51
|
Yu CR. TRICK or TRP? What Trpc2(-/-) mice tell us about vomeronasal organ mediated innate behaviors. Front Neurosci 2015; 9:221. [PMID: 26157356 PMCID: PMC4477137 DOI: 10.3389/fnins.2015.00221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022] Open
Abstract
The vomeronasal organ (VNO) plays an important role in mediating semiochemical communications and social behaviors in terrestrial species. Genetic knockout of individual components in the signaling pathways has been used to probe vomeronasal functions, and has provided much insights into how the VNO orchestrates innate behaviors. However, all data do not agree. In particular, knocking out Trpc2, a member of the TRP family of non-selective cationic channel thought to be the main transduction channel in the VNO, results in a number of fascinating behavioral phenotypes that have not been observed in other animals whose vomeronasal function is disrupted. Recent studies have identified signaling pathways that operate in parallel of Trpc2, raising the possibility that Trpc2 mutant animals may display neomorphic behaviors. In this article, I provide a critical analysis of emerging evidence to reconcile the discrepancies and discuss their implications.
Collapse
Affiliation(s)
- C Ron Yu
- Stowers Institute for Medical Research Kansas City, MO, USA ; Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
52
|
Bergan JF. Neural Computation and Neuromodulation Underlying Social Behavior. Integr Comp Biol 2015; 55:268-80. [PMID: 26089436 DOI: 10.1093/icb/icv061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Social behaviors are as diverse as the animals that employ them, with some behaviors, like affiliation and aggression, expressed in nearly all social species. Whether discussing a "family" of beavers or a "murder" of crows, the elaborate language we use to describe social animals immediately hints at patterns of behavior typical of each species. Neuroscience has now revealed a core network of regions of the brain that are essential for the production of social behavior. Like the behaviors themselves, neuromodulation and hormonal changes regulate the underlying neural circuits on timescales ranging from momentary events to an animal's lifetime. Dynamic and heavily interconnected social circuits provide a distinct challenge for developing a mechanistic understanding of social behavior. However, advances in neuroscience continue to generate an explanation of social behavior based on the electrical activity and synaptic connections of neurons embedded in defined neural circuits.
Collapse
Affiliation(s)
- Joseph F Bergan
- Department of Psychology and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
53
|
Pérez-Gómez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P. Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus. Curr Biol 2015; 25:1340-6. [PMID: 25936549 DOI: 10.1016/j.cub.2015.03.026] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/19/2022]
Abstract
The existence of innate predator aversion evoked by predator-derived chemostimuli called kairomones offers a strong selective advantage for potential prey animals. However, it is unclear how chemically diverse kairomones can elicit similar avoidance behaviors. Using a combination of behavioral analyses and single-cell Ca(2+) imaging in wild-type and gene-targeted mice, we show that innate predator-evoked avoidance is driven by parallel, non-redundant processing of volatile and nonvolatile kairomones through the activation of multiple olfactory subsystems including the Grueneberg ganglion, the vomeronasal organ, and chemosensory neurons within the main olfactory epithelium. Perturbation of chemosensory responses in specific subsystems through disruption of genes encoding key sensory transduction proteins (Cnga3, Gnao1) or by surgical axotomy abolished avoidance behaviors and/or cellular Ca(2+) responses to different predator odors. Stimulation of these different subsystems resulted in the activation of widely distributed target regions in the olfactory bulb, as assessed by c-Fos expression. However, in each case, this c-Fos increase was observed within the same subnuclei of the medial amygdala and ventromedial hypothalamus, regions implicated in fear, anxiety, and defensive behaviors. Thus, the mammalian olfactory system has evolved multiple, parallel mechanisms for kairomone detection that converge in the brain to facilitate a common behavioral response. Our findings provide significant insights into the genetic substrates and circuit logic of predator-driven innate aversion and may serve as a valuable model for studying instinctive fear and human emotional and panic disorders.
Collapse
Affiliation(s)
- Anabel Pérez-Gómez
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Katherin Bleymehl
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Benjamin Stein
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Martina Pyrski
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Steven D Munger
- Department of Pharmacology and Therapeutics, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, and Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Trese Leinders-Zufall
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Frank Zufall
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany.
| | - Pablo Chamero
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66421 Homburg, Germany
| |
Collapse
|
54
|
Stowers L, Kuo TH. Mammalian pheromones: emerging properties and mechanisms of detection. Curr Opin Neurobiol 2015; 34:103-9. [PMID: 25747731 DOI: 10.1016/j.conb.2015.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022]
Abstract
The concept of mammalian pheromones was established decades before the discovery of any bioactive ligands. Therefore, their molecular identity, native sources, and the meaning of their detection has been largely speculative. There has been recent success in identifying a variety of candidate mouse pheromones and other specialized odors. These discoveries reveal that mammalian pheromones come in a variety of ligand types and they are detected by sensory neurons that are pre-set to promote an array of social and survival behaviors. Importantly, recent findings show that they activate molecularly diverse sensory neurons that differ from canonical odorant detectors. These novel sensory neurons hold future promise to unlock the mystery of how their detection is hardwired to generate behavior.
Collapse
Affiliation(s)
- Lisa Stowers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Tsung-Han Kuo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
55
|
Omura M, Mombaerts P. Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2. Mol Cell Neurosci 2015; 65:114-24. [PMID: 25701815 PMCID: PMC4396857 DOI: 10.1016/j.mcn.2015.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023] Open
Abstract
Chemoreception in the mouse olfactory system occurs primarily at two chemosensory epithelia in the nasal cavity: the main olfactory epithelium (MOE) and the vomeronasal epithelium. The canonical chemosensory neurons in the MOE, the olfactory sensory neurons (OSNs), express the odorant receptor (OR) gene repertoire, and depend on Adcy3 and Cnga2 for chemosensory signal transduction. The canonical chemosensory neurons in the vomeronasal epithelium, the vomeronasal sensory neurons (VSNs), express two unrelated vomeronasal receptor (VR) gene repertoires, and involve Trpc2 for chemosensory signal transduction. Recently we reported the discovery of two types of neurons in the mouse MOE that express Trcp2 in addition to Cnga2. These cell types can be distinguished at the single-cell level by expression of Adcy3: positive, type A and negative, type B. Some type A cells express OR genes. Thus far there is no specific gene or marker for type B cells, hampering further analyses such as physiological recordings. Here, we show that among MOE cells, type B cells are unique in their expression of the soluble guanylate cyclase Gucy1b2. We came across Gucy1b2 in an explorative approach based on Long Serial Analysis of Gene Expression (LongSAGE) that we applied to single red-fluorescent cells isolated from whole olfactory mucosa and vomeronasal organ of mice of a novel Trcp2-IRES-taumCherry gene-targeted strain. The generation of a novel Gucy1b2-IRES-tauGFP gene-targeted strain enabled us to visualize coalescence of axons of type B cells into glomeruli in the main olfactory bulb. Our molecular and anatomical analyses define Gucy1b2 as a marker for type B cells within the MOE. The Gucy1b2-IRES-tauGFP strain will be useful for physiological, molecular, cellular, and anatomical studies of this newly described chemosensory subsystem. Trpc2 + cells exist as type A and type B in the mouse main olfactory epithelium. We find no evidence for expression of chemosensory GPCR genes in type B cells. We identify the soluble guanylate cyclase Gucy1b2 as a marker for type B cells. Gucy1b2-IRES-tauGFP knockin mice will be useful for physiological studies.
Collapse
Affiliation(s)
- Masayo Omura
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| |
Collapse
|
56
|
Martín-Sánchez A, McLean L, Beynon RJ, Hurst JL, Ayala G, Lanuza E, Martínez-Garcia F. From sexual attraction to maternal aggression: when pheromones change their behavioural significance. Horm Behav 2015; 68:65-76. [PMID: 25161057 DOI: 10.1016/j.yhbeh.2014.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/31/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". This paper reviews the role of chemosignals in the socio-sexual interactions of female mice, and reports two experiments testing the role of pup-derived chemosignals and the male sexual pheromone darcin in inducing and promoting maternal aggression. Female mice are attracted to urine-borne male pheromones. Volatile and non-volatile urine fractions have been proposed to contain olfactory and vomeronasal pheromones. In particular, the male-specific major urinary protein (MUP) MUP20, darcin, has been shown to be rewarding and attractive to females. Non-urinary male chemosignals, such as the lacrimal protein ESP1, promote lordosis in female mice, but its attractive properties are still to be tested. There is evidence indicating that ESP1 and MUPs are detected by vomeronasal type 2 receptors (V2R). When a female mouse becomes pregnant, she undergoes dramatic changes in her physiology and behaviour. She builds a nest for her pups and takes care of them. Dams also defend the nest against conspecific intruders, attacking especially gonadally intact males. Maternal behaviour is dependent on a functional olfactory system, thus suggesting a role of chemosignals in the development of maternal behaviour. Our first experiment demonstrates, however, that pup chemosignals are not sufficient to induce maternal aggression in virgin females. In addition, it is known that vomeronasal stimuli are needed for maternal aggression. Since MUPs (and other molecules) are able to promote intermale aggression, in our second experiment we test if the attractive MUP darcin also promotes attacks on castrated male intruders by lactating dams. Our findings demonstrate that the same chemosignal, darcin, promotes attraction or aggression according to female reproductive state.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Lynn McLean
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jane L Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Guillermo Ayala
- Department of Statistics and Operative Research, Faculty of Mathematics, Avda. Vicent Andrés Estellés, 1, 46100 Burjassot, Spain
| | - Enrique Lanuza
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Fernando Martínez-Garcia
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain.
| |
Collapse
|
57
|
Boillat M, Challet L, Rossier D, Kan C, Carleton A, Rodriguez I. The vomeronasal system mediates sick conspecific avoidance. Curr Biol 2015; 25:251-255. [PMID: 25578906 DOI: 10.1016/j.cub.2014.11.061] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022]
Abstract
Although sociability offers many advantages, a major drawback is the increased risk of exposure to contagious pathogens, like parasites, viruses, or bacteria. Social species have evolved various behavioral strategies reducing the probability of pathogen exposure. In rodents, sick conspecific avoidance can be induced by olfactory cues emitted by parasitized or infected conspecifics. The neural circuits involved in this behavior remain largely unknown. We observed that olfactory cues present in bodily products of mice in an acute inflammatory state or infected with a viral pathogen are aversive to conspecifics. We found that these chemical signals trigger neural activity in the vomeronasal system, an olfactory subsystem controlling various innate behaviors. Supporting the functional relevance of these observations, we show that preference toward healthy individuals is abolished in mice with impaired vomeronasal function. These findings reveal a novel function played by the vomeronasal system.
Collapse
Affiliation(s)
- Madlaina Boillat
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Ludivine Challet
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Daniel Rossier
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Alan Carleton
- Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland; Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
58
|
Pérez-Gómez A, Stein B, Leinders-Zufall T, Chamero P. Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Front Neuroanat 2014; 8:135. [PMID: 25505388 PMCID: PMC4244706 DOI: 10.3389/fnana.2014.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/03/2014] [Indexed: 01/20/2023] Open
Abstract
The vomeronasal organ (VNO) is a sensory organ that is found in most terrestrial vertebrates and that is principally implicated in the detection of pheromones. The VNO contains specialized sensory neurons organized in a pseudostratified neuroepithelium that recognize chemical signals involved in initiating innate behavioral responses. In rodents, the VNO neuroepithelium is segregated into two distinct zones, apical and basal. The molecular mechanisms involved in ligand detection by apical and basal VNO sensory neurons differ extensively. These two VNO subsystems express different subfamilies of vomeronasal receptors and signaling molecules, detect distinct chemosignals, and project to separate regions of the accessory olfactory bulb (AOB). The roles that these olfactory subdivisions play in the control of specific olfactory-mediated behaviors are largely unclear. However, analysis of mutant mouse lines for signal transduction components together with identification of defined chemosensory ligands has revealed a fundamental role of the basal part of the mouse VNO in mediating a wide range of instinctive behaviors, such as aggression, predator avoidance, and sexual attraction. Here we will compare the divergent functions and synergies between the olfactory subsystems and consider new insights in how higher neural circuits are defined for the initiation of instinctive behaviors.
Collapse
Affiliation(s)
- Anabel Pérez-Gómez
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Benjamin Stein
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Trese Leinders-Zufall
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Pablo Chamero
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| |
Collapse
|