51
|
Saferding V, Puchner A, Goncalves-Alves E, Hofmann M, Bonelli M, Brunner JS, Sahin E, Niederreiter B, Hayer S, Kiener HP, Einwallner E, Nehmar R, Carapito R, Georgel P, Koenders MI, Boldin M, Schabbauer G, Kurowska-Stolarska M, Steiner G, Smolen JS, Redlich K, Blüml S. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun 2017; 82:74-84. [PMID: 28545737 DOI: 10.1016/j.jaut.2017.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
Abstract
Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis.
Collapse
Affiliation(s)
- Victoria Saferding
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Antonia Puchner
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | | | - Melanie Hofmann
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Julia S Brunner
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Emine Sahin
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Silvia Hayer
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ramzi Nehmar
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1, Place de l'Hôpital, 67085, Strasbourg Cedex, France
| | - Raphael Carapito
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1, Place de l'Hôpital, 67085, Strasbourg Cedex, France
| | - Philippe Georgel
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1, Place de l'Hôpital, 67085, Strasbourg Cedex, France
| | - Marije I Koenders
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mark Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Günter Steiner
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria; Cluster of Arthritis and Rehabilitation, Ludwig Boltzmann Society, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Kurt Redlich
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
52
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
53
|
Rahman MS, Murphy AJ, Woollard KJ. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol 2017; 14:387-400. [PMID: 28300081 DOI: 10.1038/nrcardio.2017.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. Monocytes and macrophages are involved in cardiovascular disease progression, and are associated with the development of unstable atherosclerotic plaques. Hyperlipidaemia can accelerate cardiovascular disease progression. However, monocyte responses to hyperlipidaemia are poorly understood. In the past decade, accumulating data describe the relationship between the dynamic blood lipid environment and the heterogeneous circulating monocyte pool, which might have profound consequences for cardiovascular disease. In this Review, we explore the updated view of monocytes in cardiovascular disease and their relationship with macrophages in promoting the homeostatic and inflammatory responses related to atherosclerosis. We describe the different definitions of dyslipidaemia, highlight current theories on the ontogeny of monocyte heterogeneity, discuss how dyslipidaemia might alter monocyte production, and explore the mechanistic interface linking dyslipidaemia with monocyte effector functions, such as migration and the inflammatory response. Finally, we discuss the role of dietary and endogenous lipid species in mediating dyslipidaemic responses, and the role of these lipids in promoting the risk of cardiovascular disease through modulation of monocyte behaviour.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Lab, Baker IDI Heart &Diabetes Research Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Kevin J Woollard
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
54
|
Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflamm 2017; 2017:9294018. [PMID: 28197019 PMCID: PMC5286482 DOI: 10.1155/2017/9294018] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 02/08/2023] Open
Abstract
One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays.
Collapse
|
55
|
Ti D, Hao H, Fu X, Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1305-1312. [PMID: 27864711 DOI: 10.1007/s11427-016-0240-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration. However, it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes, which generate a suitable microenvironment for inflammatory resolution. Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells. During this process, the horizontal transfer of exosomal microRNAs (miRNAs) to acceptor cells, where they regulate target gene expression, is of particular interest for understanding the basic biology of inflammation ablation, tissue homeostasis, and development of therapeutic approaches. In this review, we describe a signature of three specific miRNAs (miR-21, miR-146a, and miR-181) present in human umbilical cord MSC-derived exosomes (MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs. We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haojie Hao
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaobing Fu
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
56
|
Sanz-Garcia C, Sánchez Á, Contreras-Jurado C, Cales C, Barranquero C, Muñoz M, Merino R, Escudero P, Sanz MJ, Osada J, Aranda A, Alemany S. Map3k8 Modulates Monocyte State and Atherogenesis in ApoE-/- Mice. Arterioscler Thromb Vasc Biol 2016; 37:237-246. [PMID: 27856455 DOI: 10.1161/atvbaha.116.308528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Map3k8 (Cot/Tpl2) activates the MKK1/2-ERK1/2, MAPK pathway downstream from interleukin-1R, tumor necrosis factor-αR, NOD-2R (nucleotide-binding oligomerization domain-like 2R), adiponectinR, and Toll-like receptors. Map3k8 plays a key role in innate and adaptive immunity and influences inflammatory processes by modulating the functions of different cell types. However, its role in atherogenesis remains unknown. In this study, we analyzed the role of this kinase in this pathology. APPROACH AND RESULTS We show here that Map3k8 deficiency results in smaller numbers of Ly6ChighCD11clow and Ly6ClowCD11chigh monocytes in ApoE-/- mice fed a high-fat diet (HFD). Map3k8-/-ApoE-/- monocytes displayed high rates of apoptosis and reduced amounts of Nr4a1, a transcription factor known to modulate apoptosis in Ly6ClowCD11chigh monocytes. Map3k8-/-ApoE-/- splenocytes and macrophages showed irregular patterns of cytokine and chemokine expression. Map3k8 deficiency altered cell adhesion and migration in vivo and decreased CCR2 expression, a determinant chemokine receptor for monocyte mobilization, on circulating Ly6ChighCD11clow monocytes. Map3k8-/-ApoE-/- mice fed an HFD showed decreased cellular infiltration in the atherosclerotic plaque, with low lipid content. Lesions had similar size after Map3k8+/+ApoE-/- bone marrow transplant into Map3k8-/-ApoE-/- and Map3k8+/+ApoE-/- mice fed an HFD, whereas smaller plaques were observed after the transplantation of bone marrow lacking both ApoE and Map3k8. CONCLUSIONS Map3k8 decreases apoptosis of monocytes and enhances CCR2 expression on Ly6ChighCD11clow monocytes of ApoE-/- mice fed an HFD. These findings explain the smaller aortic lesions in ApoE-/- mice with Map3k8-/-ApoE-/- bone marrow cells fed an HFD, supporting further studies of Map3k8 as an antiatherosclerotic target.
Collapse
Affiliation(s)
- Carlos Sanz-Garcia
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Ángela Sánchez
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Constanza Contreras-Jurado
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Carmela Cales
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Cristina Barranquero
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Marta Muñoz
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Ramón Merino
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Paula Escudero
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Maria-Jesús Sanz
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Jesús Osada
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Ana Aranda
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.)
| | - Susana Alemany
- From the Instituto de Investigaciones Biomédicas "Alberto Sols" Madrid, Consejo Superior de Investigaciones Científicas (CSIC-UAM) y Unidad de Biomedicina (UA, CSIC), University of Las Palmas de Gran Canaria, España (C.S.-G., Á.S., C.C.-J., C.C., A.A., S.A.); Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, IISA, University of Zaragoza, España (C.B., J.O.); Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC), Santander, España (M.M., R.M.); and Departmento de Farmacologia, Facultad de Medicina, University of Valencia, INCLIVA, España (P.E., M.-J.S.).
| |
Collapse
|
57
|
Zawada AM, Zhang L, Emrich IE, Rogacev KS, Krezdorn N, Rotter B, Fliser D, Devaux Y, Ziegler-Heitbrock L, Heine GH. MicroRNA profiling of human intermediate monocytes. Immunobiology 2016; 222:587-596. [PMID: 27876379 DOI: 10.1016/j.imbio.2016.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/09/2023]
Abstract
Among the three human monocyte subsets, intermediate CD14++CD16+ monocytes have been characterized as particularly proinflammatory cells in experimental studies and as potential biomarkers of cardiovascular risk in clinical cohorts. To further substantiate the distinct role of intermediate monocytes within human monocyte heterogeneity, we assessed subset-specific expression of miRNAs as central epigenetic regulators of gene expression. We hypothesized that intermediate monocytes have a distinct miRNA profile compared to classical and non-classical monocytes. By using small RNA-seq we analyzed 662 miRNAs in the three monocyte subsets. We identified 38 miRNAs that are differentially expressed in intermediate monocytes compared to both classical and non-classical monocytes with a p value of <10-10, of which two miRNAs - miR-6087 (upregulated) and miR-150-5p (downregulated) - differed in their expression more than ten-fold. Pathway analysis of the 38 differentially expressed miRNAs linked intermediate monocytes to distinct biological processes such as gene regulation, cell differentiation, toll-like receptor signaling as well as antigen processing and presentation. Moreover, differentially expressed miRNAs were connected to those genes that we previously identified as markers of intermediate monocytes. In aggregation, we provide first genome-wide miRNA data in the context of monocyte heterogeneity, which substantiate the concept of monocyte trichotomy in human immunity. The identification of miRNAs that are specific for intermediate monocytes may allow to develop strategies, which particularly target this cell population while sparing the other two subsets.
Collapse
Affiliation(s)
- Adam M Zawada
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Insa E Emrich
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | - Kyrill S Rogacev
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany; University Heart Center Luebeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Luebeck, Germany
| | | | | | - Danilo Fliser
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Loems Ziegler-Heitbrock
- EvA Study Center, Comprehensive Pneumology Center Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Gauting, Germany
| | - Gunnar H Heine
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
58
|
Zhu YP, Thomas GD, Hedrick CC. 2014 Jeffrey M. Hoeg Award Lecture: Transcriptional Control of Monocyte Development. Arterioscler Thromb Vasc Biol 2016; 36:1722-33. [PMID: 27386937 PMCID: PMC5828163 DOI: 10.1161/atvbaha.116.304054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023]
Abstract
Monocytes and macrophages are key immune cells involved in the early progression of atherosclerosis. Transcription factors that control their development in the bone marrow are important therapeutic targets to control the numbers and functions of these cells in disease. This review highlights what is currently known about the transcription factors that are critical for monocyte development.
Collapse
Affiliation(s)
- Yanfang Peipei Zhu
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
59
|
Urgard E, Lorents A, Klaas M, Padari K, Viil J, Runnel T, Langel K, Kingo K, Tkaczyk E, Langel Ü, Maimets T, Jaks V, Pooga M, Rebane A. Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. J Control Release 2016; 235:195-204. [PMID: 27269729 DOI: 10.1016/j.jconrel.2016.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
The skin is a difficult to access tissue for efficient delivery of large and/or charged macromolecules, including therapeutic DNA and RNA oligonucleotides. Cell-penetrating peptide PepFect6 (PF6) has been shown to be suitable transport vehicle for siRNAs in cell culture and systemically in vivo in mice. MiR-146a is known as anti-inflammatory miRNA that inhibits multiple factors from the nuclear factor (NF)-κB pathway in various cell types, including keratinocytes. In this study, PF6 was shown to form unimodal nanocomplexes with miR-146a mimic that entered into human primary keratinocytes, where miR-146a inhibited the expression of its direct targets from the NF-κB pathway and the genes known to be activated by NF-κB, C-C motif ligand (CCL)5 and interleukin (IL)-8. The transfection of miR-146a mimic with PF6 was more efficient in sub-confluent keratinocyte cultures, affected keratinocyte proliferation less and had similar effect on cell viability when compared with a lipid based agent. Subcutaneous pre-administration of PF6-miR-146a nanocomplexes attenuated ear-swelling and reduced the expression of pro-inflammatory cytokines and chemokines IL-6, CCL11, CCL24 and C-X-C motif ligand 1 (CXCL1) in a mouse model of irritant contact dermatitis. Our data demonstrates that PF6-miR-146a nanoparticles might have potential in the development of therapeutics to target inflammatory skin diseases.
Collapse
Affiliation(s)
- Egon Urgard
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Annely Lorents
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kärt Padari
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Janeli Viil
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kent Langel
- Institute of Technology, University of Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia; Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Eric Tkaczyk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; Department of Medicine, Vanderbilt University Medical Center, United States
| | - Ülo Langel
- Institute of Technology, University of Tartu, Estonia; Department of Neurochemistry, Stockholm University, Sweden
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Estonia; Department of Bioscience, Karolinska Institute, Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia.
| |
Collapse
|
60
|
Abstract
MicroRNAs are relatively new molecules that have been widely studied in recent years as to determine their exact function in the human body. It is suggested that microRNAs control approx. 30% of all genes, making them one of the largest groups that control the expression of proteins. Various functions of miRNAs have already been described. In skin diseases, there are more and more studies describing an altered expression of microRNAs in the skin or serum. Relatively little is known about the function of these molecules in atopic dermatitis, which prompted us to gather current reports on this subject.
Collapse
|
61
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
62
|
Abstract
Allergy is a common hypersensitivity disorder of the immune system, which, along with other factors, is also subjected to regulation by microRNAs. The most common allergic diseases are allergic rhinitis, asthma, atopic dermatitis, and food allergy, which all are multifactorial and very heterogeneous conditions, highlighting the need for more individualized treatment techniques. More particular key questions in relation to allergic diseases are how microRNAs influence the differentiation, polarization, plasticity and functions of T helper and other immune cells, as well as the development of immune tolerance. In addition, microRNAs can affect allergic inflammation and tissue remodeling through their functions in epithelial and other tissue cells. Among immune system-related microRNAs, miR-21, miR-146a, and miR-155 are the most intensively studied and have convincingly been demonstrated to regulate immune responses and tissue inflammation in allergic diseases. Further characterization of microRNA functions is important, as similar to other conditions, the modulation of microRNA expression could potentially be used for therapeutic purposes in allergic diseases in the future. In addition, miRNAs could be implemented as biomarkers for endotyping complex allergic conditions.
Collapse
|
63
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
64
|
Kapellos TS, Iqbal AJ. Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation. Mediators Inflamm 2016; 2016:6591703. [PMID: 27143818 PMCID: PMC4842078 DOI: 10.1155/2016/6591703] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Macrophages function as sentinel cells, which constantly monitor the host environment for infection or injury. Macrophages have been shown to exhibit a spectrum of activated phenotypes, which can often be categorised under the M1/M2 paradigm. M1 macrophages secrete proinflammatory cytokines and chemokines, such as TNF-α, IL-6, IL-12, CCL4, and CXCL10, and induce phagocytosis and oxidative dependent killing mechanisms. In contrast, M2 macrophages support wound healing and resolution of inflammation. In the past decade, interest has grown in understanding the mechanisms involved in regulating macrophage activation. In particular, epigenetic control of M1 or M2 activation states has been shown to rely on posttranslational modifications of histone proteins adjacent to inflammatory-related genes. Changes in methylation and acetylation of histones by methyltransferases, demethylases, acetyltransferases, and deacetylases can all impact how macrophage phenotypes are generated. In this review, we summarise the latest advances in the field of epigenetic regulation of macrophage polarisation to M1 or M2 states, with particular focus on the cytokine and chemokine profiles associated with these phenotypes.
Collapse
Affiliation(s)
| | - Asif J. Iqbal
- Sir William Dunn school of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
65
|
microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production. Sci Rep 2016; 6:23351. [PMID: 27025258 PMCID: PMC4812255 DOI: 10.1038/srep23351] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.
Collapse
|
66
|
Li Y, Zhao L, Shi B, Ma S, Xu Z, Ge Y, Liu Y, Zheng D, Shi J. Functions of miR-146a and miR-222 in Tumor-associated Macrophages in Breast Cancer. Sci Rep 2015; 5:18648. [PMID: 26689540 PMCID: PMC4686897 DOI: 10.1038/srep18648] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play critical roles in promoting tumor progression and invasion. However, the molecular mechanisms underlying TAM regulation remain to be further investigated and may make significant contributions to cancer treatment. Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression that function by repressing specific target genes mainly at the post-transcriptional level. However, systematic studies of the functions and mechanisms of miRNAs in TAMs in tumor tissues are rare. In this study, miR-146a and miR-222 were shown to be significantly decreased in TAMs associated with the up-regulated NF-κB p50 subunit. miR-146a promoted the expression of some M2 macrophage phenotype molecules, and miR-146a antagomir transfected RAW264.7 monocyte-macrophage cells inhibited 4T1 tumor growth in vivo. Meanwhile, overexpression of miR-222 inhibited TAM chemotaxis, and miR-222 in TAMs inhibited 4T1 tumor growth by targeting CXCL12 and inhibiting CXCR4. These data revealed that miRNAs influence breast tumor growth by promoting the M2 type polarization or regulating the recruitment of TAMs. These observations suggest that endogenous miRNAs may exert an important role in controlling the polarization and function of TAMs in breast cancer.
Collapse
Affiliation(s)
- Yanshuang Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Lianmei Zhao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Research center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Bianhua Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Sisi Ma
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhenbiao Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yehua Ge
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yanxin Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Dexian Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
67
|
Doxaki C, Kampranis SC, Eliopoulos AG, Spilianakis C, Tsatsanis C. Coordinated Regulation of miR-155 and miR-146a Genes during Induction of Endotoxin Tolerance in Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 195:5750-61. [DOI: 10.4049/jimmunol.1500615] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
|
68
|
Saha B, Momen-Heravi F, Kodys K, Szabo G. MicroRNA Cargo of Extracellular Vesicles from Alcohol-exposed Monocytes Signals Naive Monocytes to Differentiate into M2 Macrophages. J Biol Chem 2015; 291:149-59. [PMID: 26527689 DOI: 10.1074/jbc.m115.694133] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/19/2022] Open
Abstract
Membrane-coated extracellular vesicles (EVs) released by cells can serve as vehicles for delivery of biological materials and signals. Recently, we demonstrated that alcohol-treated hepatocytes cross-talk with immune cells via exosomes containing microRNA (miRNAs). Here, we hypothesized that alcohol-exposed monocytes can communicate with naive monocytes via EVs. We observed increased numbers of EVs, mostly exosomes, secreted by primary human monocytes and THP-1 monocytic cells in the presence of alcohol in a concentration- and time-dependent manner. EVs derived from alcohol-treated monocytes stimulated naive monocytes to polarize into M2 macrophages as indicated by increased surface expression of CD68 (macrophage marker), M2 markers (CD206 (mannose receptor) and CD163 (scavenger receptor)), secretion of IL-10, and TGFβ and increased phagocytic activity. miRNA profiling of the EVs derived from alcohol-treated THP-1 monocytes revealed high expression of the M2-polarizing miRNA, miR-27a. Treatment of naive monocytes with control EVs overexpressing miR-27a reproduced the effect of EVs from alcohol-treated monocytes on naive monocytes and induced M2 polarization, suggesting that the effect of alcohol EVs was mediated by miR-27a. We found that miR-27a modulated the process of phagocytosis by targeting CD206 expression on monocytes. Importantly, analysis of circulating EVs from plasma of alcoholic hepatitis patients revealed increased numbers of EVs that contained high levels of miR-27a as compared with healthy controls. Our results demonstrate the following: first, alcohol increases EV production in monocytes; second, alcohol-exposed monocytes communicate with naive monocytes via EVs; and third, miR-27a cargo in monocyte-derived EVs can program naive monocytes to polarize into M2 macrophages.
Collapse
Affiliation(s)
- Banishree Saha
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Fatemeh Momen-Heravi
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Karen Kodys
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Gyongyi Szabo
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
69
|
Dang TM, Wong WC, Ong SM, Li P, Lum J, Chen J, Poidinger M, Zolezzi F, Wong SC. MicroRNA expression profiling of human blood monocyte subsets highlights functional differences. Immunology 2015; 145:404-16. [PMID: 25707426 DOI: 10.1111/imm.12456] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
Within human blood there are two subsets of monocytes that can be identified by differential expression of CD16. Although numerous phenotypic and functional differences between the subsets have been described, little is known of the mechanisms underlying the distinctive properties of the two subsets. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate gene expression through promoting mRNA degradation or repressing translation, leading to alterations in cellular processes. Their potential influence on the functions of monocyte subsets has not been investigated. In this study, we employed microarray analysis to define the miRNA expression profile of human monocyte subsets. We identified 66 miRNAs that were differentially expressed (DE) between CD16(+) and CD16(-) monocytes. Gene ontology analysis revealed that the predicted targets of the DE miRNAs were predominantly associated with cell death and cellular movement. We validated the functional impacts of selected DE miRNAs in CD16(-) monocytes, over-expression of miR-432 significantly increases apoptosis, and inhibiting miR-19a significantly reduces cell motility. Furthermore, we found that miR-345, another DE miRNA directly targets the transcription factor RelA in monocytes, which resulted in the differential expression of RelA in monocyte subsets. This implicates miR-345 indirect regulation of many genes downstream of RelA, including important inflammatory mediators. Together, our data show that DE miRNAs could contribute substantially to regulating the functions of human blood monocytes.
Collapse
Affiliation(s)
- Truong-Minh Dang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wing-Cheong Wong
- Bioinformatic Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew-Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Peng Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
70
|
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015; 29:3595-611. [PMID: 26065857 DOI: 10.1096/fj.14-260323] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is involved in the onset and development of many diseases, including obesity, atherosclerosis, type 2 diabetes, osteoarthritis, autoimmune and degenerative diseases, asthma, periodontitis, and cirrhosis. The inflammation process is mediated by chemokines, cytokines, and different inflammatory cells. Although the molecules and mechanisms that regulate this primary defense mechanism are not fully understood, recent findings offer a putative role of noncoding RNAs, especially microRNAs (miRNAs), in the progression and management of the inflammatory response. These noncoding RNAs are crucial for the stability and maintenance of gene expression patterns that characterize some cell types, tissues, and biologic responses. Several miRNAs, such as miR-126, miR-132, miR-146, miR-155, and miR-221, have emerged as important transcriptional regulators of some inflammation-related mediators. Additionally, little is known about the involvement of long noncoding RNAs, long intergenic noncoding RNAs, and circular RNAs in inflammation-mediated processes and the homeostatic imbalance associated with metabolic disorders. These noncoding RNAs are emerging as biomarkers with diagnosis value, in prognosis protocols, or in the personalized treatment of inflammation-related alterations. In this context, this review summarizes findings in the field, highlighting those noncoding RNAs that regulate inflammation, with emphasis on recognized mediators such as TNF-α, IL-1, IL-6, IL-18, intercellular adhesion molecule 1, VCAM-1, and plasminogen activator inhibitor 1. The down-regulation or antagonism of the noncoding RNAs and the administration of exogenous miRNAs could be, in the near future, a promising therapeutic strategy in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- José Luiz Marques-Rocha
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Mirian Samblas
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Fermin I Milagro
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Josefina Bressan
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Amelia Marti
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
71
|
Li K, Ching D, Luk FS, Raffai RL. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circ Res 2015; 117:e1-e11. [PMID: 25904598 DOI: 10.1161/circresaha.117.305844] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE Apolipoprotein E (apoE) exerts anti-inflammatory properties that protect against atherosclerosis and other inflammatory diseases. However, mechanisms by which apoE suppresses the cellular activation of leukocytes commonly associated with atherosclerosis remain incompletely understood. OBJECTIVE To test the hypothesis that apoE suppresses inflammation and atherosclerosis by regulating cellular microRNA levels in these leukocytes. METHODS AND RESULTS An assessment of apoE expression among such leukocyte subsets in wild-type mice revealed that only macrophages and monocytes express apoE abundantly. An absence of apoE expression in macrophages and monocytes resulted in enhanced nuclear factor-κB signaling and an exaggerated inflammatory response on stimulation with lipopolysaccharide. This correlated with reduced levels of microRNA-146a, a critical negative regulator of nuclear factor-κB signaling. Ectopic apoE expression in Apoe(-/-) macrophages and monocytes raised miR-146a levels, whereas its silencing in wild-type cells had an opposite effect. Mechanistically, apoE increased the expression of transcription factor purine-rich PU-box-binding protein 1, which raised levels of pri-miR-146 transcripts, demonstrating that apoE exerts transcriptional control over miR-146a. In vivo, even a small amount of apoE expression in macrophages and monocytes of hypomorphic apoE mice led to increased miR-146a levels, and inhibited macrophage proinflammatory responses, Ly-6C(high) monocytosis, and atherosclerosis in the settings of hyperlipidemia. Accordingly, cellular enrichment of miR-146a through the systemic delivery of miR-146a mimetics in Apoe(-/-)Ldlr(-/-) and Ldlr(-/-) mice attenuated monocyte/macrophage activation and atherosclerosis in the absence of plasma lipid reduction. CONCLUSIONS Our data demonstrate that cellular apoE expression suppresses nuclear factor-κB-mediated inflammation and atherosclerosis by enhancing miR-146a levels in monocytes and macrophages.
Collapse
Affiliation(s)
- Kang Li
- From the Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco and Veterans Affairs Medical Center
| | - Daniel Ching
- From the Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco and Veterans Affairs Medical Center
| | - Fu Sang Luk
- From the Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco and Veterans Affairs Medical Center
| | - Robert L Raffai
- From the Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco and Veterans Affairs Medical Center.
| |
Collapse
|
72
|
Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood 2015; 125:3618-26. [PMID: 25852055 DOI: 10.1182/blood-2015-01-620781] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/ myeloproliferative neoplasm whose diagnosis is currently based on the elevation of peripheral blood monocytes to >1 × 10(9)/L, measured for ≥3 months. Diagnosis can be ambiguous; for example, with prefibrotic myelofibrosis or reactive monocytosis. We set up a multiparameter flow cytometry assay to distinguish CD14(+)/CD16(-) classical from CD14(+)/CD16(+) intermediate and CD14(low)/CD16(+) nonclassical monocyte subsets in peripheral blood mononucleated cells and in total blood samples. Compared with healthy donors and patients with reactive monocytosis or another hematologic malignancy, CMML patients demonstrate a characteristic increase in the fraction of CD14(+)/CD16(-) cells (cutoff value, 94.0%). The associated specificity and sensitivity values were 95.1% and 90.6% in the learning cohort (175 samples) and 94.1% and 91.9% in the validation cohort (307 samples), respectively. The accumulation of classical monocytes, which demonstrate a distinct gene expression pattern, is independent of the mutational background. Importantly, this increase disappears in patients who respond to hypomethylating agents. We conclude that an increase in the fraction of classical monocytes to >94.0% of total monocytes is a highly sensitive and specific diagnostic marker that rapidly and accurately distinguishes CMML from confounding diagnoses.
Collapse
|
73
|
Pratama A, Srivastava M, Williams NJ, Papa I, Lee SK, Dinh XT, Hutloff A, Jordan MA, Zhao JL, Casellas R, Athanasopoulos V, Vinuesa CG. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun 2015; 6:6436. [PMID: 25743066 PMCID: PMC4366510 DOI: 10.1038/ncomms7436] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/28/2015] [Indexed: 12/22/2022] Open
Abstract
Tight control of T follicular helper (Tfh) cells is required for optimal maturation of the germinal centre (GC) response. The molecular mechanisms controlling Tfh-cell differentiation remain incompletely understood. Here we show that microRNA-146a (miR-146a) is highly expressed in Tfh cells and peak miR-146a expression marks the decline of the Tfh response after immunization. Loss of miR-146a causes cell-intrinsic accumulation of Tfh and GC B cells. MiR-146a represses several Tfh-cell-expressed messenger RNAs, and of these, ICOS is the most strongly cell autonomously upregulated target in miR-146a-deficient T cells. In addition, miR-146a deficiency leads to increased ICOSL expression on GC B cells and antigen-presenting cells. Partial blockade of ICOS signalling, either by injections of low dose of ICOSL blocking antibody or by halving the gene dose of Icos in miR-146a-deficient T cells, prevents the Tfh and GC B-cell accumulation. Collectively, miR-146a emerges as a post-transcriptional brake to limit Tfh cells and GC responses. Maturation of antibody-producing B cells in germinal centers is orchestrated by T follicular helper cells. Here Pratama et al. show that miR-146a negatively regulates T follicular helper cells by targeting ICOS-ICOS ligand signaling in germinal centers.
Collapse
Affiliation(s)
- Alvin Pratama
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| | - Monika Srivastava
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| | - Naomi J Williams
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| | - Ilenia Papa
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| | - Sau K Lee
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| | - Xuyen T Dinh
- Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia
| | - Andreas Hutloff
- Chronic Immune Reactions Group, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Margaret A Jordan
- Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia
| | - Jimmy L Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Rafael Casellas
- Genomics and Immunity Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vicki Athanasopoulos
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| | - Carola G Vinuesa
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
74
|
de la Rica L, García-Gómez A, Comet NR, Rodríguez-Ubreva J, Ciudad L, Vento-Tormo R, Company C, Álvarez-Errico D, García M, Gómez-Vaquero C, Ballestar E. NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation. Genome Biol 2015; 16:2. [PMID: 25601191 PMCID: PMC4290566 DOI: 10.1186/s13059-014-0561-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022] Open
Abstract
Background Monocyte-to-osteoclast conversion is a unique terminal differentiation process that is exacerbated in rheumatoid arthritis and bone metastasis. The mechanisms implicated in upregulating osteoclast-specific genes involve transcription factors, epigenetic regulators and microRNAs (miRNAs). It is less well known how downregulation of osteoclast-inappropriate genes is achieved. Results In this study, analysis of miRNA expression changes in osteoclast differentiation from human primary monocytes revealed the rapid upregulation of two miRNA clusters, miR-212/132 and miR-99b/let-7e/125a. We demonstrate that they negatively target monocyte-specific and immunomodulatory genes like TNFAIP3, IGF1R and IL15. Depletion of these miRNAs inhibits osteoclast differentiation and upregulates their targets. These miRNAs are also upregulated in other inflammatory monocytic differentiation processes. Most importantly, we demonstrate for the first time the direct involvement of Nuclear Factor kappa B (NF-κB) in the regulation of these miRNAs, as well as with their targets, whereby NF-κB p65 binds the promoters of these two miRNA clusters and NF-κB inhibition or depletion results in impaired upregulation of their expression. Conclusions Our results reveal the direct involvement of NF-κB in shutting down certain monocyte-specific genes, including some anti-inflammatory activities, through a miRNA-dependent mechanism for proper osteoclast differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0561-5) contains supplementary material, which is available to authorized users.
Collapse
|
75
|
Cheng HS, Njock MS, Khyzha N, Dang LT, Fish JE. Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation. Front Genet 2014; 5:422. [PMID: 25540650 PMCID: PMC4261819 DOI: 10.3389/fgene.2014.00422] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases such as atherosclerosis are one of the leading causes of morbidity and mortality worldwide. The clinical manifestations of atherosclerosis, which include heart attack and stroke, occur several decades after initiation of the disease and become more severe with age. Inflammation of blood vessels plays a prominent role in atherogenesis. Activation of the endothelium by inflammatory mediators leads to the recruitment of circulating inflammatory cells, which drives atherosclerotic plaque formation and progression. Inflammatory signaling within the endothelium is driven predominantly by the pro-inflammatory transcription factor, NF-κB. Interestingly, activation of NF-κB is enhanced during the normal aging process and this may contribute to the development of cardiovascular disease. Importantly, studies utilizing mouse models of vascular inflammation and atherosclerosis are uncovering a network of noncoding RNAs, particularly microRNAs, which impinge on the NF-κB signaling pathway. Here we summarize the literature regarding the control of vascular inflammation by microRNAs, and provide insight into how these microRNA-based pathways might be harnessed for therapeutic treatment of disease. We also discuss emerging areas of endothelial cell biology, including the involvement of long noncoding RNAs and circulating microRNAs in the control of vascular inflammation.
Collapse
Affiliation(s)
- Henry S Cheng
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Nadiya Khyzha
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Lan T Dang
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Jason E Fish
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| |
Collapse
|
76
|
Khalaj M, Tavakkoli M, Stranahan AW, Park CY. Pathogenic microRNA's in myeloid malignancies. Front Genet 2014; 5:361. [PMID: 25477897 PMCID: PMC4237136 DOI: 10.3389/fgene.2014.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022] Open
Abstract
Recent studies have significantly improved our understanding of the role microRNAs (miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining hematopoietic stem cell function and the development of mature progeny. Thus, perhaps it is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid disorders. A number of studies have extensively documented the widespread dysregulation of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous explorations of the functional role of miRNAs in myeloid leukemogenesis. While these investigations have confirmed that a large number of miRNAs exhibit altered expression in AML, only a small fraction has been confirmed as functional mediators of AML development or maintenance. Herein, we summarize the miRNAs for which strong experimental evidence supports their functional roles in AML pathogenesis. We also discuss the implications of these studies on the development of miRNA-directed therapies in AML.
Collapse
Affiliation(s)
- Mona Khalaj
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Montreh Tavakkoli
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Alec W Stranahan
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Christopher Y Park
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA ; Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center NY, USA
| |
Collapse
|
77
|
Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim Biophys Acta Rev Cancer 2014; 1846:560-75. [PMID: 25453365 DOI: 10.1016/j.bbcan.2014.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
Abstract
Glioma-associated microglia and macrophages (GAMs) and myeloid-derived suppressor cells (MDSCs) condition the glioma microenvironment to generate an immunosuppressed niche for tumour expansion. This immunosuppressive microenvironment is considered to be shaped through a complex multi-step interactive process between glioma cells, GAMs and MDSCs. Glioma cells recruit GAMs and MDSCs to the tumour site and block their maturation. Glioma cell-derived factors subsequently skew these cells towards an immunosuppressive, tumour-promoting phenotype. Finally, GAMs and MDSCs enhance immune suppression in the glioma microenvironment and promote glioma growth, invasiveness, and neovascularization. The local and distant cross-talk between glioma cells and GAMs and MDSCs is regulated by a plethora of soluble proteins and cell surface-bound factors, and possibly via extracellular vesicles and platelets. Importantly, GAMs and MDSCs have been reported to impair the efficacy of glioma therapy, in particular immunotherapeutic approaches. Therefore, advancing our understanding of the function of GAMs and MDSCs in brain tumours and targeted intervention of their immunosuppressive function may benefit the treatment of glioma.
Collapse
|
78
|
Zhao JL, Starczynowski DT. Role of microRNA-146a in normal and malignant hematopoietic stem cell function. Front Genet 2014; 5:219. [PMID: 25071842 PMCID: PMC4087671 DOI: 10.3389/fgene.2014.00219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 01/12/2023] Open
Abstract
Regulation of hematopoiesis is controlled by microRNAs (miRNAs). In this review, we focus on miR-146a, and its role in regulating normal and malignant hematopoiesis. miR-146a is a negative regulator of immune cell activation by repressing two targets, TRAF6 and IRAK1. Genetic deletion of miR-146a confirmed a role of miR-146a during innate immune signaling as well as for hematopoietic stem cell function. miR-146a is also implicated in the pathogenesis of human myelodysplastic syndromes (MDSs) as it is located within a commonly deleted region on chromosome 5, and miR-146a-deficient mice exhibit features of an MDS-like disease. With new insight into miR-146a through genetic and expression analyses, we highlight and discuss the recent advances in the understanding of miR-146a in physiological hematopoiesis during steady-state and inflammation, as well as in MDS.
Collapse
Affiliation(s)
- Jimmy L Zhao
- Division of Biology and Biological Engineering, California Institute of Technology Pasadena, CA, USA ; David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Department of Cancer Biology, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
79
|
Rebane A, Runnel T, Aab A, Maslovskaja J, Rückert B, Zimmermann M, Plaas M, Kärner J, Treis A, Pihlap M, Haljasorg U, Hermann H, Nagy N, Kemeny L, Erm T, Kingo K, Li M, Boldin MP, Akdis CA. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 2014; 134:836-847.e11. [PMID: 24996260 DOI: 10.1016/j.jaci.2014.05.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic skin inflammation in atopic dermatitis (AD) is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. microRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. OBJECTIVE The aim of this study was to investigate the role of miR-146a in skin inflammation in AD. METHODS RNA and protein expression was analyzed using miRNA and mRNA arrays, RT-quantitative PCR, Western blotting, and immunonohistochemistry. Transfection of miR-146a precursors and inhibitors into human primary keratinocytes, luciferase assays, and MC903-dependent mouse model of AD were used to study miR-146a function. RESULTS We show that miR-146a expression is increased in keratinocytes and chronic lesional skin of patients with AD. miR-146a inhibited the expression of numerous proinflammatory factors, including IFN-γ-inducible and AD-associated genes CCL5, CCL8, and ubiquitin D (UBD) in human primary keratinocytes stimulated with IFN-γ, TNF-α, or IL-1β. In a mouse model of AD, miR-146a-deficient mice developed stronger inflammation characterized by increased accumulation of infiltrating cells in the dermis, elevated expression of IFN-γ, CCL5, CCL8, and UBD in the skin, and IFN-γ, IL-1β, and UBD in draining lymph nodes. Both tissue culture and in vivo experiments in mice demonstrated that miR-146a-mediated suppression in allergic skin inflammation partially occurs through direct targeting of upstream nuclear factor kappa B signal transducers caspase recruitment domain-containing protein 10 and IL-1 receptor-associated kinase 1. In addition, human CCL5 was determined as a novel, direct target of miR-146a. CONCLUSION Our data demonstrate that miR-146a controls nuclear factor kappa B-dependent inflammatory responses in keratinocytes and chronic skin inflammation in AD.
Collapse
Affiliation(s)
- Ana Rebane
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Toomas Runnel
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Molecular and Cellular Biology, University of Tartu, Tartu, Estonia
| | - Alar Aab
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Maya Zimmermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mario Plaas
- Transgenic Technology Core Laboratory, University of Tartu, Tartu, Estonia
| | - Jaanika Kärner
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Angela Treis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Maire Pihlap
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Uku Haljasorg
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen Hermann
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nikoletta Nagy
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Kemeny
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Triin Erm
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia; Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, Illkirch, France
| | - Mark P Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, Calif
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| |
Collapse
|
80
|
Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014; 14:392-404. [DOI: 10.1038/nri3671] [Citation(s) in RCA: 1159] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
Abstract
microRNAs (miRNAs) are short, single-stranded RNA molecules that function together with the partner proteins and cause degradation of target mRNAs or inhibit their translation. A particular miRNA can have hundreds of targets; therefore, miRNAs cumulatively influence the expression of a large proportion of genes. The functions of miRNAs in human diseases have been studied since their discovery in mammalian cells approximately 12 years ago. However, the role of miRNAs in allergic disease has only very recently begun to be uncovered. The purpose of this review is to provide an overview of the functions of miRNAs involved in the development of allergic diseases. We describe here the functions of miRNAs that regulate Th2 polarization and influence general inflammatory and tissue responses. In addition, we will highlight findings about the functions of extracellular miRNAs as possible noninvasive biomarkers of diseases with heterogeneous phenotypes and complex mechanisms and briefly discuss advances in the development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia,
| | | |
Collapse
|
82
|
Farzan SF, Karagas MR, Christensen BC, Li Z, Kuriger JK, Nelson HH, on behalf of the New Hampshire Skin Cancer Study. RNASEL and MIR146A SNP-SNP interaction as a susceptibility factor for non-melanoma skin cancer. PLoS One 2014; 9:e93602. [PMID: 24699816 PMCID: PMC3974770 DOI: 10.1371/journal.pone.0093602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/06/2014] [Indexed: 02/02/2023] Open
Abstract
Immunity and inflammatory pathways are important in the genesis of non-melanoma skin cancers (NMSC). Functional genetic variation in immune modulators has the potential to affect disease etiology. We investigated associations between common variants in two key regulators, MIR146A and RNASEL, and their relation to NMSCs. Using a large population-based case-control study of basal cell (BCC) and squamous cell carcinoma (SCC), we investigated the impact of MIR146A SNP rs2910164 on cancer risk, and interaction with a SNP in one of its putative targets (RNASEL, rs486907). To examine associations between genotype and BCC and SCC, occurrence odds ratios (OR) and 95% confidence intervals (95%CI) were calculated using unconditional logistic regression, accounting for multiple confounding factors. We did not observe an overall change in the odds ratios for SCC or BCC among individuals carrying either of the RNASEL or MIR146A variants compared with those who were wild type at these loci. However, there was a sex-specific association between BCC and MIR146A in women (ORGC = 0.73, [95%CI = 0.52-1.03]; ORCC = 0.29, [95% CI = 0.14-0.61], p-trend<0.001), and a reduction in risk, albeit not statistically significant, associated with RNASEL and SCC in men (ORAG = 0.88, [95%CI = 0.65-1.19]; ORAA = 0.68, [95%CI = 0.43-1.08], p-trend = 0.10). Most striking was the strong interaction between the two genes. Among individuals carrying variant alleles of both rs2910164 and rs486907, we observed inverse relationships with SCC (ORSCC = 0.56, [95%CI = 0.38-0.81], p-interaction = 0.012) and BCC (ORBCC = 0.57, [95%CI = 0.40-0.80], p-interaction = 0.005). Our results suggest that genetic variation in immune and inflammatory regulators may influence susceptibility to NMSC, and novel SNP-SNP interaction for a microRNA and its target. These data suggest that RNASEL, an enzyme involved in RNA turnover, is controlled by miR-146a and may be important in NMSC etiology.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Department of Community and Family Medicine, Section of Biostatistics and Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret R. Karagas
- Department of Community and Family Medicine, Section of Biostatistics and Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Brock C. Christensen
- Department of Community and Family Medicine, Section of Biostatistics and Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zhongze Li
- Department of Community and Family Medicine, Section of Biostatistics and Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jacquelyn K. Kuriger
- Division of Epidemiology and Community Health, The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Heather H. Nelson
- Division of Epidemiology and Community Health, The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | |
Collapse
|
83
|
Abstract
Essential protectors against infection and injury, macrophages can also contribute to many common and fatal diseases. Here, we discuss the mechanisms that control different types of macrophage activities in mice. We follow the cells' maturational pathways over time and space and elaborate on events that influence the type of macrophage eventually settling a particular destination. The nature of the precursor cells, developmental niches, tissues, environmental cues, and other connecting processes appear to contribute to the identity of macrophage type. Together, the spatial and developmental relationships of macrophages compose a topo-ontogenic map that can guide our understanding of their biology.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
84
|
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000PRIME REPORTS 2014; 6:13. [PMID: 24669294 PMCID: PMC3944738 DOI: 10.12703/p6-13] [Citation(s) in RCA: 3331] [Impact Index Per Article: 302.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response.
Collapse
Affiliation(s)
- Fernando O. Martinez
- Botnar Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of OxfordWindmill Road, OX3 7LD, OxfordUK
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of OxfordSouth Parks Road, Oxford, OX1 3REUK
| |
Collapse
|
85
|
Zago M, Rico de Souza A, Hecht E, Rousseau S, Hamid Q, Eidelman DH, Baglole CJ. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts. Toxicol Lett 2014; 226:107-16. [PMID: 24472607 DOI: 10.1016/j.toxlet.2014.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/23/2023]
Abstract
Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants.
Collapse
Affiliation(s)
- Michela Zago
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Emelia Hecht
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| |
Collapse
|
86
|
MicroRNAs as Haematopoiesis Regulators. Adv Hematol 2013; 2013:695754. [PMID: 24454381 PMCID: PMC3884629 DOI: 10.1155/2013/695754] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 10/27/2013] [Indexed: 12/20/2022] Open
Abstract
The production of different types of blood cells including their formation, development, and differentiation is collectively known as haematopoiesis. Blood cells are divided into three lineages erythriod (erythrocytes), lymphoid (B and T cells), and myeloid (granulocytes, megakaryocytes, and macrophages). Haematopoiesis is a complex process regulated by several mechanisms including microRNAs (miRNAs). miRNAs are small RNAs which regulate the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells. Evidence shows that miRNAs play an important role in haematopoiesis; for example, myeloid and erythroid differentiation is blocked by the overexpression of miR-15a. miR-221, miR-222, and miR-24 inhibit the erythropoiesis, whereas miR-150 plays a role in B and T cell differentiation. miR-146 and miR-10a are downregulated in megakaryopoiesis. Aberrant expression of miRNAs was observed in hematological malignancies including chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myelomas, and B cell lymphomas. In this review we have focused on discussing the role of miRNA in haematopoiesis.
Collapse
|
87
|
Olivieri F, Lazzarini R, Babini L, Prattichizzo F, Rippo MR, Tiano L, Di Nuzzo S, Graciotti L, Festa R, Brugè F, Orlando P, Silvestri S, Capri M, Palma L, Magnani M, Franceschi C, Littarru GP, Procopio AD. Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radic Biol Med 2013; 63:410-20. [PMID: 23727324 DOI: 10.1016/j.freeradbiomed.2013.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/12/2013] [Accepted: 05/22/2013] [Indexed: 01/31/2023]
Abstract
Clinical evidence demonstrates that ubiquinol-10, the reduced active form of coenzyme Q10 (CoQ10H₂), improves endothelial function through its antioxidant and probably its anti-inflammatory properties. We previously reported that a biomarker combination including miR-146a, its target protein IL-1 receptor-associated kinase (IRAK-1), and released interleukin (IL)-6, here collectively designated as MIRAKIL, indicates senescence-associated secretory phenotype (SASP) acquisition by primary human umbilical vein endothelial cells (HUVECs). We explore the ability of short- and long-term CoQ10H₂ supplementation to affect MIRAKIL in HUVECs, used as a model of vascular aging, during replicative senescence in the absence/presence of lipopolysaccharide (LPS), a proinflammatory stimulus. Senescent HUVECs had the same ability as young cells to internalize CoQ10 and exhibit an improved oxidative status. LPS-induced NF-κB activation diminished after CoQ10H₂ pretreatment in both young and senescent cells. However, short-term CoQ10H₂ supplementation attenuated LPS-induced MIRAKIL changes in young cells; in senescent cells CoQ10H₂ supplementation significantly attenuated LPS-induced miR-146a and IRAK-1 modulation but failed to curb IL-6 release. Similar results were obtained with long-term CoQ10H₂ incubation. These findings provide new insights into the molecular mechanisms by which CoQ10H₂ stems endothelial cell inflammatory responses and delays SASP acquisition. These phenomena may play a role in preventing the endothelial dysfunction associated with major age-related diseases.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
RelB is one of the more unusual members of the NF-κB family. This family, arguably the best known group of transcription regulators, regulates an astonishing array of cell types and biological processes. This includes regulation of cell growth, differentiation and death by apoptosis, and the development and function of the innate and adaptive-immune system. RelB is best known for its roles in lymphoid development, DC biology, and noncanonical signaling. Within the last few years, however, surprising functions of RelB have emerged. The N-terminal leucine zipper motif of RelB, a motif unique among the NF-κB family, may associate with more diverse DNA sequences than other NF-κB members. RelB is capable of direct binding to the AhR that supports the xenobiotic-detoxifying pathway. RelB can regulate the circadian rhythm by directly binding to the BMAL partner of CLOCK. Finally, RelB also couples with bioenergy NAD(+) sensor SIRT1 to integrate acute inflammation with changes in metabolism and mitochondrial bioenergetics. In this review, we will explore these unique aspects of RelB, specifically with regard to its role in immunity.
Collapse
Affiliation(s)
- Patrick Millet
- 1.Wake Forest University Health Sciences, Wake Forest University, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
89
|
Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A 2013; 110:11499-504. [PMID: 23798430 DOI: 10.1073/pnas.1219852110] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) play key roles in detecting pathogens and initiating inflammatory responses that, subsequently, prime specific adaptive responses. Several mechanisms control TLR activity to avoid excessive inflammation and consequent immunopathology, including the anti-inflammatory cytokine IL-10. Recently, several TLR-responsive microRNAs (miRs) have also been proposed as potential regulators of this signaling pathway, but their functional role during the inflammatory response still is incompletely understood. In this study, we report that, after LPS engagement, monocytes up-regulate miR-146b via an IL-10-mediated STAT3-dependent loop. We show evidence that miR-146b modulates the TLR4 signaling pathway by direct targeting of multiple elements, including the LPS receptor TLR4 and the key adaptor/signaling proteins myeloid differentiation primary response (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6). Furthermore, we demonstrate that the enforced expression of miR-146b in human monocytes led to a significant reduction in the LPS-dependent production of several proinflammatory cytokines and chemokines, including IL-6, TNF-α, IL-8, CCL3, CCL2, CCL7, and CXCL10. Our results thus identify miR-146b as an IL-10-responsive miR with an anti-inflammatory activity based on multiple targeting of components of the TLR4 pathway in monocytes and candidate miR-146b as a molecular effector of the IL-10 anti-inflammatory activity.
Collapse
|
90
|
El Gazzar M. microRNAs as potential regulators of myeloid-derived suppressor cell expansion. Innate Immun 2013; 20:227-38. [PMID: 23757323 DOI: 10.1177/1753425913489850] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proper development and activation of cells of the myeloid lineage are critical for supporting innate immunity. This myelopoiesis is orchestrated by interdependent interactions between cytokine receptors, transcription factors and, as recently described, microRNAs (miRNAs). miRNAs contribute to normal and dysregulated myelopoiesis. Alterations in myelopoiesis underlie myeloid-derived suppressor cell (MDSC) expansion, a poorly understood heterogeneous population of immature and suppressive myeloid cells that expand in nearly all diseases where inflammation exists. MDSCs associated with inflammation often have immunosuppressive properties, but molecular mechanisms responsible for MDSC expansion are unclear. Emerging data implicate miRNAs in MDSC expansion. This review focuses on miRNAs that contribute to myeloid lineage differentiation and maturation under physiological conditions, and introduces the concept that altered miRNA expression my underlie expansion and accumulation of MDSCs. We divide our miRNAs into those with potential to promote MDSC expansion and two with known direct links to MDSC expansion, miR-223 and miR-494.
Collapse
Affiliation(s)
- Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, USA
| |
Collapse
|
91
|
Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol 2013; 132:15-26. [PMID: 23726263 DOI: 10.1016/j.jaci.2013.04.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
Abstract
Regulation of inflammatory responses is ensured by coordinated control of gene expression in participating immune system and tissue cells. One group of gene expression regulators, the functions of which have recently been started to be uncovered in relation to any type of inflammatory condition, is a class of short single-stranded RNA molecules termed microRNAs (miRNAs). miRNAs function together with partner proteins and mainly cause gene silencing through degradation of target mRNAs or inhibition of translation. A particular miRNA can have hundreds of target genes, and thereby miRNAs together influence the expression of a large proportion of proteins. The role of miRNAs in the immune system has been extensively studied since the discovery of miRNAs in mammalian cells approximately 10 years ago. The purpose of the current review is to provide an overview on the functions of miRNAs in the regulation of inflammation, with a specific focus on the mechanisms of allergic inflammation. Because recent studies clearly demonstrate the presence of extracellular miRNAs in body fluids and propose the involvement of miRNAs in cell-cell communication, we will also highlight findings about functions of extracellular miRNAs. The possible use of miRNAs as biomarkers, as well as miRNA-related novel treatment modalities, might open a new future for the diagnosis and treatment of many inflammatory conditions, including allergic diseases.
Collapse
Affiliation(s)
- Ana Rebane
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | |
Collapse
|
92
|
Zhao JL, Rao DS, O'Connell RM, Garcia-Flores Y, Baltimore D. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. eLife 2013; 2:e00537. [PMID: 23705069 PMCID: PMC3660742 DOI: 10.7554/elife.00537] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
Abstract
During inflammation and infection, hematopoietic stem and progenitor cells are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of miR-146a produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to HSC exhaustion and hematopoietic neoplasms. At the cellular level, the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of lymphocytes and nonhematopoietic cells. At the molecular level, this involves a molecular axis consisting of miR-146a, signaling protein TRAF6, transcriptional factor NF-κB, and cytokine IL-6. This study has identified miR-146a to be a critical regulator of HSC homeostasis during chronic inflammation in mice and provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. DOI:http://dx.doi.org/10.7554/eLife.00537.001.
Collapse
Affiliation(s)
- Jimmy L Zhao
- Department of Biology , California Institute of Technology , Pasadena , United States
| | | | | | | | | |
Collapse
|
93
|
Abstract
Yin and Yang are two complementary forces that together describe the nature of real-world elements. Yin is the dark side; Yang is the light side. We describe microRNAs having both Yin and Yang characteristics because they can contribute to normal function (Yang) but also to autoimmunity, myeloproliferation, and cancer (Yin). We have been working on a number of microRNAs that have these dual characteristics and here we focus on two, miR-125b and miR-146a. We have concentrated on these two RNAs because we have very extensive knowledge of them, much of it from our laboratory, and also because they provide a strong contrast: the effects of overexpression of miR-125b are rapid, suggesting that it acts directly, whereas the effects of miR-146a are slow to develop, suggesting that they arise from chronic alterations in cellular behavior.
Collapse
Affiliation(s)
- Alex Yick-Lun So
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Jimmy Zhao
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| | - David Baltimore
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
94
|
McMillan DH, Woeller CF, Thatcher TH, Spinelli SL, Maggirwar SB, Sime PJ, Phipps RP. Attenuation of inflammatory mediator production by the NF-κB member RelB is mediated by microRNA-146a in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2013; 304:L774-81. [PMID: 23564509 DOI: 10.1152/ajplung.00352.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung inflammation can result from exposure to multiple types of inflammatory stimuli. Fibroblasts, key structural cells in the lung that are integral to inflammation and wound healing, produce inflammatory mediators after exposure to stimuli such as IL-1β. We and others have shown that the NF-κB member RelB has anti-inflammatory properties in mice. Little is known, however, about the anti-inflammatory role of RelB in human cells and how it functions. MicroRNAs (miRNAs), a novel class of small, noncoding RNAs, can mediate inflammatory signaling pathways, including NF-κB, through regulation of target gene expression. Our goal was to analyze the anti-inflammatory properties of RelB in human lung fibroblasts. We hypothesized that RelB regulates inflammatory mediator production in lung fibroblasts in part through a mechanism involving miRNAs. To accomplish this, we transfected human lung fibroblasts with a plasmid encoding RelB and small interfering (si)RNA targeting RelB mRNA to overexpress and downregulate RelB, respectively. IL-1β, a powerful proinflammatory stimulus, was used to induce NF-κB-driven inflammatory responses. RelB overexpression reduced IL-1β-induced cyclooxygenase (Cox)-2, PGE₂, and cytokine production, and RelB downregulation increased Cox-2 expression and PGE₂ production. Furthermore, RelB overexpression increased IL-1β-induced expression of miRNA-146a, an NF-κB-dependent miRNA with anti-inflammatory properties, whereas RelB downregulation reduced miRNA-146a. miR-146a overexpression ablated the effects of RelB downregulation on IL-1β-induced Cox-2, PGE₂, and IL-6 production, suggesting that RelB mediates IL-1β-induced inflammatory mediator production in lung fibroblasts through miRNA-146a. RelB and miRNA-146a may therefore be new therapeutic targets in the treatment of lung inflammation caused by various agents and conditions.
Collapse
Affiliation(s)
- David H McMillan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Squadrito ML, Etzrodt M, De Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol 2013; 34:350-9. [PMID: 23498847 DOI: 10.1016/j.it.2013.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/15/2022]
Abstract
Deregulation of microRNAs (miRNAs) can drive oncogenesis, tumor progression, and metastasis by acting cell-autonomously in cancer cells. However, solid tumors are also infiltrated by large amounts of non-neoplastic stromal cells, including macrophages, which express several active miRNAs. Tumor-associated macrophages (TAMs) enhance angiogenic, immunosuppressive, invasive, and metastatic programming of neoplastic tissue and reduce host survival. Here, we review the role of miRNAs (including miR-155, miR-146, and miR-511) in the control of macrophage production and activation, and examine whether reprogramming miRNA activity in TAMs and/or their precursors might be effective for controlling tumor progression.
Collapse
Affiliation(s)
- Mario Leonardo Squadrito
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW The contributions of microRNA (miRNA) to pathogenesis of autoimmune diseases such as Systemic lupus erythematosus (SLE) are beginning to be uncovered. In this review, we discuss the major progress made in understanding of miRNA biology, as well as novel insights into SLE pathogenesis mediated by miRNAs. RECENT FINDINGS MiRNA biogenesis is a deliberately controlled process, which requires multiple layers of regulation involving participation of various protein regulators and posttranscriptional modifications. Its expression regulation is critically modulated by multiple physiopathological factors such as inflammation, stress, Epstein-Barr virus infection and sex hormones. MiRNAs play a crucial role in maintaining immune system development and function, and are implicated in development of numerous immunological disorders. Unique miRNA expression signatures in SLE reveal their clinical relevance. MiRNAs contribute broadly and actively to various aspects of SLE pathogenesis and hold great therapeutic potential. SUMMARY The recent findings underscore the potential importance of miRNAs to pathogenesis, diagnosis and treatment of SLE.
Collapse
|
97
|
Richards DM, Hettinger J, Feuerer M. Monocytes and macrophages in cancer: development and functions. CANCER MICROENVIRONMENT 2012. [PMID: 23179263 DOI: 10.1007/s12307-012-0123-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monocytes and tumor-associated macrophages are part of the myeloid family, a group of hematopoietic derived cells. Monocytes are direct precursors of hematopoietic stem cell-derived macrophages. After their recruitment into the tumor tissue, they can differentiate into tumor-associated macrophages, a very heterogeneous cell population in terms of phenotype and pro-tumor function, supporting tumor initiation, local progression and distant metastasis. Therefore, targeting monocytes and macrophages is a promising immunotherapeutic approach. This review will focus on the development of monocytes as macrophage precursors, the functions of tumor-associated macrophages and the possibility of interfering with tumor development and progression by targeting these myeloid cells.
Collapse
Affiliation(s)
- David M Richards
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
98
|
Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012; 122:3063-87. [PMID: 22863620 DOI: 10.1172/jci62636] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/14/2012] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.
Collapse
Affiliation(s)
- Oleg Butovsky
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|