51
|
Feng ZZ, Luo N, Liu Y, Hu JN, Ma T, Yao YM. ER stress and its PERK branch enhance TCR-induced activation in regulatory T cells. Biochem Biophys Res Commun 2021; 563:8-14. [PMID: 34058476 DOI: 10.1016/j.bbrc.2021.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Although accumulating evidence indicates participation of endoplasmic reticulum (ER) stress pathway or the unfolded protein response (UPR) in immunity, there still exists little information linking ER stress to regulatory T cells (Tregs). To evaluate the potential contribution of the UPR, we tested the effects of thapsigargin (TG), an ER stress inducer, on the function of Tregs. Here we reported that TG stimulation induced the up-regulation of the endoplasmic reticulum (ER)-stress chaperon Glucose-Regulated Protein 78 (GRP78), which is a master regulator of the UPR, the phosphorylation of eukaryotic initiation factor 2 alpha (elF2α) and the induction of activating transcription factor 4 (ATF4), which are both protein kinase R (PKR)-like ER kinase (PERK) downstream targets in Tregs. Simultaneously, we demonstrated that, under ER stress conditions, Tregs presented enhanced functional activity upon TCR stimulation, as illustrated with forkhead box transcription factor (Foxp3) expression, interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production and suppressive functional analysis. Notably, pretreatment with GSK2656157, a potent and selective PERK inhibitor, markedly diminished the TG-induced hyperresponsiveness of Tregs upon T cell antigen receptor (TCR) stimulation. Therefore, our findings illustrated the inter-connection and coordination of the evolutionarily conserved ER stress response and TCR signaling in Tregs and uncover a critical new role of the PERK branch of UPR in the regulation of Tregs function.
Collapse
Affiliation(s)
- Zhen-Zhen Feng
- Department of Intensive Care Unit, The Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Ning Luo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ying Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jian-Nan Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
52
|
Hope HC, Brownlie RJ, Fife CM, Steele L, Lorger M, Salmond RJ. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight 2021; 6:137761. [PMID: 33822775 PMCID: PMC8262305 DOI: 10.1172/jci.insight.137761] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
T cell receptor (TCR) triggering by antigen results in metabolic reprogramming that, in turn, facilitates the exit of T cells from quiescence. The increased nutrient requirements of activated lymphocytes are met, in part, by upregulation of cell surface transporters and enhanced uptake of amino acids, fatty acids, and glucose from the environment. However, the role of intracellular pathways of amino acid biosynthesis in T cell activation is relatively unexplored. Asparagine is a nonessential amino acid that can be synthesized intracellularly through the glutamine-hydrolyzing enzyme asparagine synthetase (ASNS). We set out to define the requirements for uptake of extracellular asparagine and ASNS activity in CD8+ T cell activation. At early time points of activation in vitro, CD8+ T cells expressed little or no ASNS, and, as a consequence, viability and TCR-stimulated growth, activation, and metabolic reprogramming were substantially impaired under conditions of asparagine deprivation. At later time points (more than 24 hours of activation), TCR-induced mTOR-dependent signals resulted in ASNS upregulation that endowed CD8+ T cells with the capacity to function independently of extracellular asparagine. Thus, our data suggest that the coordinated upregulation of ASNS expression and uptake of extracellular asparagine is involved in optimal T cell effector responses.
Collapse
|
53
|
Jiang A, Du P, Liu Y, Pu J, Shi J, Zhang H. Metformin regulates the Th17/Treg balance by glycolysis with TIGAR in hepatic ischemia-reperfusion injury. J Pharmacol Sci 2021; 146:40-48. [PMID: 33858654 DOI: 10.1016/j.jphs.2021.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/21/2020] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
The balance of Th17/Treg plays an important role in hepatic ischemia-reperfusion (I/R) injury. Glycolysis and glutaminolysis for energy metabolism governs the differentiate of CD 4+ T-cells to Th17/Treg. Metformin can regulate glucose metabolism in the liver, but its protective effect on I/R liver injury and its effect on Th17/Treg balancestill unknown. In this study, the I/R liver injury rat model and the primary hepatocyte hypoxia/reoxygenation injury model were established. The biochemical indexes, inflammatory factor indexes, Th17/Treg balance and energy metabolism were evaluated. RNA-seq and gene knockout cells were used to investigated the target protein of metformin. The results showed that metformin could effectively improve liver injury caused by I/R, significantly inhibit the glycolysis, improve the Th17/Treg balance, and inhibit the expression of inflammatory factors. RNA-seq results showed that TIGAR was a possible regulatory site of metformin. However, the protective effect and the regulating effect of Th17/Treg balance by metformin in TIGAR knock-out cells were disappeared. In conclusion, metformin could regulate TIGAR inhibit glycolysis then regulate Th17/Treg balance, inhibit the release of liver inflammatory factors, and finally play a role in inhibiting the occurrence of liver injury caused by ischemia-reperfusion.
Collapse
Affiliation(s)
- Aiwen Jiang
- The First Affiliated Hospital of Hebei North University, Hebei, Zhangjiakou 075000, China
| | - Peishan Du
- Zhangjiakou First Hospital, Hebei, Zhangjiakou 075000, China
| | - Yunning Liu
- The First Affiliated Hospital of Hebei North University, Hebei, Zhangjiakou 075000, China
| | - Jiekun Pu
- The First Affiliated Hospital of Hebei North University, Hebei, Zhangjiakou 075000, China
| | - Jinzheng Shi
- The First Affiliated Hospital of Hebei North University, Hebei, Zhangjiakou 075000, China
| | - Heming Zhang
- The First Affiliated Hospital of Hebei North University, Hebei, Zhangjiakou 075000, China.
| |
Collapse
|
54
|
Elkin ER, Bakulski KM, Colacino JA, Bridges D, Kilburn BA, Armant DR, Loch-Caruso R. Transcriptional profiling of the response to the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine revealed activation of the eIF2α/ATF4 integrated stress response in two in vitro placental models. Arch Toxicol 2021; 95:1595-1619. [PMID: 33725128 PMCID: PMC7961173 DOI: 10.1007/s00204-021-03011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line. In the current study, genome-wide gene expression and gene set enrichment analyses were used to identify novel genes and pathway alterations in the HTR-8/SVneo human trophoblast cell line and human placental villous explants treated with DCVC at concentrations relevant to human exposures. In the cells, concentration- and time-dependent effects were observed, as evidenced by the magnitude of altered gene expression after treatment with 20 µM DCVC versus 10 µM, and 12-h versus 6-h of treatment. Comparing the two models for the transcriptional response to 12-h 20 µM DCVC treatment, no differentially expressed genes reached significance in villous explants, whereas 301 differentially expressed genes were detected in HTR-8/SVneo cells compared with non-treated controls (FDR < 0.05 + LogFC > 0.35 [FC > 1.3]). GSEA revealed five upregulated enriched pathways in common between explants and cells (FDR < 0.05). Moreover, all 12-h DCVC treatment groups from both models contained upregulated pathways enriched for genes regulated by the ATF4 transcription factor. The overrepresentation of ATF4 regulation of differentially expressed genes indicated activation of the integrated stress response (ISR), a condition triggered by multiple stress stimuli, including the unfolded protein response. DCVC-induced ISR activation was confirmed by elevated eIF2α phosphorylation, ATF4 protein concentrations, and decreased global protein synthesis in HTR-8/SVneo cells. This study identifies a mechanism of DCVC-induced cytotoxicity by revealing the involvement of a specific stress signaling pathway.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
55
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
56
|
Andreyev AY, Kushnareva YE, Starkova NN, Starkov AA. Metabolic ROS Signaling: To Immunity and Beyond. BIOCHEMISTRY (MOSCOW) 2021; 85:1650-1667. [PMID: 33705302 PMCID: PMC7768995 DOI: 10.1134/s0006297920120160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a critical determinant of immune cell functionality. Immunometabolism, by definition, is a multidisciplinary area of immunology research that integrates the knowledge of energy transduction mechanisms and biochemical pathways. An important concept in the field is metabolic switch, a transition of immune cells upon activation to preferential utilization of select catabolic pathways for their energy needs. Mitochondria are not inert in this process and contribute to the metabolic adaptation by different mechanisms which include increasing ATP production to match dynamic bioenergetic demands and serving as a signaling platform. The latter involves generation of reactive oxygen species (ROS), one of the most intensively studied mitochondrial processes. While the role of mitochondrial ROS in the context of oxidative stress is well established, ROS signaling in immunity is an emerging and quickly changing field. In this review, we discuss ROS signaling and immunometabolism concepts from the standpoint of bioenergetics. We also provide a critical insight into the methodology for ROS assessment, outlining current challenges in the field. Finally, based on our analysis of the literature data, we hypothesize that regulatory ROS production, as opposed to oxidative stress, is controlled by mitochondrial biogenesis rather than metabolic switches.
Collapse
Affiliation(s)
- A Y Andreyev
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Y E Kushnareva
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - N N Starkova
- State University of New York, Maritime College, New York, NY 10465, USA.
| | - A A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
57
|
Chang R, Zhu Y, Xu J, Chen L, Su G, Kijlstra A, Yang P. Identification of Urine Metabolic Biomarkers for Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:637489. [PMID: 33718374 PMCID: PMC7947328 DOI: 10.3389/fcell.2021.637489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The diagnosis of Vogt-Koyanagi-Harada (VKH) disease is mainly based on a complex clinical manifestation while it lacks objective laboratory biomarkers. To explore the potential molecular biomarkers for diagnosis and disease activity in VKH, we performed an untargeted urine metabolomics analysis by ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Through univariate and multivariate statistical analysis, we found 9 differential metabolites when comparing VKH patients with healthy controls, and 26 differential metabolites were identified when comparing active VKH patients with inactive VKH patients. Pathway enrichment analysis showed that glycine, serine and threonine metabolism, and arginine and proline metabolism were significantly altered in VKH versus healthy controls. Lysine degradation and biotin metabolism pathways were significantly altered in active VKH versus inactive VKH. Furthermore, the receiver operating characteristic (ROC) curve analysis revealed that the combination of acetylglycine and gamma-glutamylalanine could differentiate VKH from healthy controls with an area under the curve (AUC) of 0.808. A combination of ureidopropionic acid and 5′-phosphoribosyl-5-amino-4-imidazolecarboxamide (AICAR) had an excellent AUC of 0.958 for distinguishing active VKH from inactive VKH. In summary, this study identified abnormal metabolites in urine of patients with VKH disease. Further studies are needed to confirm whether these metabolites are specific for this disease.
Collapse
Affiliation(s)
- Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ying Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lin Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
58
|
Okawa T, Nagai M, Hase K. Dietary Intervention Impacts Immune Cell Functions and Dynamics by Inducing Metabolic Rewiring. Front Immunol 2021; 11:623989. [PMID: 33613560 PMCID: PMC7890027 DOI: 10.3389/fimmu.2020.623989] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has shown that nutrient metabolism is closely associated with the differentiation and functions of various immune cells. Cellular metabolism, including aerobic glycolysis, fatty acid oxidation, and oxidative phosphorylation, plays a key role in germinal center (GC) reaction, B-cell trafficking, and T-cell-fate decision. Furthermore, a quiescent metabolic status consolidates T-cell-dependent immunological memory. Therefore, dietary interventions such as calorie restriction, time-restricted feeding, and fasting potentially manipulate immune cell functions. For instance, intermittent fasting prevents the development of experimental autoimmune encephalomyelitis. Meanwhile, the fasting response diminishes the lymphocyte pool in gut-associated lymphoid tissue to minimize energy expenditure, leading to the attenuation of Immunoglobulin A (IgA) response. The nutritional status also influences the dynamics of several immune cell subsets. Here, we describe the current understanding of the significance of immunometabolism in the differentiation and functionality of lymphocytes and macrophages. The underlying molecular mechanisms also are discussed. These experimental observations could offer new therapeutic strategies for immunological disorders like autoimmunity.
Collapse
Affiliation(s)
- Takuma Okawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Motoyoshi Nagai
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
59
|
Jadeja SD, Mayatra JM, Vaishnav J, Shukla N, Begum R. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Front Immunol 2021; 11:624566. [PMID: 33613564 PMCID: PMC7890234 DOI: 10.3389/fimmu.2020.624566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is characterized by circumscribed depigmented macules in the skin resulting due to the autoimmune destruction of melanocytes from the epidermis. Both humoral as well as cell-mediated autoimmune responses are involved in melanocyte destruction. Several studies including ours have established that oxidative stress is involved in vitiligo onset, while autoimmunity contributes to the disease progression. However, the underlying mechanism involved in programing the onset and progression of the disease remains a conundrum. Based on several direct and indirect evidences, we suggested that endoplasmic reticulum (ER) stress might act as a connecting link between oxidative stress and autoimmunity in vitiligo pathogenesis. Oxidative stress disrupts cellular redox potential that extends to the ER causing the accumulation of misfolded proteins, which activates the unfolded protein response (UPR). The primary aim of UPR is to resolve the stress and restore cellular homeostasis for cell survival. Growing evidences suggest a vital role of UPR in immune regulation. Moreover, defective UPR has been implicated in the development of autoimmunity in several autoimmune disorders. ER stress-activated UPR plays an essential role in the regulation and maintenance of innate as well as adaptive immunity, and a defective UPR may result in systemic/tissue level/organ-specific autoimmunity. This review emphasizes on understanding the role of ER stress-induced UPR in the development of systemic and tissue level autoimmunity in vitiligo pathogenesis and its therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
60
|
Lemaitre P, Bai Q, Legrand C, Chariot A, Close P, Bureau F, Desmet CJ. Loss of the Transfer RNA Wobble Uridine-Modifying Enzyme Elp3 Delays T Cell Cycle Entry and Impairs T Follicular Helper Cell Responses through Deregulation of Atf4. THE JOURNAL OF IMMUNOLOGY 2021; 206:1077-1087. [PMID: 33483347 DOI: 10.4049/jimmunol.2000521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The activation of T cells is accompanied by intensive posttranscriptional remodeling of their proteome. We observed that protein expression of enzymes that modify wobble uridine in specific tRNAs, namely elongator subunit 3 (Elp3) and cytosolic thiouridylase (Ctu)2, increased in the course of T cell activation. To investigate the role of these tRNA epitranscriptomic modifiers in T cell biology, we generated mice deficient for Elp3 in T cells. We show that deletion of Elp3 has discrete effects on T cells. In vitro, Elp3-deficient naive CD4+ T cells polarize normally but are delayed in entering the first cell cycle following activation. In vivo, different models of immunization revealed that Elp3-deficient T cells display reduced expansion, resulting in functional impairment of T follicular helper (TFH) responses, but not of other CD4+ effector T cell responses. Transcriptomic analyses identified a progressive overactivation of the stress-responsive transcription factor Atf4 in Elp3-deficient T cells. Overexpression of Atf4 in wild-type T cells phenocopies the effect of Elp3 loss on T cell cycle entry and TFH cell responses. Reciprocally, partial silencing of Atf4 or deletion of its downstream effector transcription factor Chop rescues TFH responses of Elp3-deficient T cells. Together, our results reveal that specific epitranscriptomic tRNA modifications contribute to T cell cycle entry and promote optimal TFH responses.
Collapse
Affiliation(s)
- Pierre Lemaitre
- Laboratory of Cellular and Molecular Immunology, Interdisciplinary Group for Applied Genoproteomics, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Qiang Bai
- Laboratory of Cellular and Molecular Immunology, Interdisciplinary Group for Applied Genoproteomics, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Céline Legrand
- Laboratory of Cellular and Molecular Immunology, Interdisciplinary Group for Applied Genoproteomics, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Alain Chariot
- Laboratory of Medical Chemistry, Interdisciplinary Group for Applied Genoproteomics, Faculty of Medicine, University of Liege, 4000 Liege, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, 1300 Wavres, Belgium; and
| | - Pierre Close
- Walloon Excellence in Life Sciences and Biotechnology, 1300 Wavres, Belgium; and.,Laboratory of Cancer Signaling, Interdisciplinary Group for Applied Genoproteomics, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Interdisciplinary Group for Applied Genoproteomics, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, 1300 Wavres, Belgium; and
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, Interdisciplinary Group for Applied Genoproteomics, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; .,Walloon Excellence in Life Sciences and Biotechnology, 1300 Wavres, Belgium; and
| |
Collapse
|
61
|
Curdy N, Lanvin O, Cadot S, Laurent C, Fournié JJ, Franchini DM. Stress Granules in the Post-transcriptional Regulation of Immune Cells. Front Cell Dev Biol 2021; 8:611185. [PMID: 33520991 PMCID: PMC7841200 DOI: 10.3389/fcell.2020.611185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Immune cell activation triggers transcriptional and translational programs eliciting cellular processes, such as differentiation or proliferation, essential for an efficient immune response. These dynamic processes require an intricate orchestration of regulatory mechanisms to control the precise spatiotemporal expression of proteins. Post-transcriptional regulation ensures the control of messenger RNA metabolism and appropriate translation. Among these post-transcriptional regulatory mechanisms, stress granules participate in the control of protein synthesis. Stress granules are ribonucleoprotein complexes that form upon stress, typically under control of the integrated stress response. Such structures assemble upon stimulation of immune cells where they control selective translational programs ensuring the establishment of accurate effector functions. In this review, we summarize the current knowledge about post-transcriptional regulation in immune cells and highlight the role of stress sensors and stress granules in such regulation.
Collapse
Affiliation(s)
- Nicolas Curdy
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Olivia Lanvin
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Sarah Cadot
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.,Département de Pathologie, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
62
|
Merlotti D, Cosso R, Eller-Vainicher C, Vescini F, Chiodini I, Gennari L, Falchetti A. Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue. Int J Mol Sci 2021; 22:ijms22010435. [PMID: 33406758 PMCID: PMC7796307 DOI: 10.3390/ijms22010435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The existence of a common mesenchymal cell progenitor shared by bone, skeletal muscle, and adipocytes cell progenitors, makes the role of the skeleton in energy metabolism no longer surprising. Thus, bone fragility could also be seen as a consequence of a “poor” quality in nutrition. Ketogenic diet was originally proven to be effective in epilepsy, and long-term follow-up studies on epileptic children undergoing a ketogenic diet reported an increased incidence of bone fractures and decreased bone mineral density. However, the causes of such negative impacts on bone health have to be better defined. In these subjects, the concomitant use of antiepileptic drugs and the reduced mobilization may partly explain the negative effects on bone health, but little is known about the effects of diet itself, and/or generic alterations in vitamin D and/or impaired growth factor production. Despite these remarks, clinical studies were adequately designed to investigate bone health are scarce and bone health related aspects are not included among the various metabolic pathologies positively influenced by ketogenic diets. Here, we provide not only a narrative review on this issue, but also practical advice to design and implement clinical studies on ketogenic nutritional regimens and bone health outcomes. Perspectives on ketogenic regimens, microbiota, microRNAs, and bone health are also included.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Roberta Cosso
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy;
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia of Udine, 33100 Udine, Italy;
| | - Iacopo Chiodini
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Alberto Falchetti
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Correspondence:
| |
Collapse
|
63
|
Wu Q, Chen X, Li J, Sun S. Serine and Metabolism Regulation: A Novel Mechanism in Antitumor Immunity and Senescence. Aging Dis 2020; 11:1640-1653. [PMID: 33269112 PMCID: PMC7673844 DOI: 10.14336/ad.2020.0314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/14/2020] [Indexed: 12/16/2022] Open
Abstract
As one of the nonessential amino acids (NEAAs), serine is involved in the anabolism of multiple macromolecular substances by participating in one-carbon unit metabolism. Thus, rapidly proliferating cells such as tumor cells and activated immune cells are highly dependent on serine. Serine supports the proliferation of various immune cells through multiple pathways to enhance the antitumor immune response. Moreover, serine influences aging specificity in an epigenetic and metabolic manner. In this review, we focus on recent advances in the relationship between serine metabolism, antitumor immunity, and senescence. The metabolic regulation of serine seems to be a key point of intervention in antitumor immunity and aging-related disease, providing an opportunity for several novel therapeutics.
Collapse
Affiliation(s)
- Qi Wu
- 1Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyue Chen
- 1Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juanjuan Li
- 1Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengrong Sun
- 1Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
64
|
Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity. Cancer Immunol Immunother 2020; 70:1165-1175. [PMID: 33104836 DOI: 10.1007/s00262-020-02740-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
The solid tumor microenvironment is replete with factors that present a stress to infiltrating immune cells. Endoplasmic reticulum (ER) stress sensor PKR-like ER kinase (PERK) is primed to sense and respond to the burden of misfolded proteins in the ER lumen induced by cell stressors. PERK has documented roles as a master regulator of acute and chronic responses to cell stress as well as in the regulation of cell metabolism. Here, we provide an overview of the roles of PERK based on what is known and remains to be tested in immune cells in tumors and impacts on tumor control. PERK is one of several ER kinases able to preferentially induce activating transcription factor 4 (ATF4) as a response to cell stress. ATF4 orchestrates the oxidative stress response and governs amino acid metabolism. We discuss the tested role of ATF4 in tumor immunity and provide insight on the dueling protective and deleterious roles that ATF4 may play in the stress of solid tumors.
Collapse
|
65
|
Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity by activating transcription factor 4. Immunol Lett 2020; 228:24-34. [PMID: 33002512 DOI: 10.1016/j.imlet.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 4 (ATF4) is a DNA binding transcription factor belonging to the family of basic Leucine zipper proteins. ATF4 can be activated in response to multiple cellular stress signals including endoplasmic reticulum stress in the event of improper protein folding or oxidative stress because of mitochondrial dysfunction as well as hypoxia. There are multiple downstream targets of ATF4 that can coordinate the regulation between survival and apoptosis of a cell based on time and exposure to stress. ATF4, therefore, has a broad range of control that results in the modulation of immune cells of the innate and adaptive responses leading to regulation of the cellular immunity. Studies provide evidence that ATF4 can regulate immune cells such as macrophages, T cells, B cells, NK cells and dendritic cells contributing to progression of disease. Immune cells can be exposed to stressed environment in the event of a pathogen attack, infection, inflammation, or in the tumor microenvironment leading to increased ATF4 activity to regulate these responses. ATF4 can further control differentiation and maturation of different immune cell types becoming a determinant of effective immune regulation. Additionally, ATF4 has been heavily implicated in rendering effector immune cells dysfunctional that are used to target tumorigenesis. Therefore, there is a need to evaluate where the literature stands in understanding the overall role of ATF4 in regulating cellular immunity to identify therapeutic targets and generalized mechanisms for different disease progressions.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lena S Bercz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Molly A Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
66
|
Pereira M, Chen TD, Buang N, Olona A, Ko JH, Prendecki M, Costa ASH, Nikitopoulou E, Tronci L, Pusey CD, Cook HT, McAdoo SP, Frezza C, Behmoaras J. Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation In Vivo. Cell Rep 2020; 28:498-511.e5. [PMID: 31291584 PMCID: PMC6635384 DOI: 10.1016/j.celrep.2019.06.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential metal that fine-tunes the innate immune response by regulating macrophage function, but an integrative view of transcriptional and metabolic responses to iron perturbation in macrophages is lacking. Here, we induced acute iron chelation in primary human macrophages and measured their transcriptional and metabolic responses. Acute iron deprivation causes an anti-proliferative Warburg transcriptome, characterized by an ATF4-dependent signature. Iron-deprived human macrophages show an inhibition of oxidative phosphorylation and a concomitant increase in glycolysis, a large increase in glucose-derived citrate pools associated with lipid droplet accumulation, and modest levels of itaconate production. LPS polarization increases the itaconate:succinate ratio and decreases pro-inflammatory cytokine production. In rats, acute iron deprivation reduces the severity of macrophage-dependent crescentic glomerulonephritis by limiting glomerular cell proliferation and inducing lipid accumulation in the renal cortex. These results suggest that acute iron deprivation has in vivo protective effects mediated by an anti-inflammatory immunometabolic switch in macrophages.
Collapse
Affiliation(s)
- Marie Pereira
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Tai-Di Chen
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK; Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Norzawani Buang
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Antoni Olona
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
67
|
T Cell Activation Depends on Extracellular Alanine. Cell Rep 2020; 28:3011-3021.e4. [PMID: 31533027 DOI: 10.1016/j.celrep.2019.08.034] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
T cell stimulation is metabolically demanding. To exit quiescence, T cells rely on environmental nutrients, including glucose and the amino acids glutamine, leucine, serine, and arginine. The expression of transporters for these nutrients is tightly regulated and required for T cell activation. In contrast to these amino acids, which are essential or require multi-step biosynthesis, alanine can be made from pyruvate by a single transamination. Here, we show that extracellular alanine is nevertheless required for efficient exit from quiescence during naive T cell activation and memory T cell restimulation. Alanine deprivation leads to metabolic and functional impairments. Mechanistically, this vulnerability reflects the low expression of alanine aminotransferase, the enzyme required for interconverting pyruvate and alanine, whereas activated T cells instead induce alanine transporters. Stable isotope tracing reveals that alanine is not catabolized but instead supports protein synthesis. Thus, T cells depend on exogenous alanine for protein synthesis and normal activation.
Collapse
|
68
|
Yang J, Ueharu H, Mishina Y. Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis. Bone 2020; 138:115467. [PMID: 32512164 PMCID: PMC7423769 DOI: 10.1016/j.bone.2020.115467] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Energy metabolism is the process of generating energy (i.e. ATP) from nutrients. This process is indispensable for cell homeostasis maintenance and responses to varying conditions. Cells require energy for growth and maintenance and have evolved to have multiple pathways to produce energy. Both genetic and functional studies have demonstrated that energy metabolism, such as glucose, fatty acid, and amino acid metabolism, plays important roles in the formation and function of bone cells including osteoblasts, osteocytes, and osteoclasts. Dysregulation of energy metabolism in bone cells consequently disturbs the balance between bone formation and bone resorption. Metabolic diseases have also been reported to affect bone homeostasis. Bone morphogenic protein (BMP) signaling plays critical roles in regulating the formation and function of bone cells, thus affecting bone development and homeostasis. Mutations of BMP signaling-related genes in mice have been reported to show abnormalities in energy metabolism in many tissues, including bone. In addition, BMP signaling correlates with critical signaling pathways such as mTOR, HIF, Wnt, and self-degradative process autophagy to coordinate energy metabolism and bone homeostasis. These findings will provide a newly emerging target of BMP signaling and potential therapeutic strategies and the improved management of bone diseases. This review summarizes the recent advances in our understanding of (1) energy metabolism in regulating the formation and function of bone cells, (2) function of BMP signaling in whole body energy metabolism, and (3) mechanistic interaction of BMP signaling with other signaling pathways and biological processes critical for energy metabolism and bone homeostasis.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
69
|
Chen S, Xia Y, He F, Fu J, Xin Z, Deng B, He L, Zhou X, Ren W. Serine Supports IL-1β Production in Macrophages Through mTOR Signaling. Front Immunol 2020; 11:1866. [PMID: 32973770 PMCID: PMC7481448 DOI: 10.3389/fimmu.2020.01866] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular metabolic programs tightly regulate the functions of macrophages, and previous studies have shown that serine mainly shapes the macrophage function via one-carbon metabolism. However, it is unknown whether serine modulates the macrophage function independent of one-carbon metabolism. Here, we find that serine deprivation lowers interleukin (IL)-1β production and inflammasome activation, as well as reprograms the transcriptomic and metabolic profile in M1 macrophages. Intriguingly, supplementation of formate, glycine, dNTPs, and glucose cannot rescue the production of IL-1β from serine-deprived macrophages. Mechanistically, serine deprivation inhibits macrophage IL-1β production through inhibition of mechanistic target of rapamycin (mTOR) signaling. Of note, the macrophages from mice feeding serine-free diet have lower IL-1β production, and these mice also show less inflammation after LPS challenge. Collectively, our data highlight a new regulatory mechanism for serine to modulate the macrophage function.
Collapse
Affiliation(s)
- Siyuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jian Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liuqin He
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
70
|
Kurniawan H, Franchina DG, Guerra L, Bonetti L, -Baguet LS, Grusdat M, Schlicker L, Hunewald O, Dostert C, Merz MP, Binsfeld C, Duncan GS, Farinelle S, Nonnenmacher Y, Haight J, Das Gupta D, Ewen A, Taskesen R, Halder R, Chen Y, Jäger C, Ollert M, Wilmes P, Vasiliou V, Harris IS, Knobbe-Thomsen CB, Turner JD, Mak TW, Lohoff M, Meiser J, Hiller K, Brenner D. Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metab 2020; 31:920-936.e7. [PMID: 32213345 PMCID: PMC7265172 DOI: 10.1016/j.cmet.2020.03.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/26/2019] [Accepted: 03/02/2020] [Indexed: 01/03/2023]
Abstract
Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.
Collapse
Affiliation(s)
- Henry Kurniawan
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Lynn Bonetti
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano -Baguet
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Lisa Schlicker
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Oliver Hunewald
- Allergy and Clinical Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Myriam P Merz
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Carole Binsfeld
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Gordon S Duncan
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute University Health Network, Toronto, ON, Canada
| | - Sophie Farinelle
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Yannic Nonnenmacher
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jillian Haight
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute University Health Network, Toronto, ON, Canada
| | - Dennis Das Gupta
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Anouk Ewen
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Rabia Taskesen
- Departments of Medical Biophysics and Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Allergy and Clinical Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Isaac S Harris
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, New York, USA
| | - Christiane B Knobbe-Thomsen
- Departments of Medical Biophysics and Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Tak W Mak
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute University Health Network, Toronto, ON, Canada; Departments of Medical Biophysics and Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; The University of Hong Kong, Hong Kong SAR, China
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Oncology, 84 Val Fleuri, Luxembourg, Luxembourg
| | - Karsten Hiller
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
71
|
Williams RT, Guarecuco R, Gates LA, Barrows D, Passarelli MC, Carey B, Baudrier L, Jeewajee S, La K, Prizer B, Malik S, Garcia-Bermudez J, Zhu XG, Cantor J, Molina H, Carroll T, Roeder RG, Abdel-Wahab O, Allis CD, Birsoy K. ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase. Cell Metab 2020; 31:852-861.e6. [PMID: 32268116 PMCID: PMC7219601 DOI: 10.1016/j.cmet.2020.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 03/05/2020] [Indexed: 01/23/2023]
Abstract
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response (ISR) that enables cell survival under nutrient stress. The mechanisms by which ATF4 couples metabolic stresses to specific transcriptional outputs remain unknown. Using functional genomics, we identified transcription factors that regulate the responses to distinct amino acid deprivation conditions. While ATF4 is universally required under amino acid starvation, our screens yielded a transcription factor, Zinc Finger and BTB domain-containing protein 1 (ZBTB1), as uniquely essential under asparagine deprivation. ZBTB1 knockout cells are unable to synthesize asparagine due to reduced expression of asparagine synthetase (ASNS), the enzyme responsible for asparagine synthesis. Mechanistically, ZBTB1 binds to the ASNS promoter and promotes ASNS transcription. Finally, loss of ZBTB1 sensitizes therapy-resistant T cell leukemia cells to L-asparaginase, a chemotherapeutic that depletes serum asparagine. Our work reveals a critical regulator of the nutrient stress response that may be of therapeutic value.
Collapse
Affiliation(s)
- Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Rohiverth Guarecuco
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Leah A Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Douglas Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Maria C Passarelli
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Bryce Carey
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Lou Baudrier
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Swarna Jeewajee
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin Prizer
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Sohail Malik
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Jason Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
72
|
Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol 2020; 30:408-424. [PMID: 32302552 DOI: 10.1016/j.tcb.2020.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
As one of the fundamental requirements for cell growth and proliferation, nitrogen acquisition and utilization must be tightly regulated. Nitrogen can be generated from amino acids (AAs) and utilized for biosynthetic processes through transamination and deamination reactions. Importantly, limitations of nitrogen availability in cells can disrupt the synthesis of proteins, nucleic acids, and other important nitrogen-containing compounds. Rewiring cellular metabolism to support anabolic processes is a feature common to both cancer and proliferating immune cells. In this review, we discuss how nitrogen is utilized in biosynthetic pathways and highlight different metabolic and oncogenic programs that alter the flow of nitrogen to sustain biomass production and growth, an important emerging feature of cancer and immune cell proliferation.
Collapse
|
73
|
Singh A, Dashnyam M, Chim B, Escobar TM, Dulcey AE, Hu X, Wilson KM, Koganti PP, Spinner CA, Xu X, Jadhav A, Southall N, Marugan J, Selvaraj V, Lazarevic V, Muljo SA, Ferrer M. Anxiolytic Drug FGIN-1-27 Ameliorates Autoimmunity by Metabolic Reprogramming of Pathogenic Th17 Cells. Sci Rep 2020; 10:3766. [PMID: 32111885 PMCID: PMC7048748 DOI: 10.1038/s41598-020-60610-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/11/2020] [Indexed: 01/10/2023] Open
Abstract
Th17 cells are critical drivers of autoimmune diseases and immunopathology. There is an unmet need to develop therapies targeting pathogenic Th17 cells for the treatment of autoimmune disorders. Here, we report that anxiolytic FGIN-1-27 inhibits differentiation and pathogenicity of Th17 cells in vitro and in vivo using the experimental autoimmune encephalomyelitis (EAE) model of Th17 cell-driven pathology. Remarkably, we found that the effects of FGIN-1-27 were independent of translocator protein (TSPO), the reported target for this small molecule, and instead were driven by a metabolic switch in Th17 cells that led to the induction of the amino acid starvation response and altered cellular fatty acid composition. Our findings suggest that the small molecule FGIN-1-27 can be re-purposed to relieve autoimmunity by metabolic reprogramming of pathogenic Th17 cells.
Collapse
Affiliation(s)
- Anju Singh
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Myagmarjav Dashnyam
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Bryan Chim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Thelma M Escobar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Andrés E Dulcey
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Xin Hu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Juan Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
74
|
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol 2020; 10:3154. [PMID: 32117210 PMCID: PMC7026265 DOI: 10.3389/fimmu.2019.03154] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - No-Joon Song
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Brian P Riesenberg
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States.,Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
75
|
Kerr SR, Katz SG. Activation of the Unfolded Protein Response Pathway in Cytotoxic T Cells: A Comparison Between in vitro Stimulation, Infection, and the Tumor Microenvironment. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:675-685. [PMID: 31866782 PMCID: PMC6913815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IRE1α is an extremely conserved intracellular receptor that regulates one branch of the unfolded protein response (UPR). Homologs of IRE1α are found virtually throughout all eukaryotes. This receptor plays a pivotal role in a cell's reaction to stress, determining whether to take compensatory measures and survive or undergo apoptosis and die. While the role of the unfolded protein response in lower organisms and secretory cells has been comprehensively studied, the precise role of IRE1α in the context of cytotoxic T cells has only begun to be elucidated within the past decade. This review discusses what is known about IRE1α and the unfolded protein response in cytotoxic T cells within the context of development, pathogen response, and cancer cell growth.
Collapse
Affiliation(s)
| | - Samuel G. Katz
- To whom all correspondence should be addressed: Samuel G. Katz, M.D., Ph.D., Yale University School of Medicine, 310 Cedar Street, LH315B, New Haven, CT, 06520; Tel: 203-785-2757, Fax: 203-785-6127,
| |
Collapse
|
76
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
77
|
Joseph AM, Monticelli LA, Sonnenberg GF. Metabolic regulation of innate and adaptive lymphocyte effector responses. Immunol Rev 2018; 286:137-147. [PMID: 30294971 PMCID: PMC6195227 DOI: 10.1111/imr.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
Innate and adaptive lymphocytes employ diverse effector programs that provide optimal immunity to pathogens and orchestrate tissue homeostasis, or conversely can become dysregulated to drive progression of chronic inflammatory diseases. Emerging evidence suggests that CD4+ T helper cell subsets and their innate counterparts, the innate lymphoid cell family, accomplish these complex biological roles by selectively programming their cellular metabolism in order to instruct distinct modules of lymphocyte differentiation, proliferation, and cytokine production. Further, these metabolic pathways are significantly influenced by tissue microenvironments and disease states. Here, we summarize our current knowledge on how cell-intrinsic metabolic factors modulate the context-dependent bioenergetic pathways that govern innate and adaptive lymphocytes. Further, we propose that a greater understanding of these pathways may lead to the identification of unique features in each population and provoke the development of novel therapeutic strategies to modulate lymphocytes in health and disease.
Collapse
Affiliation(s)
- Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
| | - Laurel A Monticelli
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
| |
Collapse
|