51
|
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4144-4160. [PMID: 33484251 PMCID: PMC8130982 DOI: 10.1093/jxb/erab030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
52
|
Zhao Y, Zhu P, Hepworth J, Bloomer R, Antoniou-Kourounioti RL, Doughty J, Heckmann A, Xu C, Yang H, Dean C. Natural temperature fluctuations promote COOLAIR regulation of FLC. Genes Dev 2021; 35:888-898. [PMID: 33985972 PMCID: PMC8168555 DOI: 10.1101/gad.348362.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
In this study, Zhao et al. set out to characterize how plants respond to cold through regulation of FLC expression. Using genetics and genomics approaches, the authors reveal how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival. Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC. Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.
Collapse
Affiliation(s)
- Yusheng Zhao
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Rebecca Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Jade Doughty
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Amelie Heckmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Congyao Xu
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hongchun Yang
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
53
|
The lncRNA Growth Arrest Specific 5 Regulates Cell Survival via Distinct Structural Modules with Independent Functions. Cell Rep 2021; 32:107933. [PMID: 32697996 DOI: 10.1016/j.celrep.2020.107933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that the architecture of long non-coding RNAs (lncRNAs)-just like that of proteins-is hierarchically organized into independently folding sub-modules with distinct functions. Studies characterizing the cellular activities of such modules, however, are rare. The lncRNA growth arrest specific 5 (GAS5) is a key regulator of cell survival in response to stress and nutrient availability. We use SHAPE-MaP to probe the structure of GAS5 and identify three separate structural modules that act independently in leukemic T cells. The 5' terminal module with low secondary structure content affects basal survival and slows the cell cycle, whereas the highly structured core module mediates the effects of mammalian target of rapamycin (mTOR) inhibition on cell growth. These results highlight the central role of GAS5 in regulating cell survival and reveal how a single lncRNA transcript utilizes a modular structure-function relationship to respond to a variety of cellular stresses under various cellular conditions.
Collapse
|
54
|
Comparative genomics in the search for conserved long noncoding RNAs. Essays Biochem 2021; 65:741-749. [PMID: 33885137 PMCID: PMC8564735 DOI: 10.1042/ebc20200069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as prominent regulators of gene expression in eukaryotes. The identification of lncRNA orthologs is essential in efforts to decipher their roles across model organisms, as homologous genes tend to have similar molecular and biological functions. The relatively high sequence plasticity of lncRNA genes compared with protein-coding genes, makes the identification of their orthologs a challenging task. This is why comparative genomics of lncRNAs requires the development of specific and, sometimes, complex approaches. Here, we briefly review current advancements and challenges associated with four levels of lncRNA conservation: genomic sequences, splicing signals, secondary structures and syntenic transcription.
Collapse
|
55
|
Yang J, Cao Y, Ma L. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. Int J Mol Sci 2021; 22:ijms22073300. [PMID: 33804866 PMCID: PMC8037041 DOI: 10.3390/ijms22073300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.
Collapse
|
56
|
Rivas E. Evolutionary conservation of RNA sequence and structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1649. [PMID: 33754485 PMCID: PMC8250186 DOI: 10.1002/wrna.1649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
An RNA structure prediction from a single‐sequence RNA folding program is not evidence for an RNA whose structure is important for function. Random sequences have plausible and complex predicted structures not easily distinguishable from those of structural RNAs. How to tell when an RNA has a conserved structure is a question that requires looking at the evolutionary signature left by the conserved RNA. This question is important not just for long noncoding RNAs which usually lack an identified function, but also for RNA binding protein motifs which can be single stranded RNAs or structures. Here we review recent advances using sequence and structural analysis to determine when RNA structure is conserved or not. Although covariation measures assess structural RNA conservation, one must distinguish covariation due to RNA structure from covariation due to independent phylogenetic substitutions. We review a statistical test to measure false positives expected under the null hypothesis of phylogenetic covariation alone (specificity). We also review a complementary test that measures power, that is, expected covariation derived from sequence variation alone (sensitivity). Power in the absence of covariation signals the absence of a conserved RNA structure. We analyze artifacts that falsely identify conserved RNA structure such as the misuse of programs that do not assess significance, the use of inappropriate statistics confounded by signals other than covariation, or misalignments that induce spurious covariation. Among artifacts that obscure the signal of a conserved RNA structure, we discuss the inclusion of pseudogenes in alignments which increase power but destroy covariation. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
57
|
R-loop resolution promotes co-transcriptional chromatin silencing. Nat Commun 2021; 12:1790. [PMID: 33741984 PMCID: PMC7979926 DOI: 10.1038/s41467-021-22083-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
RNA-mediated chromatin silencing is central to genome regulation in many organisms. However, how nascent non-coding transcripts regulate chromatin is poorly understood. Here, through analysis of Arabidopsis FLC, we show that resolution of a nascent-transcript-induced R-loop promotes chromatin silencing. Stabilization of an antisense-induced R-loop at the 3' end of FLC enables an RNA binding protein FCA, with its direct partner FY/WDR33 and other 3'-end processing factors, to polyadenylate the nascent antisense transcript. This clears the R-loop and recruits the chromatin modifiers demethylating H3K4me1. FCA immunoprecipitates with components of the m6A writer complex, and m6A modification affects dynamics of FCA nuclear condensates, and promotes FLC chromatin silencing. This mechanism also targets other loci in the Arabidopsis genome, and consistent with this fca and fy are hypersensitive to a DNA damage-inducing drug. These results show how modulation of R-loop stability by co-transcriptional RNA processing can trigger chromatin silencing.
Collapse
|
58
|
Plasek LM, Valadkhan S. lncRNAs in T lymphocytes: RNA regulation at the heart of the immune response. Am J Physiol Cell Physiol 2021; 320:C415-C427. [PMID: 33296288 PMCID: PMC8294623 DOI: 10.1152/ajpcell.00069.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genome-wide analyses in the last decade have uncovered the presence of a large number of long non-protein-coding transcripts that show highly tissue- and state-specific expression patterns. High-throughput sequencing analyses in diverse subsets of immune cells have revealed a complex and dynamic expression pattern for these long noncoding RNAs (lncRNAs) that correlate with the functional states of immune cells. Although the vast majority of lncRNAs expressed in immune cells remain unstudied, functional studies performed on a small subset have indicated that their state-specific expressions pattern frequently has a regulatory impact on the function of immune cells. In vivo and in vitro studies have pointed to the involvement of lncRNAs in a wide variety of cellular processes, including both the innate and adaptive immune response through mechanisms ranging from epigenetic and transcriptional regulation to sequestration of functional molecules in subcellular compartments. This review will focus mainly on the role of lncRNAs in CD4+ and CD8+ T cells, which play pivotal roles in adaptive immunity. Recent studies have pointed to key physiological functions for lncRNAs during several developmental and functional stages of the life cycle of lymphocytes. Although lncRNAs play important physiological roles in lymphocytic response to antigenic stimulation, differentiation into effector cells, and secretion of cytokines, their dysregulated expression can promote or sustain pathological states such as autoimmunity, chronic inflammation, cancer, and viremia. This, together with their highly cell type-specific expression patterns, makes lncRNAs ideal therapeutic targets and underscores the need for additional studies into the role of these understudied transcripts in adaptive immune response.
Collapse
|
59
|
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22:96-118. [PMID: 33353982 PMCID: PMC7754182 DOI: 10.1038/s41580-020-00315-9] [Citation(s) in RCA: 2908] [Impact Index Per Article: 727.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Chun-Jie Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
60
|
Lu Z, Guo JK, Wei Y, Dou DR, Zarnegar B, Ma Q, Li R, Zhao Y, Liu F, Choudhry H, Khavari PA, Chang HY. Structural modularity of the XIST ribonucleoprotein complex. Nat Commun 2020; 11:6163. [PMID: 33268787 PMCID: PMC7710737 DOI: 10.1038/s41467-020-20040-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs are thought to regulate gene expression by organizing protein complexes through unclear mechanisms. XIST controls the inactivation of an entire X chromosome in female placental mammals. Here we develop and integrate several orthogonal structure-interaction methods to demonstrate that XIST RNA-protein complex folds into an evolutionarily conserved modular architecture. Chimeric RNAs and clustered protein binding in fRIP and eCLIP experiments align with long-range RNA secondary structure, revealing discrete XIST domains that interact with distinct sets of effector proteins. CRISPR-Cas9-mediated permutation of the Xist A-repeat location shows that A-repeat serves as a nucleation center for multiple Xist-associated proteins and m6A modification. Thus modular architecture plays an essential role, in addition to sequence motifs, in determining the specificity of RBP binding and m6A modification. Together, this work builds a comprehensive structure-function model for the XIST RNA-protein complex, and suggests a general strategy for mechanistic studies of large ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- Zhipeng Lu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.
| | - Jimmy K Guo
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Diana R Dou
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Brian Zarnegar
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Qing Ma
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Synthetic Biology Department, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, PR China
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Fan Liu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Hani Choudhry
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| | - Paul A Khavari
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
61
|
Molecular variation in a functionally divergent homolog of FCA regulates flowering time in Arabidopsis thaliana. Nat Commun 2020; 11:5830. [PMID: 33203912 PMCID: PMC7673134 DOI: 10.1038/s41467-020-19666-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022] Open
Abstract
The identification and functional characterization of natural variants in plants are essential for understanding phenotypic adaptation. Here we identify a molecular variation in At2g47310 that contributes to the natural variation in flowering time in Arabidopsis thaliana accessions. This gene, which we term SISTER of FCA (SSF), functions in an antagonistic manner to its close homolog FCA. Genome-wide association analysis screens two major haplotypes of SSF associated with the natural variation in FLC expression, and a single polymorphism, SSF-N414D, is identified as a main contributor. The SSF414N protein variant interacts more strongly with CUL1, a component of the E3 ubiquitination complex, than the SSF414D form, mediating differences in SSF protein degradation and FLC expression. FCA and SSF appear to have arisen through gene duplication after dicot-monocot divergence, with the SSF-N414D polymorphism emerging relatively recently within A. thaliana. This work provides a good example for deciphering the functional importance of natural polymorphisms in different organisms. Natural variation represents valuable source for gene discovery. Here, the authors show that a homolog of Flowering Control Locus A (FCA) functions in an antagonistic manner to FCA in regulating Arabidopsis flowering time through interacting with CUL1-E3 and modulating FLC expression.
Collapse
|
62
|
Rivas E, Clements J, Eddy SR. Estimating the power of sequence covariation for detecting conserved RNA structure. Bioinformatics 2020; 36:3072-3076. [PMID: 32031582 PMCID: PMC7214042 DOI: 10.1093/bioinformatics/btaa080] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long non-coding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures. AVAILABILITY AND IMPLEMENTATION The R-scape web server is at eddylab.org/R-scape, with a link to download the source code. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean R Eddy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
63
|
Chen L, Zhu QH, Kaufmann K. Long non-coding RNAs in plants: emerging modulators of gene activity in development and stress responses. PLANTA 2020; 252:92. [PMID: 33099688 PMCID: PMC7585572 DOI: 10.1007/s00425-020-03480-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/22/2020] [Indexed: 05/14/2023]
Abstract
MAIN CONCLUSION Long non-coding RNAs modulate gene activity in plant development and stress responses by various molecular mechanisms. Long non-coding RNAs (lncRNAs) are transcripts larger than 200 nucleotides without protein coding potential. Computational approaches have identified numerous lncRNAs in different plant species. Research in the past decade has unveiled that plant lncRNAs participate in a wide range of biological processes, including regulation of flowering time and morphogenesis of reproductive organs, as well as abiotic and biotic stress responses. LncRNAs execute their functions by interacting with DNA, RNA and protein molecules, and by modulating the expression level of their targets through epigenetic, transcriptional, post-transcriptional or translational regulation. In this review, we summarize characteristics of plant lncRNAs, discuss recent progress on understanding of lncRNA functions, and propose an experimental framework for functional characterization.
Collapse
Affiliation(s)
- Li Chen
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kerstin Kaufmann
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
64
|
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55:662-690. [PMID: 33043695 DOI: 10.1080/10409238.2020.1828259] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
65
|
Jones AN, Pisignano G, Pavelitz T, White J, Kinisu M, Forino N, Albin D, Varani G. An evolutionarily conserved RNA structure in the functional core of the lincRNA Cyrano. RNA (NEW YORK, N.Y.) 2020; 26:1234-1246. [PMID: 32457084 PMCID: PMC7430676 DOI: 10.1261/rna.076117.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
The wide prevalence and regulated expression of long noncoding RNAs (lncRNAs) highlight their functional roles, but the molecular basis for their activities and structure-function relationships remains to be investigated, with few exceptions. Among the relatively few lncRNAs conserved over significant evolutionary distances is the long intergenic noncoding RNA (lincRNA) Cyrano (orthologous to human OIP5-AS1), which contains a region of 300 highly conserved nucleotides within tetrapods, which in turn contains a functional stretch of 26 nt of deep conservation. This region binds to and facilitates the degradation of the microRNA miR-7, a short ncRNA with multiple cellular functions, including modulation of oncogenic expression. We probed the secondary structure of Cyrano in vitro and in cells using chemical and enzymatic probing, and validated the results using comparative sequence analysis. At the center of the functional core of Cyrano is a cloverleaf structure maintained over the >400 million years of divergent evolution that separates fish and primates. This strikingly conserved motif provides interaction sites for several RNA-binding proteins and masks a conserved recognition site for miR-7. Conservation in this region strongly suggests that the function of Cyrano depends on the formation of this RNA structure, which could modulate the rate and efficiency of degradation of miR-7.
Collapse
Affiliation(s)
- Alisha N Jones
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Giuseppina Pisignano
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH-6500, Switzerland
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Thomas Pavelitz
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Jessica White
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Martin Kinisu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Nicholas Forino
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Dreycey Albin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
66
|
Li TJX, Reidys CM. On an enhancement of RNA probing data using information theory. Algorithms Mol Biol 2020; 15:15. [PMID: 32782456 PMCID: PMC7413225 DOI: 10.1186/s13015-020-00176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Identifying the secondary structure of an RNA is crucial for understanding its diverse regulatory functions. This paper focuses on how to enhance target identification in a Boltzmann ensemble of structures via chemical probing data. We employ an information-theoretic approach to solve the problem, via considering a variant of the Rényi-Ulam game. Our framework is centered around the ensemble tree, a hierarchical bi-partition of the input ensemble, that is constructed by recursively querying about whether or not a base pair of maximum information entropy is contained in the target. These queries are answered via relating local with global probing data, employing the modularity in RNA secondary structures. We present that leaves of the tree are comprised of sub-samples exhibiting a distinguished structure with high probability. In particular, for a Boltzmann ensemble incorporating probing data, which is well established in the literature, the probability of our framework correctly identifying the target in the leaf is greater than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$90\%$$\end{document}90%.
Collapse
|
67
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
68
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
69
|
Corona-Gomez JA, Garcia-Lopez IJ, Stadler PF, Fernandez-Valverde SL. Splicing conservation signals in plant long noncoding RNAs. RNA (NEW YORK, N.Y.) 2020; 26:784-793. [PMID: 32241834 PMCID: PMC7297117 DOI: 10.1261/rna.074393.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/28/2020] [Indexed: 05/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently emerged as prominent regulators of gene expression in eukaryotes. LncRNAs often drive the modification and maintenance of gene activation or gene silencing states via chromatin conformation rearrangements. In plants, lncRNAs have been shown to participate in gene regulation, and are essential to processes such as vernalization and photomorphogenesis. Despite their prominent functions, only over a dozen lncRNAs have been experimentally and functionally characterized. Similar to its animal counterparts, the rates of sequence divergence are much higher in plant lncRNAs than in protein coding mRNAs, making it difficult to identify lncRNA conservation using traditional sequence comparison methods. Beyond this, little is known about the evolutionary patterns of lncRNAs in plants. Here, we characterized the splicing conservation of lncRNAs in Brassicaceae. We generated a whole-genome alignment of 16 Brassica species and used it to identify synthenic lncRNA orthologs. Using a scoring system trained on transcriptomes from A. thaliana and B. oleracea, we identified splice sites across the whole alignment and measured their conservation. Our analysis revealed that 17.9% (112/627) of all intergenic lncRNAs display splicing conservation in at least one exon, an estimate that is substantially higher than previous estimates of lncRNA conservation in this group. Our findings agree with similar studies in vertebrates, demonstrating that splicing conservation can be evidence of stabilizing selection. We provide conclusive evidence for the existence of evolutionary deeply conserved lncRNAs in plants and describe a generally applicable computational workflow to identify functional lncRNAs in plants.
Collapse
Affiliation(s)
| | | | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, D-04107 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University Leipzig, D-04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, 11001 Sede Bogotá, Colombia
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | | |
Collapse
|
70
|
Uroda T, Chillón I, Annibale P, Teulon JM, Pessey O, Karuppasamy M, Pellequer JL, Marcia M. Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nat Protoc 2020; 15:2107-2139. [PMID: 32451442 DOI: 10.1038/s41596-020-0323-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets. Here, we present a protocol that integrates non-denaturing lncRNA purification with in-solution hydrodynamic analysis and single-particle atomic force microscopy (AFM) imaging to produce highly homogeneous lncRNA preparations and visualize their 3D topology at ~15-Å resolution. Our protocol is suitable for imaging lncRNAs in biologically active conformations and for measuring structural defects of functionally inactive mutants that have been identified by cell-based functional assays. Once optimized for the specific target lncRNA of choice, our protocol leads from cloning to AFM imaging within 3-4 weeks and can be implemented using state-of-the-art biochemical and biophysical instrumentation by trained researchers familiar with RNA handling and supported by AFM and small-angle X-ray scattering (SAXS) experts.
Collapse
Affiliation(s)
- Tina Uroda
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Marie Teulon
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Ombeline Pessey
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Luc Pellequer
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.
| |
Collapse
|
71
|
Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 2020; 20:474-489. [PMID: 31182864 DOI: 10.1038/s41580-019-0136-0] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNAs fold into 3D structures that range from simple helical elements to complex tertiary structures and quaternary ribonucleoprotein assemblies. The functions of many regulatory RNAs depend on how their 3D structure changes in response to a diverse array of cellular conditions. In this Review, we examine how the structural characterization of RNA as dynamic ensembles of conformations, which form with different probabilities and at different timescales, is improving our understanding of RNA function in cells. We discuss the mechanisms of gene regulation by microRNAs, riboswitches, ribozymes, post-transcriptional RNA modifications and RNA-binding proteins, and how the cellular environment and processes such as liquid-liquid phase separation may affect RNA folding and activity. The emerging RNA-ensemble-function paradigm is changing our perspective and understanding of RNA regulation, from in vitro to in vivo and from descriptive to predictive.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA. .,Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
72
|
Kim DN, Thiel BC, Mrozowich T, Hennelly SP, Hofacker IL, Patel TR, Sanbonmatsu KY. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat Commun 2020; 11:148. [PMID: 31919376 PMCID: PMC6952434 DOI: 10.1038/s41467-019-13942-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome, playing important roles in development and disease. However, our understanding of structure-function relationships for this emerging class of RNAs has been limited to secondary structures. Here, we report the 3-D atomistic structural study of epigenetic lncRNA, Braveheart (Bvht), and its complex with CNBP (Cellular Nucleic acid Binding Protein). Using small angle X-ray scattering (SAXS), we elucidate the ensemble of Bvht RNA conformations in solution, revealing that Bvht lncRNA has a well-defined, albeit flexible 3-D structure that is remodeled upon CNBP binding. Our study suggests that CNBP binding requires multiple domains of Bvht and the RHT/AGIL RNA motif. We show that RHT/AGIL, previously shown to interact with CNBP, contains a highly flexible loop surrounded by more ordered helices. As one of the largest RNA-only 3-D studies, the work lays the foundation for future structural studies of lncRNA-protein complexes.
Collapse
Affiliation(s)
- Doo Nam Kim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Bernhard C Thiel
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Tyler Mrozowich
- Alberta RNA Research & Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Scott P Hennelly
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Trushar R Patel
- Alberta RNA Research & Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
- New Mexico Consortium, Los Alamos, New Mexico, USA.
| |
Collapse
|
73
|
Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R. Genome Triplication Leads to Transcriptional Divergence of FLOWERING LOCUS C Genes During Vernalization in the Genus Brassica. FRONTIERS IN PLANT SCIENCE 2020; 11:619417. [PMID: 33633752 PMCID: PMC7900002 DOI: 10.3389/fpls.2020.619417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 05/17/2023]
Abstract
The genus Brassica includes oil crops, vegetables, condiments, fodder crops, and ornamental plants. Brassica species underwent a whole genome triplication event after speciation between ancestral species of Brassica and closely related genera including Arabidopsis thaliana. Diploid species such as Brassica rapa and Brassica oleracea have three copies of genes orthologous to each A. thaliana gene, although deletion in one or two of the three homologs has occurred in some genes. The floral transition is one of the crucial events in a plant's life history, and time of flowering is an important agricultural trait. There is a variation in flowering time within species of the genus Brassica, and this variation is largely dependent on a difference in vernalization requirements. In Brassica, like in A. thaliana, the key gene of vernalization is FLOWERING LOCUS C (FLC). In Brassica species, the vernalization response including the repression of FLC expression by cold treatment and the enrichment of the repressive histone modification tri-methylated histone H3 lysine 27 (H3K27me3) at the FLC locus is similar to A. thaliana. B. rapa and B. oleracea each have four paralogs of FLC, and the allotetraploid species, Brassica napus, has nine paralogs. The increased number of paralogs makes the role of FLC in vernalization more complicated; in a single plant, paralogs vary in the expression level of FLC before and after vernalization. There is also variation in FLC expression levels between accessions. In this review, we focus on the regulatory circuits of the vernalization response of FLC expression in the genus Brassica.
Collapse
Affiliation(s)
- Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Horticulture, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsu, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsu, Japan
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Broadway, NSW, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- *Correspondence: Ryo Fujimoto,
| |
Collapse
|
74
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
75
|
Fabbri M, Girnita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res 2019; 29:1377-1388. [PMID: 31434680 PMCID: PMC6724670 DOI: 10.1101/gr.247239.118] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The world of noncoding RNAs (ncRNAs) is composed of an enormous and growing number of transcripts, ranging in length from tens of bases to tens of kilobases, involved in all biological processes and altered in expression and/or function in many types of human disorders. The premise of this review is the concept that ncRNAs, like many large proteins, have a multidomain architecture that organizes them spatially and functionally. As ncRNAs are beginning to be imprecisely classified into functional families, we review here how their structural properties might inform their functions with focus on structural architecture-function relationships. We will describe the properties of "interactor elements" (IEs) involved in direct physical interaction with nucleic acids, proteins, or lipids and of "structural elements" (SEs) directing their wiring within the "ncRNA interactor networks" through the emergence of secondary and/or tertiary structures. We suggest that spectrums of "letters" (ncRNA elements) are assembled into "words" (ncRNA domains) that are further organized into "phrases" (complete ncRNA structures) with functional meaning (signaling output) through complex "sentences" (the ncRNA interactor networks). This semiotic analogy can guide the exploitation of ncRNAs as new therapeutic targets through the development of IE-blockers and/or SE-lockers that will change the interactor partners' spectrum of proteins, RNAs, DNAs, or lipids and consequently influence disease phenotypes.
Collapse
Affiliation(s)
- Muller Fabbri
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, Stockholm, 17164 Sweden
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
76
|
Conserved Pseudoknots in lncRNA MEG3 Are Essential for Stimulation of the p53 Pathway. Mol Cell 2019; 75:982-995.e9. [PMID: 31444106 PMCID: PMC6739425 DOI: 10.1016/j.molcel.2019.07.025] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.
Collapse
|
77
|
D'Ascenzo L, Vicens Q, Auffinger P. Identification of receptors for UNCG and GNRA Z-turns and their occurrence in rRNA. Nucleic Acids Res 2019; 46:7989-7997. [PMID: 29986118 PMCID: PMC6125677 DOI: 10.1093/nar/gky578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
Abstract
In contrast to GNRA tetraloop receptors that are common in RNA, receptors for the more thermostable UNCG loops have remained elusive for almost three decades. An analysis of all RNA structures with resolution ≤3.0 Å from the PDB allowed us to identify three previously unnoticed receptors for UNCG and GNRA tetraloops that adopt a common UNCG fold, named ‘Z-turn’ in agreement with our previously published nomenclature. These receptors recognize the solvent accessible second Z-turn nucleotide in different but specific ways. Two receptors participating in a complex network of tertiary interactions are associated with the rRNA UUCG and GAAA Z-turns capping helices H62 and H35a in rRNA large subunits. Structural comparison of fully assembled ribosomes and comparative sequence analysis of >6500 rRNA sequences helped us recognize that these motifs are almost universally conserved in rRNA, where they may contribute to organize the large subunit around the subdomain-IV four-way junction. The third UCCG receptor was identified in a rRNA/protein construct crystallized at acidic pH. These three non-redundant Z-turn receptors are relevant for our understanding of the assembly of rRNA and other long-non-coding RNAs, as well as for the design of novel folding motifs for synthetic biology.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Quentin Vicens
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.,Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado, Denver School of Medicine, Aurora, CO 80045, USA
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France
| |
Collapse
|
78
|
Histone 2B monoubiquitination complex integrates transcript elongation with RNA processing at circadian clock and flowering regulators. Proc Natl Acad Sci U S A 2019; 116:8060-8069. [PMID: 30923114 DOI: 10.1073/pnas.1806541116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HISTONE MONOUBIQUITINATION1 (HUB1) and its paralog HUB2 act in a conserved heterotetrameric complex in the chromatin-mediated transcriptional modulation of developmental programs, such as flowering time, dormancy, and the circadian clock. The KHD1 and SPEN3 proteins were identified as interactors of the HUB1 and HUB2 proteins with in vitro RNA-binding activity. Mutants in SPEN3 and KHD1 had reduced rosette and leaf areas. Strikingly, in spen3 mutants, the flowering time was slightly, but significantly, delayed, as opposed to the early flowering time in the hub1-4 mutant. The mutant phenotypes in biomass and flowering time suggested a deregulation of their respective regulatory genes CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and FLOWERING LOCUS C (FLC) that are known targets of the HUB1-mediated histone H2B monoubiquitination (H2Bub). Indeed, in the spen3-1 and hub1-4 mutants, the circadian clock period was shortened as observed by luciferase reporter assays, the levels of the CCA1α and CCA1β splice forms were altered, and the CCA1 expression and H2Bub levels were reduced. In the spen3-1 mutant, the delay in flowering time was correlated with an enhanced FLC expression, possibly due to an increased distal versus proximal ratio of its antisense COOLAIR transcript. Together with transcriptomic and double-mutant analyses, our data revealed that the HUB1 interaction with SPEN3 links H2Bub during transcript elongation with pre-mRNA processing at CCA1 Furthermore, the presence of an intact HUB1 at the FLC is required for SPEN3 function in the formation of the FLC-derived antisense COOLAIR transcripts.
Collapse
|
79
|
Pegueroles C, Iraola-Guzmán S, Chorostecki U, Ksiezopolska E, Saus E, Gabaldón T. Transcriptomic analyses reveal groups of co-expressed, syntenic lncRNAs in four species of the genus Caenorhabditis. RNA Biol 2019; 16:320-329. [PMID: 30691342 PMCID: PMC6380332 DOI: 10.1080/15476286.2019.1572438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/13/2019] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous class of genes that do not code for proteins. Since lncRNAs (or a fraction thereof) are expected to be functional, many efforts have been dedicated to catalog lncRNAs in numerous organisms, but our knowledge of lncRNAs in non vertebrate species remains very limited. Here, we annotated lncRNAs using transcriptomic data from the same larval stage of four Caenorhabditis species. The number of annotated lncRNAs in self-fertile nematodes was lower than in out-crossing species. We used a combination of approaches to identify putatively homologous lncRNAs: synteny, sequence conservation, and structural conservation. We classified a total of 1,532 out of 7,635 genes from the four species into families of lncRNAs with conserved synteny and expression at the larval stage, suggesting that a large fraction of the predicted lncRNAs may be species specific. Despite both sequence and local secondary structure seem to be poorly conserved, sequences within families frequently shared BLASTn hits and short sequence motifs, which were more likely to be unpaired in the predicted structures. We provide the first multi-species catalog of lncRNAs in nematodes and identify groups of lncRNAs with conserved synteny and expression, that share exposed motifs.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Uciel Chorostecki
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
80
|
Wang X, Yang M, Ren D, Terzaghi W, Deng XW, He G. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:555-570. [PMID: 30375060 DOI: 10.1111/tpj.14142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 05/14/2023]
Abstract
Alternative splicing (AS) plays key roles in plant development and the responses of plants to environmental changes. However, the mechanisms underlying AS divergence (differential expression of transcript isoforms resulting from AS) in plant accessions and its contribution to responses to environmental stimuli remain unclear. In this study, we investigated genome-wide variation of AS in Arabidopsis thaliana accessions Col-0, Bur-0, C24, Kro-0 and Ler-1, as well as their F1 hybrids, and characterized the regulatory mechanisms for AS divergence by RNA sequencing. We found that most of the divergent AS events in Arabidopsis accessions were cis-regulated by sequence variation, including those in core splice site and splicing motifs. Many genes that differed in AS between Col-0 and Bur-0 were involved in stimulus responses. Further genome-wide association analyses of 22 environmental variables showed that single nucleotide polymorphisms influencing known splice site strength were also associated with environmental stress responses. These results demonstrate that cis-variation in genomic sequences among Arabidopsis accessions was the dominant contributor to AS divergence, and it may contribute to differences in environmental responses among Arabidopsis accessions.
Collapse
Affiliation(s)
- Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Mei Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Diqiu Ren
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Xing-Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangming He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
81
|
Qi HD, Lin Y, Ren QP, Wang YY, Xiong F, Wang XL. RNA Splicing of FLC Modulates the Transition to Flowering. FRONTIERS IN PLANT SCIENCE 2019; 10:1625. [PMID: 31921267 PMCID: PMC6928127 DOI: 10.3389/fpls.2019.01625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 05/10/2023]
Abstract
Flowering is a critical stage of plant development and is closely correlated with seed production and crop yield. Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of FLC expression is well studied at transcriptional and post-transcriptional levels. A subset of antisense transcripts from FLC locus, collectively termed cold-induced long antisense intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies have provided important insights into the alternative splicing of COOLAIR and FLC sense transcripts in response to developmental and environmental cues. Herein, at the 20th anniversary of FLC functional identification, we summarise new research advances in the alternative splicing of FLC sense and antisense transcripts that regulates flowering.
Collapse
Affiliation(s)
- Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yi Lin
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qiu-Ping Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
- *Correspondence: Xiu-Ling Wang,
| |
Collapse
|
82
|
Abstract
Long noncoding RNAs play important roles in plant epigenetic processes. While many extensive studies have delineated the range of their functions in plants, few detailed studies of the structure of plant long noncoding RNAs have been performed. Here, we review genome-wide and system-specific structural studies and describe methodology for structure determination.
Collapse
Affiliation(s)
- Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
83
|
Wang HLV, Chekanova JA. An Overview of Methodologies in Studying lncRNAs in the High-Throughput Era: When Acronyms ATTACK! Methods Mol Biol 2019; 1933:1-30. [PMID: 30945176 PMCID: PMC6684206 DOI: 10.1007/978-1-4939-9045-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
- Present address: Department of Biology, Emory University, Atlanta, GA, USA
| | - Julia A Chekanova
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
84
|
Jiao F, Pahwa K, Manning M, Dochy N, Geuten K. Cold Induced Antisense Transcription of FLOWERING LOCUS C in Distant Grasses. FRONTIERS IN PLANT SCIENCE 2019; 10:72. [PMID: 30774642 PMCID: PMC6367677 DOI: 10.3389/fpls.2019.00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/17/2019] [Indexed: 05/02/2023]
Abstract
Functional conservation of RNAs between different species is a key argument for their importance. While few long non-coding RNAs are conserved at the sequence level, many long non-coding RNAs have been identified that only share a position relative to other genes. It remains largely unknown whether and how these lncRNAs are conserved beyond their position. In Arabidopsis thaliana, the lncRNA COOLAIR is transcribed antisense from FLOWERING LOCUS C (FLC) in response to cold. Despite relatively low sequence similarity, the COOLAIR expression pattern and in vitro RNA secondary structure are highly conserved across the family Brassicaceae, which originated some 50 mya. It is unclear, however, whether COOLAIR functions in distantly related species such as monocots, which diverged some 150 mya. Here, we identified antisense lncRNAs from FLC homologs in various monocot species that share no sequence similarity with A. thaliana COOLAIR. Yet similar to COOLAIR, we found that BdODDSOC1 antisense (BdCOOLAIR1) and BdODDSOC2 antisense (BdCOOLAIR2) are induced by cold in a Brachypodium distachyon winter accession. Across B. distachyon accessions, the sequences of BdCOOLAIR1 and BdCOOLAIR2 are less conserved than exons but more conserved than flanking regions, suggesting a function for the transcript itself. Knock down of the BdODDSOC2 non-overlapping BdCOOLAIR2 transcript did not show a morphological phenotype, but did result in significantly higher BdODDSOC2 expression during cold, indicating that BdCOOLAIR2 performs a role in cis in the rate of BdODDSOC2 silencing. This functional similarity between eudicot and monocot species reveals ancient conservation or convergent evolution of FLC antisense transcription. Either scenario supports its functional importance.
Collapse
|
85
|
Eubanks CS, Hargrove AE. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2018; 58:199-213. [PMID: 30513196 DOI: 10.1021/acs.biochem.8b01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our awareness and appreciation of the many regulatory roles of RNA have dramatically increased in the past decade. This understanding, in addition to the impact of RNA in many disease states, has renewed interest in developing selective RNA-targeted small molecule probes. However, the fundamental guiding principles in RNA molecular recognition that could accelerate these efforts remain elusive. While high-resolution structural characterization can provide invaluable insight, examples of well-characterized RNA structures, not to mention small molecule:RNA complexes, remain limited. This Perspective provides an overview of the current techniques used to understand RNA molecular recognition when high-resolution structural information is unavailable. We will place particular emphasis on a new method, pattern recognition of RNA with small molecules (PRRSM), that provides rapid insight into critical components of RNA recognition and differentiation by small molecules as well as into RNA structural features.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| | - Amanda E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| |
Collapse
|
86
|
Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA Structures and Interactions by Sequencing-Based Approaches. Trends Biochem Sci 2018; 44:33-52. [PMID: 30459069 DOI: 10.1016/j.tibs.2018.09.012] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as significant players in almost every level of gene function and regulation. Thus, characterizing the structures and interactions of lncRNAs is essential for understanding their mechanistic roles in cells. Through a combination of (bio)chemical approaches and automated capillary and high-throughput sequencing (HTS), the complexity and diversity of RNA structures and interactions has been revealed in the transcriptomes of multiple species. These methods have uncovered important biological insights into the mechanistic and functional roles of lncRNA in gene expression and RNA metabolism, as well as in development and disease. In this review, we summarize the latest sequencing strategies to reveal RNA structure, RNA-RNA, RNA-DNA, and RNA-protein interactions, and highlight the recent applications of these approaches to map functional lncRNAs. We discuss the advantages and limitations of these strategies, and provide recommendations to further advance methodologies capable of mapping RNA structure and interactions in order to discover new biology of lncRNAs and decipher their molecular mechanisms and implication in diseases.
Collapse
Affiliation(s)
- Xingyang Qian
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; These authors contributed equally to this work
| | - Jieyu Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Pui Yan Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
87
|
Bevilacqua PC, Assmann SM. Technique Development for Probing RNA Structure In Vivo and Genome-Wide. Cold Spring Harb Perspect Biol 2018; 10:a032250. [PMID: 30275275 PMCID: PMC6169808 DOI: 10.1101/cshperspect.a032250] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
How organisms perceive and respond to their surroundings is one of the great questions in biology. It is clear that RNA plays key roles in sensing. Cellular and environmental cues that RNA responds to include temperature, ions, metabolites, and biopolymers. Recent advances in next-generation sequencing and in vivo chemical probing have provided unprecedented insights into RNA folding in vivo and genome-wide. Patterns of chemical reactivity have implicated control of gene expression by RNA and aided prediction of RNA structure. Central to these advances has been development of molecular biological and chemical techniques. Key advances are improvements in the quality, cost, and throughput of library preparation; availability of a wider array of chemicals for probing RNA structure in vivo; and robustness and user friendliness of data analysis. Insights from probing transcriptomes and future directions are provided.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Departments of Chemistry and Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
88
|
Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 2018; 19:535-548. [PMID: 29795125 PMCID: PMC6451964 DOI: 10.1038/s41576-018-0017-y] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gene maps, or annotations, enable us to navigate the functional landscape of our genome. They are a resource upon which virtually all studies depend, from single-gene to genome-wide scales and from basic molecular biology to medical genetics. Yet present-day annotations suffer from trade-offs between quality and size, with serious but often unappreciated consequences for downstream studies. This is particularly true for long non-coding RNAs (lncRNAs), which are poorly characterized compared to protein-coding genes. Long-read sequencing technologies promise to improve current annotations, paving the way towards a complete annotation of lncRNAs expressed throughout a human lifetime.
Collapse
Affiliation(s)
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland.
- Department of Biomedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
89
|
Xu Y, Deng W, Zhang W. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed Pharmacother 2018; 104:509-519. [PMID: 29800915 DOI: 10.1016/j.biopha.2018.05.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE). Long non-coding RNA taurine upregulated gene 1 (lncRNA TUG1) exerted critical regulatory effects on inhibiting cell injury and inflammation. However, its role in LN is still unclear. METHODS HK-2 cells were treated with lipopolysaccharide (LPS) to simulate cell inflammatory injury. Cell viability and apoptosis, as well as pro-inflammatory factors expression were measured, respectively. Then, HK-2 cells were transfected with pEX-TUG1 or sh-TUG1 to explore the effects of TUG1 on LPS-induced cell injury. Potential binding effects between TUG1 and microRNA-223 (miR-223), as well as between miR-223 and Sirtuin 1 (Sirt1) were verified. miR-223 mimic or miR-223 inhibitor was transfected to assess the effects of miR-223 on cell injury. Finally, the roles of Sirt1 in LPS-induced HK-2 cell injury and activation of phosphatidylinositol 3-kinase/protein kinase 3 (PI3K/AKT) and nuclear factor kappa B (NF-κB) pathways were explored. RESULTS LPS administration inhibited HK-2 cell viability and proliferation, increased expression of pro-inflammatory factors, and promoted cell apoptosis. TUG1 overexpression protected HK-2 cells against LPS-induced injury via negatively regulating miR-223 expression. TUG1 suppression had opposite effects. Sirt1 was a direct target gene of miR-223 in HK-2 cells, which participated in the effects of miR-223 on HK-2 cells and was related with the activation of PI3K/AKT and NF-κB pathways. CONCLUSION TUG1 protected HK-2 cells against LPS-induced inflammatory injury by regulating miR-223 and Sirt1 expression, and then activating PI3K/AKT and inactivating NF-κB pathways. TUG1 might be a potential therapeutic target for LN treatment.
Collapse
Affiliation(s)
- Yan Xu
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China
| | - Wenyan Deng
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China
| | - Wei Zhang
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China.
| |
Collapse
|
90
|
Gaiti F, Degnan BM, Tanurdžić M. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biol 2018; 15:696-702. [PMID: 29616867 PMCID: PMC6152434 DOI: 10.1080/15476286.2018.1460166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023] Open
Abstract
How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
91
|
Yang X, Yang M, Deng H, Ding Y. New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:671. [PMID: 29872445 PMCID: PMC5972288 DOI: 10.3389/fpls.2018.00671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 05/29/2023]
Abstract
The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.
Collapse
Affiliation(s)
- Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Minglei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Hongjing Deng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
92
|
Lu Z, Carter AC, Chang HY. Mechanistic insights in X-chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0356. [PMID: 28947655 DOI: 10.1098/rstb.2016.0356] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is a critical epigenetic mechanism for balancing gene dosage between XY males and XX females in eutherian mammals. A long non-coding RNA (lncRNA), XIST, and its associated proteins orchestrate this multi-step process, resulting in the inheritable silencing of one of the two X-chromosomes in females. The XIST RNA is large and complex, exemplifying the unique challenges associated with the structural and functional analysis of lncRNAs. Recent technological advances in the analysis of macromolecular structure and interactions have enabled us to systematically dissect the XIST ribonucleoprotein complex, which is larger than the ribosome, and its place of action, the inactive X-chromosome. These studies shed light on key mechanisms of XCI, such as XIST coating of the X-chromosome, recruitment of DNA, RNA and histone modification enzymes, and compaction and compartmentalization of the inactive X. Here, we summarize recent studies on XCI, highlight the critical contributions of new technologies and propose a unifying model for XIST function in XCI where modular domains serve as the structural and functional units in both lncRNA-protein complexes and DNA-protein complexes in chromatin.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Zhipeng Lu
- Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ava C Carter
- Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
93
|
Golicz AA, Bhalla PL, Singh MB. lncRNAs in Plant and Animal Sexual Reproduction. TRENDS IN PLANT SCIENCE 2018; 23:195-205. [PMID: 29395831 DOI: 10.1016/j.tplants.2017.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/23/2017] [Indexed: 05/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts over 200 base pairs in length with no discernible protein-coding potential. Multiple lines of evidence point to lncRNAs as master regulators, controlling the expression of protein-coding genes. Studies in plants and animals consistently show high expression of lncRNAs in reproductive organs in a cell- and tissue-specific manner. Sexual reproduction is a complex process that involves cell fate specification and specialized cell division requiring precise coordination of gene expression in response to intrinsic and extrinsic signals. The roles of lncRNAs as master regulators of gene expression and chromatin organization might make them particularly suited for coordination and control of molecular processes involved in sexual reproduction.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
94
|
Casal JJ, Qüesta JI. Light and temperature cues: multitasking receptors and transcriptional integrators. THE NEW PHYTOLOGIST 2018; 217:1029-1034. [PMID: 29139132 DOI: 10.1111/nph.14890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 1029 I. Introduction 1029 II. Convergence at the receptor 1030 III. Convergence at transcriptional hubs 1031 IV. Convergence involving clock components 1033 V. Conclusions 1033 Acknowledgements 1033 References 1033 SUMMARY: The combined information provided by light and temperature cues helps to optimise plant body architecture and physiology. Plants possess elaborate systems to sense and respond to these stimuli. Simultaneous perception of light and temperature by dual receptors such as phytochrome B and phototropin leads to immediate signalling convergence. Conversely, cue asynchronies initiate separate pathways and the information of the earliest cue is stored, awaiting the arrival of the later cue to control transcription. Storage mechanisms can involve changes in the activity of selected clock components or epigenetic modifications, depending on the time delay between cues (hours, days or several months). We propose a conceptual framework in which the mechanisms of integration relate to the timing of cue sensing.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, Buenos Aires, 1417, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, 1405, Argentina
| | - Julia I Qüesta
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
95
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
96
|
Fok ET, Scholefield J, Fanucchi S, Mhlanga MM. The emerging molecular biology toolbox for the study of long noncoding RNA biology. Epigenomics 2017; 9:1317-1327. [PMID: 28875715 DOI: 10.2217/epi-2017-0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.
Collapse
Affiliation(s)
- Ezio T Fok
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Janine Scholefield
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Stephanie Fanucchi
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Musa M Mhlanga
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.,Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
97
|
Abstract
Our understanding of the detailed molecular mechanisms underpinning adaptation is still poor. One example for which mechanistic understanding of regulation has converged with studies of life history variation is Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC determines the need for plants to overwinter and their ability to respond to prolonged cold in a process termed vernalization. This review highlights how molecular analysis of vernalization pathways has revealed important insight into antisense-mediated chromatin silencing mechanisms that regulate FLC. In turn, such insight has enabled molecular dissection of the diversity in vernalization across natural populations of A. thaliana. Changes in both cotranscriptional regulation and epigenetic silencing of FLC are caused by noncoding polymorphisms at FLC. The FLC locus is therefore providing important concepts for how noncoding transcription and chromatin regulation influence gene expression and how these mechanisms can vary to underpin adaptation in natural populations.
Collapse
Affiliation(s)
- Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
98
|
Nelson ADL, Devisetty UK, Palos K, Haug-Baltzell AK, Lyons E, Beilstein MA. Evolinc: A Tool for the Identification and Evolutionary Comparison of Long Intergenic Non-coding RNAs. Front Genet 2017; 8:52. [PMID: 28536600 PMCID: PMC5422434 DOI: 10.3389/fgene.2017.00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are an abundant and functionally diverse class of eukaryotic transcripts. Reported lincRNA repertoires in mammals vary, but are commonly in the thousands to tens of thousands of transcripts, covering ~90% of the genome. In addition to elucidating function, there is particular interest in understanding the origin and evolution of lincRNAs. Aside from mammals, lincRNA populations have been sparsely sampled, precluding evolutionary analyses focused on their emergence and persistence. Here we present Evolinc, a two-module pipeline designed to facilitate lincRNA discovery and characterize aspects of lincRNA evolution. The first module (Evolinc-I) is a lincRNA identification workflow that also facilitates downstream differential expression analysis and genome browser visualization of identified lincRNAs. The second module (Evolinc-II) is a genomic and transcriptomic comparative analysis workflow that determines the phylogenetic depth to which a lincRNA locus is conserved within a user-defined group of related species. Here we validate lincRNA catalogs generated with Evolinc-I against previously annotated Arabidopsis and human lincRNA data. Evolinc-I recapitulated earlier findings and uncovered an additional 70 Arabidopsis and 43 human lincRNAs. We demonstrate the usefulness of Evolinc-II by examining the evolutionary histories of a public dataset of 5,361 Arabidopsis lincRNAs. We used Evolinc-II to winnow this dataset to 40 lincRNAs conserved across species in Brassicaceae. Finally, we show how Evolinc-II can be used to recover the evolutionary history of a known lincRNA, the human telomerase RNA (TERC). These latter analyses revealed unexpected duplication events as well as the loss and subsequent acquisition of a novel TERC locus in the lineage leading to mice and rats. The Evolinc pipeline is currently integrated in CyVerse's Discovery Environment and is free for use by researchers.
Collapse
Affiliation(s)
- Andrew D L Nelson
- Beilstein Lab, School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | | | - Kyle Palos
- Beilstein Lab, School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | - Asher K Haug-Baltzell
- Lyons Lab, Genetics Graduate Interdisciplinary Group, University of ArizonaTucson, AZ, USA
| | - Eric Lyons
- CyVerse, Bio5, University of ArizonaTucson, AZ, USA.,Lyons Lab, Genetics Graduate Interdisciplinary Group, University of ArizonaTucson, AZ, USA
| | - Mark A Beilstein
- Beilstein Lab, School of Plant Sciences, University of ArizonaTucson, AZ, USA
| |
Collapse
|
99
|
Choudhary K, Deng F, Aviran S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. QUANTITATIVE BIOLOGY 2017; 5:3-24. [PMID: 28717530 PMCID: PMC5510538 DOI: 10.1007/s40484-017-0093-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. RESULTS We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. CONCLUSIONS To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
Collapse
Affiliation(s)
| | | | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
100
|
Wang CY, Liu SR, Zhang XY, Ma YJ, Hu CG, Zhang JZ. Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L. Raf.). Sci Rep 2017; 7:43226. [PMID: 28233798 PMCID: PMC5324131 DOI: 10.1038/srep43226] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/23/2017] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in post-transcriptional and transcriptional regulation in Arabidopsis. However, lncRNAs and their functional roles remain poorly characterized in woody plants, including citrus. To identify lncRNAs and investigate their role in citrus flowering, paired-end strand-specific RNA sequencing was performed for precocious trifoliate orange and its wild-type counterpart. A total of 6,584 potential lncRNAs were identified, 51.6% of which were from intergenic regions. Additionally, 555 lncRNAs were significantly up-regulated and 276 lncRNAs were down-regulated in precocious trifoliate orange, indicating that lncRNAs could be involved in the regulation of trifoliate orange flowering. Comparisons between lncRNAs and coding genes indicated that lncRNAs tend to have shorter transcripts and lower expression levels and that they display significant expression specificity. More importantly, 59 and 7 lncRNAs were identified as putative targets and target mimics of citrus miRNAs, respectively. In addition, the targets of Pt-miR156 and Pt-miR396 were confirmed using the regional amplification reverse-transcription polymerase chain reaction method. Furthermore, overexpression of Pt-miR156a1 and Pt-miR156a1 in Arabidopsis resulted in an extended juvenile phase, short siliques, and smaller leaves in transgenic plants compared with control plants. These findings provide important insight regarding citrus lncRNAs, thus enabling in-depth functional analyses.
Collapse
Affiliation(s)
- Chen-Yang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Rui Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Yu Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Jiao Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|