, Russia
| | - A Panevina
- Endocrinology Research Centre, Moscow, Russia
| | | | - K Yah'yaev
- Central Clinical Hospital #1 of LLC Russian Railways, Moscow, Russia
| | - V Fedenko
- V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - E Ratner
- National Medical Research Centre for Cardiology, Moscow, Russia; Endocrinology Research Centre, Moscow, Russia
| | - A Vorotnikov
- National Medical Research Centre for Cardiology, Moscow, Russia
| | - M Menshikov
- National Medical Research Centre for Cardiology, Moscow, Russia
| | - Y Yashkov
- V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Ye Parfyonova
- National Medical Research Centre for Cardiology, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
68
|
Kim K. Effects of Endurance Exercise Training on Adipose Tissue Inflammatory Gene Expression in Elderly Rats with Diet-Induced Obesity. THE ASIAN JOURNAL OF KINESIOLOGY 2019. [DOI: 10.15758/ajk.2019.21.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
69
|
Campbell CL, Yu R, Li F, Zhou Q, Chen D, Qi C, Yin Y, Sun J. Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice. Diabetes Metab Syndr Obes 2019; 12:97-107. [PMID: 30655683 PMCID: PMC6324607 DOI: 10.2147/dmso.s192228] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The antioxidant resveratrol (RSV) has low bioavailability and can reach the colon to access the gut microbial ecosystem. RSV administration together with high-fat diet prevented abnormal changes of intestinal microbiota. However, whether or not RSV can reshape the intestinal microbiota of obese mice and alleviate obesity-related diseases remains to be studied. This study aimed to explore the role of RSV in alleviating high-fat-induced obesity and its relationship with oxidative stress and gut microbiota. METHODS Male C57BL/6 mice were divided into five groups and administered for 16 weeks with: standard diet (CON), high-fat diet (60% energy for lard, HFD), and HFD with low, medium, and high dose of RSV, 50, 75, and 100 mg/kg body weight administered daily via drinking water, respectively. RESULTS Medium and high RSV treatment significantly prevented body weight gain, decreased relative weight of liver and adipose tissue compared with HFD (P<0.05). All doses significantly prevented HFD-induced increase of serum triglyceride, low density lipoprotein cholesterol, glucose, and endotoxemia (P<0.05). Medium and high dose also prevented chronic inflammation by decreasing serum interleukin-1 and tumor necrosis factor-alpha (P<0.05), and oxidative stress in liver and brain indicated by increase in superoxide dismutase, catalase, glutathione peroxidase activity (P<0.05). Formation of malondialdehyde was prevented by all doses compared with HFD (P<0.05). Both medium and high doses of RES increased alpha diversity of gut microbiota according to the Chao1 and Shannon indices (P<0.05). Medium dose induced obvious shift in gut microbiota composition according to principal component analysis. High dose of RSV effectively prevented HFD-induced increase of Coriobacteriaceae and Desulfovi-brionaceae (P<0.05), which show a significant correlation with body weight (r>0.8 P<0.00). CONCLUSION RSV prevented HFD-induced endotoxemia, oxidative stress, and gut microbiota change.
Collapse
Affiliation(s)
- C Linda Campbell
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China,
- Department of Central Lab, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China, ,
| | - Fengzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China,
| | - Daozhen Chen
- Department of Central Lab, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China, ,
| | - Ce Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
70
|
Metformin: An Old Drug with New Applications. Int J Mol Sci 2018; 19:ijms19102863. [PMID: 30241400 PMCID: PMC6213209 DOI: 10.3390/ijms19102863] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metformin is a biguanide drug that has been used to treat type 2 diabetes mellitus for more than 60 years. The United Kingdom Prospective Diabetic Study (UKPDS) has shown metformin to improve mortality rates in diabetes patients, and recent studies suggest metformin has additional effects in treating cancer, obesity, nonalcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and metabolic syndrome. Metformin has also been shown to alleviate weight gain associated with antipsychotic medication. Metformin has recently been extensively studied and emerging evidence suggests metformin decreases hepatocyte triglyceride accumulation in NAFLD and prevents liver tumorigenesis. Interestingly, studies have also shown metformin reduces visceral fat, suppresses white-adipose-tissue (WAT) extracellular matrix remodeling, and inhibits obesity-induced inflammation. However, clinical evidence for using metformin to treat NAFLD, cancer, metabolic syndrome, or to prevent hepatocellular carcinoma in NAFLD patients is lacking. This review therefore addresses the potential beneficial effects of metformin on NAFLD, its role in protecting against cardiac ischemia–reperfusion (I/R) injury, atherosclerosis, glucotoxicity, and lipotoxicity induced oxidative and ER stress in pancreatic β-cell dysfunction, as well as its underlying molecular mechanisms of action.
Collapse
|