51
|
Rondini EA, Mladenovic-Lucas L, Roush WR, Halvorsen GT, Green AE, Granneman JG. Novel Pharmacological Probes Reveal ABHD5 as a Locus of Lipolysis Control in White and Brown Adipocytes. J Pharmacol Exp Ther 2017; 363:367-376. [PMID: 28928121 PMCID: PMC5698943 DOI: 10.1124/jpet.117.243253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Current knowledge regarding acute regulation of adipocyte lipolysis is largely based on receptor-mediated activation or inhibition of pathways that influence intracellular levels of cAMP, thereby affecting protein kinase A (PKA) activity. We recently identified synthetic ligands of α-β-hydrolase domain containing 5 (ABHD5) that directly activate adipose triglyceride lipase (ATGL) by dissociating ABHD5 from its inhibitory regulator, perilipin-1 (PLIN1). In the current study, we used these novel ligands to determine the direct contribution of ABHD5 to various aspects of lipolysis control in white (3T3-L1) and brown adipocytes. ABHD5 ligands stimulated adipocyte lipolysis without affecting PKA-dependent phosphorylation on consensus sites of PLIN1 or hormone-sensitive lipase (HSL). Cotreatment of adipocytes with synthetic ABHD5 ligands did not alter the potency or maximal lipolysis efficacy of the β-adrenergic receptor (ADRB) agonist isoproterenol (ISO), indicating that both target a common pool of ABHD5. Reducing ADRB/PKA signaling with insulin or desensitizing ADRB suppressed lipolysis responses to a subsequent challenge with ISO, but not to ABHD5 ligands. Lastly, despite strong treatment differences in PKA-dependent phosphorylation of HSL, we found that ligand-mediated activation of ABHD5 led to complete triglyceride hydrolysis, which predominantly involved ATGL, but also HSL. These results indicate that the overall pattern of lipolysis controlled by ABHD5 ligands is similar to that of isoproterenol, and that ABHD5 plays a central role in the regulation of adipocyte lipolysis. As lipolysis is critical for adaptive thermogenesis and in catabolic tissue remodeling, ABHD5 ligands may provide a means of activating these processes under conditions where receptor signaling is compromised.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - William R Roush
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Geoff T Halvorsen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Alex E Green
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| |
Collapse
|
52
|
Shin H, Ma Y, Chanturiya T, Cao Q, Wang Y, Kadegowda AKG, Jackson R, Rumore D, Xue B, Shi H, Gavrilova O, Yu L. Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice. Cell Metab 2017; 26:764-777.e5. [PMID: 28988822 PMCID: PMC5905336 DOI: 10.1016/j.cmet.2017.09.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/28/2017] [Accepted: 09/05/2017] [Indexed: 01/18/2023]
Abstract
Lipid droplet (LD) lipolysis in brown adipose tissue (BAT) is generally considered to be required for cold-induced nonshivering thermogenesis. Here, we show that mice lacking BAT Comparative Gene Identification-58 (CGI-58), a lipolytic activator essential for the stimulated LD lipolysis, have normal thermogenic capacity and are not cold sensitive. Relative to littermate controls, these animals had higher body temperatures when they were provided food during cold exposure. The increase in body temperature in the fed, cold-exposed knockout mice was associated with increased energy expenditure and with increased sympathetic innervation and browning of white adipose tissue (WAT). Mice lacking CGI-58 in both BAT and WAT were cold sensitive, but only in the fasted state. Thus, LD lipolysis in BAT is not essential for cold-induced nonshivering thermogenesis in vivo. Rather, CGI-58-dependent LD lipolysis in BAT regulates WAT thermogenesis, and our data uncover an essential role of WAT lipolysis in fueling thermogenesis during fasting.
Collapse
Affiliation(s)
- Hyunsu Shin
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yinyan Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Mouse Metabolism Core Laboratory, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatyana Chanturiya
- Mouse Metabolism Core Laboratory, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiang Cao
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| | - Youlin Wang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Anil K G Kadegowda
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Rachel Jackson
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Dominic Rumore
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Bingzhong Xue
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| | - Hang Shi
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
53
|
Wang M, Wang C, Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? MASS SPECTROMETRY REVIEWS 2017; 36:693-714. [PMID: 26773411 PMCID: PMC4947032 DOI: 10.1002/mas.21492] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
Lipidomics is rapidly expanding because of the great facilitation of recent advances in, and novel applications of, electrospray ionization mass spectrometry techniques. The greatest demands have been for successful quantification of lipid classes, subclasses, and individual molecular species in biological samples at acceptable accuracy. This review addresses the selection of internal standards in different methods for accurate quantification of individual lipid species. The principles of quantification with electrospray ionization mass spectrometry are first discussed to recognize the essentials for quantification. The basics of different lipidomics approaches are overviewed to understand the variables that need to be considered for accurate quantification. The factors that affect accurate quantification are extensively discussed, and the solutions to resolve these factors are proposed-largely through addition of internal standards. Finally, selection of internal standards for different methods is discussed in detail to address the issues of what, how, and why related to internal standards. We believe that thorough discussion of the topics related to internal standards should aid in quantitative analysis of lipid classes, subclasses, and individual molecular species and should have big impacts on advances in lipidomics. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:693-714, 2017.
Collapse
Affiliation(s)
- Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
- To whom correspondence should be addressed: Xianlin Han, Ph.D., Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, Florida 32827, USA, Telephone: (407) 745-2139, Fax: (407) 745-2016,
| |
Collapse
|
54
|
Liu D, Miao H, Zhao Y, Kang X, Shang S, Xiang W, Shi R, Hou A, Wang R, Zhao K, Liu Y, Ma Y, Luo H, Miao H, He F. NF-κB potentiates tumor growth by suppressing a novel target LPTS. Cell Commun Signal 2017; 15:39. [PMID: 29017500 PMCID: PMC5634951 DOI: 10.1186/s12964-017-0196-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chronic inflammation is causally linked to the carcinogenesis and progression of most solid tumors. LPTS is a well-identified tumor suppressor by inhibiting telomerase activity and cancer cell growth. However, whether and how LPTS is regulated by inflammation signaling is still incompletely elucidated. Methods Real-time PCR and western blotting were used to determine the expression of p65 and LPTS. Reporter gene assay, electrophoretic mobility shift assay and chromatin immunoprecipitation were performed to decipher the regulatory mechanism between p65 and LPTS. Cell counting kit-8 assays and xenograt models were used to detect p65-LPTS-regulated cancer cell growth in vitro and in vivo, respectively. Results Here we for the first time demonstrated that NF-κB could inhibit LPTS expression in the mRNA and protein levels in multiple cancer cells (e.g. cervical cancer and colon cancer cells). Mechanistically, NF-κB p65 could bind to two consensus response elements locating at −1143/−1136 and −888/−881 in the promoter region of human LPTS gene according to EMSA and ChIP assays. Mutation of those two binding sites rescued p65-suppressed LPTS promoter activity. Functionally, NF-κB regulated LPTS-dependent cell growth of cervical and colon cancers in vitro and in xenograft models. In translation studies, we verified that increased p65 expression was associated with decreased LPTS level in multiple solid cancers. Conclusions Taken together, we revealed that NF-κB p65 potentiated tumor growth via suppressing a novel target LPTS. Modulation of NF-κB-LPTS axis represented a potential strategy for treatment of those inflammation-associated malignancies.
Collapse
Affiliation(s)
- Dongbo Liu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Hongping Miao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuanyin Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Shenglan Shang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wei Xiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Rongchen Shi
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Along Hou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yingzhe Liu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yue Ma
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Huan Luo
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
55
|
Xu Y, Yao J, Zou C, Zhang H, Zhang S, Liu J, Ma G, Jiang P, Zhang W. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARγ/NLRP3 inflammasome signaling pathway. Oncotarget 2017; 8:86339-86355. [PMID: 29156799 PMCID: PMC5689689 DOI: 10.18632/oncotarget.21151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) contributes to major complications in clinical practice affecting perioperative morbidity and mortality. Recent evidence suggests the key role of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammaosme activation on the pathogenesis of I/R injury. Asiatic acid (AA) is a pentacyclic triterpene derivative presented with versatile activities, including antioxidant, anti-inflammation and hepatoprotective effects. This study was designed to determine whether AA had potential hepatoprotective benefits against hepatic I/R injury, as well as to unveil the underlying mechanisms involved in the putative effects. Mice subjected to warm hepatic I/R, and Kupffer cells (KCs) or RAW264.7 cells challenged with lipopolysaccharide (LPS)/H2O2, were pretreated with AA. Administration of AA significantly attenuated hepatic histopathological damage, global inflammatory level, apoptotic signaling level, as well as NLRP3 inflammasome activation. These effects were correlated with increased expression of peroxisome proliferator-activated receptor gamma (PPARγ). Conversely, pharmacological inhibition of PPARγ by GW9662 abolished the protective effects of AA on hepatic I/R injury and in turn aggravated NLRP3 inflammasome activation. Activation of NLRP3 inflammasome was most significant in nonparenchymal cells (NPCs). Depletion of KCs by gadolinium chloride (GdCl3) further attenuated the detrimental effects of GW9662 on hepatic I/R as well as NLRP3 activation. In vitro, AA concentration-dependently inhibited LPS/H2O2-induced NLRP3 inflammaosome activation in KCs and RAW264.7 cells. Either GW9662 or genetic knockdown of PPARγ abolished the AA-mediated inactivation of NLRP3 inflammasome. Mechanistically, AA attenuated I/R or LPS/H2O2-induced ROS production and phosphorylation level of JNK, p38 MAPK and IκBα but not ERK, a mechanism dependent on PPARγ. Finally, AA blocked the deleterious effects of LPS/H2O2-induced macrophage activation on hepatocyte viability in vitro, and improved survival in a lethal hepatic I/R injury model in vivo. Collectively, these data suggest that AA is effective in mitigating hepatic I/R injury through attenuation of KCs activation via PPARγ/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Zou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shouliang Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Gui Ma
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
56
|
Critical roles for α/β hydrolase domain 5 (ABHD5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1233-1241. [PMID: 28827091 DOI: 10.1016/j.bbalip.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
Mutations in the gene encoding comparative gene identification 58 (CGI-58), also known as α β hydrolase domain-containing 5 (ABHD5), cause neutral lipid storage disorder with ichthyosis (NLSDI). This inborn error in metabolism is characterized by ectopic accumulation of triacylglycerols (TAG) within cytoplasmic lipid droplets in multiple cell types. Studies over the past decade have clearly demonstrated that CGI-58 is a potent regulator of TAG hydrolysis in the disease-relevant cell types. However, despite the reproducible genetic link between CGI-58 mutations and TAG storage, the molecular mechanisms by which CGI-58 regulates TAG hydrolysis are still incompletely understood. It is clear that CGI-58 can regulate TAG hydrolysis by activating the major TAG hydrolase adipose triglyceride lipase (ATGL), yet CGI-58 can also regulate lipid metabolism via mechanisms that do not involve ATGL. This review highlights recent progress made in defining the physiologic and biochemical function of CGI-58, and its broader role in energy homeostasis. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
57
|
Laubertová L, Koňariková K, Gbelcová H, Ďuračková Z, Muchová J, Garaiova I, Žitňanová I. Fish oil emulsion supplementation might improve quality of life of diabetic patients due to its antioxidant and anti-inflammatory properties. Nutr Res 2017; 46:49-58. [PMID: 28893413 DOI: 10.1016/j.nutres.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Diabetes-related complications, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, are a significant cause of increased morbidity and mortality among people with diabetes. Previous studies have confirmed that hyperglycemia has pro-oxidative and proinflammatory properties which cause diabetic complications. We hypothesized that supplementation of fish oil emulsion (FOE), rich in omega-3 polyunsaturated fatty acids, to diabetic patients might reduce hyperglycemia-induced pathological changes due to specific properties of FOE. Omega-3 polyunsaturated fatty acids have a wide range of biological effects. In this project, we have examined the potential protective effect of the FOE on hyperglycemia-induced oxidative stress and cytokine generation in monocytes/macrophages U937 system in vitro. The monocytes/macrophages U937 were cultivated under normal or hyperglycemic (35 mmol/L glucose) conditions with/without FOE for 72 hours. We have focused on specific markers of oxidative stress (antioxidant capacity; superoxide dismutase activity; oxidative damage to DNA, proteins, and lipids) and inflammation (tumor necrosis factor, interleukin-6, interleukin-8, monocytic chemotactic protein-1). Hyperglycemia caused reduction of antioxidant capacity, induction of DNA damage, and proinflammatory cytokine secretion. FOE significantly increased antioxidant capacity of cells as well as superoxide dismutase activity and significantly reduced tumor necrosis factor, interleukin-6, interleukin-8, and monocytic chemotactic protein-1 release. No effect was observed on oxidative damage to DNA, proteins, and lipids. Our results indicate that FOE can reduce hyperglycemia-induced pathological mechanisms by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Lucia Laubertová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Katarína Koňariková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 813 72 Bratislava, Slovakia.
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Iveta Garaiova
- Research and Development Department, Cultech Ltd, Port Talbot, SA12 7BZ, United Kingdom.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| |
Collapse
|
58
|
Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542:177-185. [PMID: 28179656 DOI: 10.1038/nature21363] [Citation(s) in RCA: 1510] [Impact Index Per Article: 188.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
Proper regulation and management of energy, substrate diversity and quantity, as well as macromolecular synthesis and breakdown processes, are fundamental to cellular and organismal survival and are paramount to health. Cellular and multicellular organization are defended by the immune response, a robust and critical system through which self is distinguished from non-self, pathogenic signals are recognized and eliminated, and tissue homeostasis is safeguarded. Many layers of evolutionarily conserved interactions occur between immune response and metabolism. Proper maintenance of this delicate balance is crucial for health and has important implications for many pathological states such as obesity, diabetes, and other chronic non-communicable diseases.
Collapse
|
59
|
Kim JK, Jin HS, Suh HW, Jo EK. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunol Cell Biol 2017; 95:584-592. [PMID: 28356568 DOI: 10.1038/icb.2017.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 12/22/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that cause the release of biologically active interleukin-1β. The best-characterized inflammasome is the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 or Nod-like receptor protein 3) inflammasome. The NLRP3 inflammasome forms an assembly consisting of the ASC (apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain) adaptor protein and the effector, caspase-1 (cysteine-dependent aspartate-directed protease-1). Numerous agents and ligands derived from pathogens, modified self-cells and the environment induce NLRP3 inflammasome complex formation. NLRP3 inflammasome activation is tightly controlled at the transcriptional and post-translational levels to prevent unwanted excessive inflammation. Recent studies have highlighted the roles and mechanisms of several negative regulators that inhibit the assembly of NLRP3 inflammasome complexes and suppress inflammatory responses. The identification and characterization of new players in the regulation of NLRP3 inflammasome may lead to the development of inflammasome-targeting therapeutics against various inflammatory diseases related to NLRP3 inflammasome-associated pathogenesis.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea.,Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Hyun-Woo Suh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
60
|
Vieira-Potter VJ. Effects of Sex Hormones and Exercise on Adipose Tissue. SEX HORMONES, EXERCISE AND WOMEN 2017:257-284. [DOI: 10.1007/978-3-319-44558-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
61
|
Testosterone Deficiency Induces Changes of the Transcriptomes of Visceral Adipose Tissue in Miniature Pigs Fed a High-Fat and High-Cholesterol Diet. Int J Mol Sci 2016; 17:ijms17122125. [PMID: 27999286 PMCID: PMC5187925 DOI: 10.3390/ijms17122125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
Testosterone deficiency causes fat deposition, particularly in visceral fat, and its replacement might reverse fat accumulation, however, the underlying mechanisms of such processes under diet-induced adiposity are largely unknown. To gain insights into the genome-wide role of androgen on visceral adipose tissue (VAT), RNA-Seq was used to investigate testosterone deficiency induced changes of VAT in miniature pigs fed a high-fat and high-cholesterol (HFC) diet among intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT) treatments. The results showed that testosterone deficiency significantly increased VAT deposition and serum leptin concentrations. Moreover, a total of 1732 differentially expressed genes (DEGs) were identified between any two groups. Compared with gene expression profiles in IM and CMT pigs, upregulated genes in CM pigs, i.e., LOC100520753 (CD68), LCN2, EMR1, S100A9, NCF1 (p47phox), and LEP, were mainly involved in inflammatory response, oxidation-reduction process, and lipid metabolic process, while downregulated genes in CM pigs, i.e., ABHD5, SPP1, and GAS6, were focused on cell differentiation and cell adhesion. Taken together, our study demonstrates that testosterone deficiency alters the expression of numerous genes involved in key biological processes of VAT accumulation under HFC diet and provides a novel genome-wide view on the role of androgen on VAT deposition under HFC diet, thus improving our understanding of the molecular mechanisms involved in VAT changes induced by testosterone deficiency.
Collapse
|
62
|
Kumar N, Gupta G, Anilkumar K, Fatima N, Karnati R, Reddy GV, Giri PV, Reddanna P. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci Rep 2016; 6:31649. [PMID: 27535180 PMCID: PMC4989172 DOI: 10.1038/srep31649] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/22/2016] [Indexed: 01/04/2023] Open
Abstract
The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE.
Collapse
Affiliation(s)
- Naresh Kumar
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Geetika Gupta
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Kotha Anilkumar
- National Institute of Animal Biotechnology, Hyderabad 500049, India
| | - Naireen Fatima
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Roy Karnati
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | - Pallu Reddanna
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
63
|
Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng M, Kang H, Huang L. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci Rep 2016; 6:30053. [PMID: 27530451 PMCID: PMC4987643 DOI: 10.1038/srep30053] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/29/2016] [Indexed: 01/26/2023] Open
Abstract
The DNA methyltransferase-mediated proinflammatory activation of macrophages is causally linked to the development of atherosclerosis (AS). However, the role of DNMT1, a DNA methylation maintenance enzyme, in macrophage polarization and AS development remains obscure. Here, we established transgenic mice with macrophage-specific overexpression of DNMT1 (TgDNMT1) or PPAR-γ (TgPPAR-γ) to investigate their effects on AS progression in ApoE-knockout mice fed an atherogenic diet. Primary macrophages were extracted to study the role of the DNMT1/PPAR-γ pathway in regulating inflammatory cytokine production. We demonstrated that TgDNMT1 significantly increased proinflammatory cytokine production in macrophages and plasma, and it accelerated the progression of AS in the atherogenic diet-treated ApoE-knockout mice. Further, we found that the DNA methylation status of the proximal PPAR-γ promoter was regulated by DNMT1 in macrophages. Notably, additional TgPPAR-γ or pharmacological activation of PPAR-γ effectively prevented TgDNMT1-induced proinflammatory cytokine production in macrophages and AS development in the mouse model. Finally, we demonstrated that elevated DNMT1 was correlated with decreased PPAR-γ, and increased proinflammatory cytokine production in the peripheral blood monocytes isolated from the patients with AS, compared to those of healthy donors. Our findings shed light on a novel strategy for the prevention and therapy of AS.
Collapse
Affiliation(s)
- Jie Yu
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Youzhu Qiu
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shizhu Bian
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guozhu Chen
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mengyang Deng
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Huali Kang
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
64
|
Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, Wang R, Luo P, Ruan Z, Ou J, Shi C, Miao H, Liang H. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett 2016; 381:305-13. [PMID: 27514455 DOI: 10.1016/j.canlet.2016.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
The development of chemoresistance to 5-fluorouracil (5-FU) is a major obstacle for sustained effective treatment of colorectal cancer (CRC), with the mechanisms being not fully understood. Here we demonstrated that tumor associated macrophages (TAMs) became activated during treatment with 5-FU and secreted factors that protected the CRC cells against chemotherapy with 5-FU. By performing metabolomics analysis, we identified putrescine, a member of polyamines, inducing resistance to 5-FU-triggered CRC apoptosis and tumor suppression via JNK-caspase-3 pathway. Noteworthily, either pharmacological or genetic blockage of ornithine decarboxylase (ODC) prevented TAMs-induced chemoresistance to 5-FU in vitro and in vivo. Our findings show that TAMs are potent mediators of resistance to 5-FU chemotherapy and uncover potential targets to enhance chemotherapy sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yujuan Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lijun Hao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Along Hou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiaozhen Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yifei Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Peng Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hongming Miao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China.
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
65
|
Tang X, Li J, Xiang W, Cui Y, Xie B, Wang X, Xu Z, Gan L. Metformin increases hepatic leptin receptor and decreases steatosis in mice. J Endocrinol 2016; 230:227-37. [PMID: 27288055 DOI: 10.1530/joe-16-0142] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
In addition to the ascertained efficacy as antidiabetic drug, metformin is increasingly being used as weight-loss agent in obesity, and as insulin sensitizer in nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying these effects are still incompletely understood. Emerging evidence suggest metformin as leptin sensitizer to mediate the weight-loss effect in the brain. In this study, we investigated effects of metformin on expression of leptin receptors in liver and kidney in mice. C57BL/6 mice were fed with chow diet (CD) or high-fat diet (HF) for 5months. Afterward, mice were treated with metformin (50mg/kg or 200mg/kg) for 15days. Metabolic parameters and hepatic gene expression were analyzed at the end of the treatment. We also tested the effects of metformin on plasma-soluble leptin receptor (sOB-R) levels in newly diagnosed type 2 diabetes mellitus (T2DM) patients, and assessed its effect on hepatosteatosis in mice. Results showed that metformin upregulates the expression of leptin receptors (OB-Ra, -Rb, -Rc, and -Rd) in liver but not kidney. The stimulation effect is dose-dependent in both chow and HF mice. Upregulation of OB-Rb, long signaling isoform, needs a relatively higher dose of metformin. This effect was paralleled by increased sOBR levels in mice and T2DM patients, and decreased hepatic triglyceride (TG) content and lipogenic gene expression, including sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FAS) and acetyl-CoA carboxylase-1 (ACC-1). Taken together, these data identify hepatic leptin receptor as target gene being upregulated by metformin which may enhance leptin sensitivity in liver to alleviate steatosis.
Collapse
Affiliation(s)
- Xuemei Tang
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jingwen Li
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiang
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China
| | - Ye Cui
- Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bin Xie
- Department of Hepatobiliary SurgeryDaping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Xiaodong Wang
- Institute of PathologySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Zihui Xu
- Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lixia Gan
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China
| |
Collapse
|
66
|
Lord CC, Ferguson D, Thomas G, Brown AL, Schugar RC, Burrows A, Gromovsky AD, Betters J, Neumann C, Sacks J, Marshall S, Watts R, Schweiger M, Lee RG, Crooke RM, Graham MJ, Lathia JD, Sakaguchi TF, Lehner R, Haemmerle G, Zechner R, Brown JM. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation. Cell Rep 2016; 16:939-949. [PMID: 27396333 DOI: 10.1016/j.celrep.2016.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023] Open
Abstract
Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.
Collapse
Affiliation(s)
- Caleb C Lord
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | - Daniel Ferguson
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gwynneth Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Amanda L Brown
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jenna Betters
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Chase Neumann
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephanie Marshall
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takuya F Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
67
|
Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice. Clin Sci (Lond) 2016; 130:1257-68. [PMID: 27129186 DOI: 10.1042/cs20160192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
Transcription factor 4 (TCF-4) was recently identified as a candidate gene for the cause of type 2 diabetes, although the mechanisms have not been fully elucidated. In the present study, we demonstrated that the TCF-4 transgene in macrophages aggravated high-fat diet (HFD)-induced insulin resistance and chronic inflammation, characterized by the elevation of proinflammatory cytokines in the blood, liver and white adipose tissue, as well as a proinflammatory profile of immune cells in visceral fats in mice. Mechanistically, TCF-4 functioned as a co-activator of p65 to amplify the saturated free fatty acid (FFA)-stimulated promoter activity, mRNA transcription and secretion of proinflammatory cytokines in primary macrophages. Blockage of p65 with a specific interfering RNA or inhibitor could prevent TCF-4-enhanced expression of proinflammatory cytokines in FFA/lipopolysaccharide-treated primary macrophages. The p65 inhibitor could abolish macrophage TCF-4 transgene-aggravated systemic inflammation, glucose intolerance and insulin resistance in HFD-treated mice. In addition, we demonstrated that the mRNA expression of TCF-4 in the peripheral blood monocytes from humans was positively correlated to the levels of interleukin (IL)-1β, tumour necrosis factor α, IL-6 and fasting plasma glucose. In summary, we identified TCF-4 as a co-activator of p65 in the potentiation of proinflammatory cytokine production in macrophages and aggravation of HFD-induced chronic inflammation and insulin resistance in mice.
Collapse
|
68
|
Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, Xie G, Wang Z, Pang X, Ruan Z, Li J, Yu L, Xue B, Shi H, Shi C, Liang H. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun 2016; 7:11716. [PMID: 27189574 PMCID: PMC4873969 DOI: 10.1038/ncomms11716] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
Metabolic reprogramming in stromal cells plays an essential role in regulating tumour growth. The metabolic activities of tumour-associated macrophages (TAMs) in colorectal cancer (CRC) are incompletely characterized. Here, we identify TAM-derived factors and their roles in the development of CRC. We demonstrate that ABHD5, a lipolytic co-activator, is ectopically expressed in CRC-associated macrophages. We demonstrate in vitro and in mouse models that macrophage ABHD5 potentiates growth of CRC cells. Mechanistically, ABHD5 suppresses spermidine synthase (SRM)-dependent spermidine production in macrophages by inhibiting the reactive oxygen species-dependent expression of C/EBPɛ, which activates transcription of the srm gene. Notably, macrophage-specific ABHD5 transgene-induced CRC growth in mice can be prevented by an additional SRM transgene in macrophages. Altogether, our results show that the lipolytic factor ABHD5 suppresses SRM-dependent spermidine production in TAMs and potentiates the growth of CRC. The ABHD5/SRM/spermidine axis in TAMs might represent a potential target for therapy. ABHD5 is a co-activator of lipolysis. Here the authors show that in tumour-associated macrophages ABHD5 inhibits ROS-dependent induction of C/EBPɛ, which transcriptionally activates spermidine synthase, and that blocking ABHD5 delays colorectal cancer growth in mice by inhibiting spermidine production.
Collapse
Affiliation(s)
- Hongming Miao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yuan Peng
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yujuan Chen
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lijun Hao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xueli Pang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
69
|
MicroRNA-33 suppresses CCL2 expression in chondrocytes. Biosci Rep 2016; 36:BSR20160068. [PMID: 27129293 PMCID: PMC4859085 DOI: 10.1042/bsr20160068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3'UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3'UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA.
Collapse
|
70
|
Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 2015; 34:1-7. [PMID: 27424223 DOI: 10.1016/j.jnutbio.2015.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Immune cell plasticity has extensive implications in the pathogenesis and resolution of metabolic disorders, cancers, autoimmune diseases and chronic inflammatory disorders. Over the past decade, nutritional status has been discovered to influence the immune response. In metabolic disorders such as obesity, immune cells interact with various classes of lipids, which are capable of controlling the plasticity of macrophages and T lymphocytes. The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on two areas: (1) the impact of altering lipid metabolism on immune cell activation, differentiation and function and (2) the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
71
|
Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 2015; 6:262. [PMID: 26594174 PMCID: PMC4633676 DOI: 10.3389/fphar.2015.00262] [Citation(s) in RCA: 633] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023] Open
Abstract
Inflammasomes are newly recognized, vital players in innate immunity. The best characterized is the NLRP3 inflammasome, so-called because the NLRP3 protein in the complex belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and is also known as “pyrin domain-containing protein 3”. The NLRP3 inflammasome is associated with onset and progression of various diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, cryopyrin-associated periodic fever syndrome, as well as other auto-immune and auto-inflammatory diseases. Several NLRP3 inflammasome inhibitors have been described, some of which show promise in the clinic. The present review will describe the structure and mechanisms of activation of the NLRP3 inflammasome, its association with various auto-immune and auto-inflammatory diseases, and the state of research into NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| |
Collapse
|
72
|
Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci Rep 2015; 5:13092. [PMID: 26271607 PMCID: PMC4536527 DOI: 10.1038/srep13092] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
The biomechanics stress and chronic inflammation in obesity are causally linked to osteoarthritis. However, the metabolic factors mediating obesity-related osteoarthritis are still obscure. Here we scanned and identified at least two elevated metabolites (stearic acid and lactate) from the plasma of diet-induced obese mice. We found that stearic acid potentiated LDH-a-dependent production of lactate, which further stabilized HIF1α protein and increased VEGF and proinflammatory cytokine expression in primary mouse chondrocytes. Treatment with LDH-a and HIF1α inhibitors notably attenuated stearic acid-or high fat diet-stimulated proinflammatory cytokine production in vitro and in vivo. Furthermore, positive correlation of plasma lactate, cartilage HIF1α and cytokine levels with the body mass index was observed in subjects with osteoarthritis. In conclusion, saturated free fatty acid induced proinflammatory cytokine production partly through activation of a novel lactate-HIF1α pathway in chondrocytes. Our findings hold promise of developing novel clinical strategies for the management of obesity-related diseases such as osteoarthritis.
Collapse
|
73
|
Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 2015; 5:12676. [PMID: 26234821 PMCID: PMC4522654 DOI: 10.1038/srep12676] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Cardiovascular Internal Medicine, Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gang He
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Yan Peng
- Department of Cardiovascular Internal Medicine, Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Weitian Zhong
- Department of Cardiovascular Internal Medicine, Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Wang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Bo Zhang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
74
|
Xie P, Kadegowda AKG, Ma Y, Guo F, Han X, Wang M, Groban L, Xue B, Shi H, Li H, Yu L. Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice. Endocrinology 2015; 156:1648-58. [PMID: 25751639 PMCID: PMC4398773 DOI: 10.1210/en.2014-1892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-α/peroxisome proliferator-activated receptor-γ coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Biochemistry (P.X., Y.M., F.G., L.Y.) and Anesthesiology (L.G.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Animal and Avian Sciences (A.K.G.G., Y.M., L.Y.), University of Maryland, College Park, Maryland 20742; Diabetes and Obesity Research Center (X.H., M.W.), Sanford-Burnham Medical Research Institute, Orlando, Florida 32827; Department of Biology (B.X., H.S.), Georgia State University, Atlanta, Georgia 30303; and The Key Laboratory of Remodeling-Related Cardiovascular Diseases (H.L.), Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated the Capital Medical University, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Reciprocal inhibition between miR-26a and NF-κB regulates obesity-related chronic inflammation in chondrocytes. Biosci Rep 2015; 35:BSR20150071. [PMID: 26182366 PMCID: PMC4613702 DOI: 10.1042/bsr20150071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/23/2015] [Indexed: 12/29/2022] Open
Abstract
miR-26a suppresses proinflammatory cytokine production via inactivating NF-κB, whereas NF-κB inhibits miR-26a production through binding to miR-26a promoter. We identified a reciprocal inhibition between miR-26a and NF-κB in obesity-related chondrocytes, providing a potential mechanism linking obesity to osteoarthritis. Obesity is causally linked to osteoarthritis (OA), with the mechanism being not fully elucidated. miRNAs (miRs) are pivotal regulators of various diseases in multiple tissues, including inflammation in the chondrocytes. In the present study, we for the first time identified the expression of miR-26a in mouse chondrocytes. Decreased level of miR-26a was correlated to increased chronic inflammation in the chondrocytes and circulation in obese mouse model. Mechanistically, we demonstrated that miR-26a attenuated saturated free fatty acid-induced activation of NF-κB (p65) and production of proinflammatory cytokines in chondrocytes. Meanwhile, NF-κB (p65) also suppressed miR-26a production by directly binding to a predicted NF-κB binding element in the promoter region of miR-26a. Finally, we observed a negative correlation between NF-κB and miR-26a in human patients with osteoarthritis. Thus, we identified a reciprocal inhibition between miR-26a and NF-κB downstream of non-esterified fatty acid (NEFA) signalling in obesity-related chondrocytes. Our findings provide a potential mechanism linking obesity to cartilage inflammation.
Collapse
|
76
|
Xie P, Zeng X, Xiao J, Sun B, Yang D. Transgenic CGI-58 expression in macrophages alleviates the atherosclerotic lesion development in ApoE knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1683-90. [PMID: 25178844 DOI: 10.1016/j.bbalip.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
Comparative Gene Identification-58 (CGI-58), as an adipose triglyceride lipase (ATGL) activator, strongly in- creases ATGL-mediated triglyceride (TG) catabolism. Previous studies have shown that CGI-58 affects intestinal cholesterol homeostasis independently of ATGL activity. Therefore, we hypothesized that CGI-58 was involved in macrophage cholesterol metabolism and consequently atherosclerotic lesion formation. Here, we generated macrophage-specific CGI-58 transgenic mice (Mac-CGI-58 Tg) using an SRA promoter, which was further mated with ApoE-/- mice to create litters of CGI-58 Tg/ApoE-/- mice. These CGI-58 Tg/ApoE-/- mice exhibited an anti-atherosclerosis phenotype compared with wild type (WT) controls (CGI-58 WT/ApoE-/-), illustrated by less plaque area in aortic roots. Moreover, macrophage-specific CGI-58 overexpression in mice resulted in upregulated levels of plasma total cholesterol and HDL-cholesterol. Consequently, higher expression levels of PPARa, PPARγ, LXRα, ABCA1, and ABCG1 were detected in macrophages from CGI-58 Tg/ApoE-/- mice compared to CGI-58 WT/ApoE-/- counterparts, which were accompanied by elevated macrophage cholesterol efflux toward HDL and Apo A1. Nevertheless, serum levels of TNF-α and IL-6 were reduced by macrophage-specific CGI-58 overexpression. Finally, bone marrow (BM) transplantation experiments further revealed that ApoE-/- mice reconstituted with Mac-CGI-58 Tg BM cells (ApoE-/-Tg-BM chimera) displayed a significant reduction of atherosclerosis lesions compared with control mice reconstituted with Mac-CGI-58 WT BM cells (ApoE-/-/WT-BM chimera). Collectively, these data strongly suggest that CGI-58 overexpression in macrophages may protect against atherosclerosis development in mice.
Collapse
|
77
|
Macrophage CGI-58 deficiency promotes IL-1β transcription by activating the SOCS3-FOXO1 pathway. Clin Sci (Lond) 2015; 128:493-506. [PMID: 25431838 DOI: 10.1042/cs20140414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over-nutrition induces low-grade inflammation that dampens insulin sensitivity, but the underlying molecular mediators are not fully understood. Comparative gene identification-58 (CGI-58) is an intracellular lipolytic activator. In the present study, we show that in mouse visceral fat-derived macrophages or human peripheral blood monocytes, CGI-58 negatively and interleukin (IL)-1β positively correlate with obesity. Saturated non-esterified fatty acid (NEFA) suppresses CGI-58 expression in macrophages and this suppression activates FOXO1 (forkhead box-containing protein O subfamily-1) through inhibition of FOXO1 phosphorylation. Activated FOXO1 binds to an insulin-responsive element in IL-1β promoter region to potentiate IL-1β transcription. Gain- and loss-of-function studies demonstrate that NEFA-induced CGI-58 suppression activates FOXO1 to augment IL-1β transcription by dampening insulin signalling through induction of SOCS3 (suppressor of cytokine signalling 3) expression. CGI-58 deficiency-induced SOCS3 expression is NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) inflammasome-dependent. Our data thus identified a vicious cycle (IL-1β-SOCS3-FOXO1-IL-1β) that amplifies IL-1β secretion and is initiated by CGI-58 deficiency-induced activation of the NLRP3 inflammasome in macrophages. We further show that blocking this cycle with a FOXO1 inhibitor, an antioxidant that inhibits FOXO1 or IL-1 receptor antagonist alleviates chronic inflammation and insulin resistance in high-fat diet (HFD)-fed mice. Collectively, our data suggest that obesity-associated factors such as NEFA and lipopolysaccharide (LPS) probably adopt this vicious cycle to promote inflammation and insulin resistance.
Collapse
|
78
|
Chen L, Chen R, Wang H, Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol 2015; 2015:508409. [PMID: 26136779 PMCID: PMC4468292 DOI: 10.1155/2015/508409] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/04/2015] [Indexed: 12/14/2022] Open
Abstract
Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies.
Collapse
Affiliation(s)
- Li Chen
- Hubei University of Chinese Medicine, Wuhan 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, China
| | - Rui Chen
- Integrated TCM and Western Medicine Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430022, China
| | - Hua Wang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, China
- Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Fengxia Liang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, China
- Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan 430061, China
- *Fengxia Liang:
| |
Collapse
|
79
|
Goeritzer M, Schlager S, Radovic B, Madreiter CT, Rainer S, Thomas G, Lord CC, Sacks J, Brown AL, Vujic N, Obrowsky S, Sachdev V, Kolb D, Chandak PG, Graier WF, Sattler W, Brown JM, Kratky D. Deletion of CGI-58 or adipose triglyceride lipase differently affects macrophage function and atherosclerosis. J Lipid Res 2014; 55:2562-75. [PMID: 25316883 PMCID: PMC4242449 DOI: 10.1194/jlr.m052613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular TG stores are efficiently hydrolyzed by adipose TG lipase (ATGL). Its coactivator comparative gene identification-58 (CGI-58) strongly increases ATGL-mediated TG catabolism in cell culture experiments. To investigate the consequences of CGI-58 deficiency in murine macrophages, we generated mice with a targeted deletion of CGI-58 in myeloid cells (macCGI-58(-/-) mice). CGI-58(-/-) macrophages accumulate intracellular TG-rich lipid droplets and have decreased phagocytic capacity, comparable to ATGL(-/-) macrophages. In contrast to ATGL(-/-) macrophages, however, CGI-58(-/-) macrophages have intact mitochondria and show no indications of mitochondrial apoptosis and endoplasmic reticulum stress, suggesting that TG accumulation per se lacks a significant role in processes leading to mitochondrial dysfunction. Another notable difference is the fact that CGI-58(-/-) macrophages adopt an M1-like phenotype in vitro. Finally, we investigated atherosclerosis susceptibility in macCGI-58/ApoE-double KO (DKO) animals. In response to high-fat/high-cholesterol diet feeding, DKO animals showed comparable plaque formation as observed in ApoE(-/-) mice. In agreement, antisense oligonucleotide-mediated knockdown of CGI-58 in LDL receptor(-/-) mice did not alter atherosclerosis burden in the aortic root. These results suggest that macrophage function and atherosclerosis susceptibility differ fundamentally in these two animal models with disturbed TG catabolism, showing a more severe phenotype by ATGL deficiency.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Corina T Madreiter
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Caleb C Lord
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Sascha Obrowsky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria
| | - Prakash G Chandak
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
80
|
Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol 2014; 30:91-8. [PMID: 25282339 DOI: 10.1016/j.coi.2014.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 02/08/2023]
Abstract
Cell death cannot go unnoticed. It demands that the surrounding cells clear away the corpses in a manner appropriate to the type of cell death. Dying cells represent a threat to the body that should be eliminated by the host immune response. Inflammasome activation followed by IL-1alpha release and IL-1beta maturation is crucial for tackling pathological conditions, including infections, whereas inflammasome activation precedes inflammatory pyroptotic cell death. On the other hand, recent studies have shown that the inflammasome plays an important role in the pathogenesis of metabolic diseases, including obesity, diabetes, and atherosclerosis. Here, we review current knowledge of the association between cell death, excess metabolites, and inflammasome activation as it relates to chronic inflammatory diseases.
Collapse
|
81
|
Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues. Cell Microbiol 2014; 16:1484-92. [PMID: 25073615 DOI: 10.1111/cmi.12336] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro-inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro-inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti-inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.
Collapse
Affiliation(s)
- Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
82
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|