51
|
Vigolo M, Chambers MG, Willen L, Chevalley D, Maskos K, Lammens A, Tardivel A, Das D, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Smulski CR, Eslami M, Rolink A, Hummler E, Samy E, Fomekong Nanfack Y, Mackay F, Liao M, Hess H, Jiang X, Schneider P. A loop region of BAFF controls B cell survival and regulates recognition by different inhibitors. Nat Commun 2018; 9:1199. [PMID: 29572442 PMCID: PMC5865128 DOI: 10.1038/s41467-018-03323-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
The B cell survival factor (TNFSF13B/BAFF) is often elevated in autoimmune diseases and is targeted in the clinic for the treatment of systemic lupus erythematosus. BAFF contains a loop region designated the flap, which is dispensable for receptor binding. Here we show that the flap of BAFF has two functions. In addition to facilitating the formation of a highly active BAFF 60-mer as shown previously, it also converts binding of BAFF to TNFRSF13C (BAFFR) into a signaling event via oligomerization of individual BAFF-BAFFR complexes. Binding and activation of BAFFR can therefore be targeted independently to inhibit or activate the function of BAFF. Moreover, structural analyses suggest that the flap of BAFF 60-mer temporarily prevents binding of an anti-BAFF antibody (belimumab) but not of a decoy receptor (atacicept). The observed differences in profiles of BAFF inhibition may confer distinct biological and clinical efficacies to these therapeutically relevant inhibitors. BAFF is an important cytokine for B cell survival, and is a therapeutic target for autoimmune disorders. Here the authors show that a 'flap' region of BAFF converts BAFFR binding events into survival signals and, with structural data, that this ‘flap’ differentially modulates binding of drugs such as belimumab or atacicept.
Collapse
Affiliation(s)
- Michele Vigolo
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Dehlia Chevalley
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Klaus Maskos
- Proteros Biostructures GmbH, 82152, Planegg, Germany
| | | | - Aubry Tardivel
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Dolon Das
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | | | | | - Cristian R Smulski
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mahya Eslami
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, University of Basel, 4058, Basel, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland
| | - Eileen Samy
- EMD Serono Research & Development Institute, Billerica, MA, 01821, USA
| | | | - Fabienne Mackay
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Xuliang Jiang
- EMD Serono Research & Development Institute, Billerica, MA, 01821, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.
| |
Collapse
|
52
|
Sic H, Speletas M, Cornacchione V, Seidl M, Beibel M, Linghu B, Yang F, Sevdali E, Germenis AE, Oakeley EJ, Vangrevelinghe E, Sailer AW, Traggiai E, Gram H, Eibel H. An Activating Janus Kinase-3 Mutation Is Associated with Cytotoxic T Lymphocyte Antigen-4-Dependent Immune Dysregulation Syndrome. Front Immunol 2017; 8:1824. [PMID: 29375547 PMCID: PMC5770691 DOI: 10.3389/fimmu.2017.01824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Heterozygous mutations in the cytotoxic T lymphocyte antigen-4 (CTLA-4) are associated with lymphadenopathy, autoimmunity, immune dysregulation, and hypogammaglobulinemia in about 70% of the carriers. So far, the incomplete penetrance of CTLA-4 haploinsufficiency has been attributed to unknown genetic modifiers, epigenetic changes, or environmental effects. We sought to identify potential genetic modifiers in a family with differential clinical penetrance of CTLA-4 haploinsufficiency. Here, we report on a rare heterozygous gain-of-function mutation in Janus kinase-3 (JAK3) (p.R840C), which is associated with the clinical manifestation of CTLA-4 haploinsufficiency in a patient carrying a novel loss-of-function mutation in CTLA-4 (p.Y139C). While the asymptomatic parents carry either the CTLA-4 mutation or the JAK3 variant, their son has inherited both heterozygous mutations and suffers from hypogammaglobulinemia combined with autoimmunity and lymphoid hyperplasia. Although the patient's lymph node and spleen contained many hyperplastic germinal centers with follicular helper T (TFH) cells and immunoglobulin (Ig) G-positive B cells, plasma cell, and memory B cell development was impaired. CXCR5+PD-1+TIGIT+ TFH cells contributed to a large part of circulating T cells, but they produced only very low amounts of interleukin (IL)-4, IL-10, and IL-21 required for the development of memory B cells and plasma cells. We, therefore, suggest that the combination of the loss-of-function mutation in CTLA-4 with the gain-of-function mutation in JAK3 directs the differentiation of CD4 T cells into dysfunctional TFH cells supporting the development of lymphadenopathy, hypogammaglobulinemia, and immunodeficiency. Thus, the combination of rare genetic heterozygous variants that remain clinically unnoticed individually may lead to T cell hyperactivity, impaired memory B cell, and plasma cell development resulting finally in combined immunodeficiency.
Collapse
Affiliation(s)
- Heiko Sic
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Matthaios Speletas
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | - Maximillian Seidl
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Beibel
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Bolan Linghu
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Fan Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Eirini Sevdali
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | | | | | - Hermann Gram
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
53
|
Schweighoffer E, Tybulewicz VL. Signalling for B cell survival. Curr Opin Cell Biol 2017; 51:8-14. [PMID: 29149682 DOI: 10.1016/j.ceb.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
The number of mature B cells is carefully controlled by signalling from receptors that support B cell survival. The best studied of these are the B cell antigen receptor (BCR) and BAFFR. Recent work has shown that signalling from these receptors is closely linked, involves the CD19 co-receptor, and leads to activation of canonical and non-canonical NF-κB pathways, ERK1, ERK2 and ERK5 MAP kinases, and PI-3 kinases. Importantly, studies show that investigation of the importance of signalling molecules in cell survival requires the use of inducible gene deletions within mature B cells. This overcomes the limitations of many earlier studies using constitutive gene deletions which were unable to distinguish between requirements for a protein in development versus survival.
Collapse
Affiliation(s)
| | - Victor Lj Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK; Imperial College, London W12 0NN, UK.
| |
Collapse
|
54
|
Borhis G, Trovato M, Chaoul N, Ibrahim HM, Richard Y. B-Cell-Activating Factor and the B-Cell Compartment in HIV/SIV Infection. Front Immunol 2017; 8:1338. [PMID: 29163465 PMCID: PMC5663724 DOI: 10.3389/fimmu.2017.01338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
With the goal to design effective HIV vaccines, intensive studies focused on broadly neutralizing antibodies, which arise in a fraction of HIV-infected people. Apart from identifying new vulnerability sites in the viral envelope proteins, these studies have shown that a fraction of these antibodies are produced by self/poly-reactive B-cells. These findings prompted us to revisit the B-cell differentiation and selection process during HIV/SIV infection and to consider B-cells as active players possibly shaping the helper T-cell program within germinal centers (GCs). In this context, we paid a particular attention to B-cell-activating factor (BAFF), a key cytokine in B-cell development and immune response that is overproduced during HIV/SIV infection. As it does in autoimmune diseases, BAFF excess might contribute to the abnormal rescue of self-reactive B-cells at several checkpoints of the B-cell development and impair memory B-cell generation and functions. In this review, we first point out what is known about the functions of BAFF/a proliferation-inducing ligand and their receptors [B-cell maturation, transmembrane activator and CAML interactor (TACI), and BAFF-R], in physiological and pathophysiological settings, in mice and humans. In particular, we highlight recent results on the previously underappreciated regulatory functions of TACI and on the highly regulated production of soluble TACI and BAFF-R that act as decoy receptors. In light of recent data on BAFF, TACI, and BAFF-R, we then revisit the altered phenotypes and functions of B-cell subsets during the acute and chronic phase of HIV/SIV infection. Given the atypical phenotype and reduced functions of memory B-cells in HIV/SIV infection, we particularly discuss the GC reaction, a key checkpoint where self-reactive B-cells are eliminated and pathogen-specific memory B-cells and plasmablasts/cells are generated in physiological settings. Through its capacity to differentially bind and process BAFF-R and TACI on GC B-cells and possibly on follicular helper T-cells, BAFF appears as a key regulator of the physiological GC reaction. Its local excess during HIV/SIV infection could play a key role in B-cell dysregulations.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Maria Trovato
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Nada Chaoul
- Commissariat à l’Energie Atomique, Institut des maladies Emergentes et Thérapies innovantes, Service d’Immuno-Virologie, Fontenay-aux Roses, France
| | - Hany M. Ibrahim
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Yolande Richard
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| |
Collapse
|
55
|
Abstract
The two ligands B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) and the three receptors BAFF receptor (BAFF-R), transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA) are members of the "BAFF system molecules." BAFF system molecules are primarily involved in B cell homeostasis. The relevance of BAFF system molecules in host responses to microbial assaults has been investigated in clinical studies and in mice deficient for each of these molecules. Many microbial products modulate the expression of these molecules. Data from clinical studies suggest a correlation between increased expression levels of BAFF system molecules and elevated B cell responses. Depending on the pathogen, heightened B cell responses may strengthen the host response or promote susceptibility. Whereas pathogen-mediated increases in the expression levels of the ligands and/or the receptors appear to promote microbial clearance, certain pathogens have evolved to ablate B cell responses by suppressing the expression of TACI and/or BAFF-R on B cells. Other than its well-established role in B cell responses, the TACI-mediated activation of macrophages is also implicated in resistance to intracellular pathogens. An improved understanding of the role that BAFF system molecules play in infection may assist in devising novel strategies for vaccine development.
Collapse
Affiliation(s)
- Jiro Sakai
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|