51
|
Zou H, Luo J, Guo Y, Liu Y, Wang Y, Deng L, Li P. RNA-binding protein complex LIN28/MSI2 enhances cancer stem cell-like properties by modulating Hippo-YAP1 signaling and independently of Let-7. Oncogene 2022; 41:1657-1672. [PMID: 35102250 PMCID: PMC8913359 DOI: 10.1038/s41388-022-02198-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The RNA binding protein LIN28 directly modulates the stability and translation of target mRNAs independently of Let-7; however, the key downstream targets of LIN28 in this process are largely unknown. Here, we revealed that Hippo signaling effector YAP1 functioned as a key downstream regulator of LIN28 to modulate the cancer stem cell (CSC)-like properties and tumor progressions in triple negative breast cancer (TNBC). LIN28 was overexpressed in BC tissues and cell lines, and significantly correlated with poorer overall survivals in patients. Ectopic LIN28 expression enhanced, while knockdown of LIN28A inhibited the CSC-like properties, cell growth and invasive phenotypes of TNBC cells in vitro and in vivo. Transcriptome analysis demonstrated LIN28 overexpression significantly induced the expressions of YAP1 downstream genes, while reduced the transcripts of YAP1 upstream kinases, such as MST1/2 and LATS1/2, and knockdown of LIN28A exhibited the opposite effects. Furthermore, constitutive activation of YAP1 in LIN28 knockdown TNBC cells could rescue the cell growth and invasive phenotypes in vitro and in vivo. Mechanistically, instead of the dependence of Let-7, LIN28 recruited RNA binding protein MSI2 in a manner dependent on the LIN28 CSD domain and MSI2 RRM domain, to directly induce the mRNA decay of YAP1 upstream kinases, leading to the inhibition of Hippo pathway and activation of YAP1, which eventually gave rise to increased CSC populations, enhanced tumor cell growth and invasive phenotypes. Accordingly, co-upregulations of LIN28 and MSI2 in TNBC tissues were strongly associated with YAP1 protein level and tumor malignance. Taken together, our findings unravel a novel LIN28/MSI2-YAP1 regulatory axis to induce the CSC-like properties, tumor growth and metastasis, independently of Let-7, which may serve as a potential therapeutic strategy for the treatment of a subset of TNBC with LIN28 overexpression.
Collapse
Affiliation(s)
- Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuhong Liu
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
52
|
Wu J, Wu Y, Guo Q, Wang S, Wu X. RNA-binding proteins in ovarian cancer: a novel avenue of their roles in diagnosis and treatment. J Transl Med 2022; 20:37. [PMID: 35062979 PMCID: PMC8783520 DOI: 10.1186/s12967-022-03245-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC), an important cause of cancer-related death in women worldwide, is one of the most malignant cancers and is characterized by a poor prognosis. RNA-binding proteins (RBPs), a class of endogenous proteins that can bind to mRNAs and modify (or even determine) the amount of protein they can generate, have attracted great attention in the context of various diseases, especially cancers. Compelling studies have suggested that RBPs are aberrantly expressed in different cancer tissues and cell types, including OC tissues and cells. More specifically, RBPs can regulate proliferation, apoptosis, invasion, metastasis, tumorigenesis and chemosensitivity and serve as potential therapeutic targets in OC. Herein, we summarize what is currently known about the biogenesis, molecular functions and potential roles of human RBPs in OC and their prospects for application in the clinical treatment of OC.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
53
|
Goebel GL, Hohnen L, Borgelt L, Hommen P, Qiu X, Lightfoot H, Wu P. Small molecules with tetrahydroquinoline-containing Povarov scaffolds as inhibitors disrupting the Protein-RNA interaction of LIN28-let-7. Eur J Med Chem 2022; 228:114014. [PMID: 34883291 DOI: 10.1016/j.ejmech.2021.114014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Inhibition of the RNA-binding protein LIN28 and disruption of the protein-RNA interaction of LIN28-let-7 with small molecules holds great potential to develop new anticancer therapeutics. Herein, we report the LIN28 inhibitory activities of a series of 30 small molecules with a tricyclic tetrahydroquinoline (THQ)-containing scaffold obtained from a Povarov reaction. The THQ molecules were structurally optimized by varying the 2-benzoic acid substituent, the fused ring at 3- and 4-positions, and the substituents at the phenyl moiety of the tetrahydroquinoline core. Among the tested compounds, GG-43 showed dose-dependent inhibition in an EMSA validation assay and low micromolar inhibitory activity in a fluorescence polarization-based assay measuring disruption of LIN28-let-7 interaction. Binding mode between GG-43 and the cold shock domain of LIN28 was proposed via a molecular docking analysis. The study provides one of the first systematic analyses on structural features that are required for LIN28 inhibition, and indicates the necessity to develop small molecules with new scaffolds as LIN28-targeting probes and therapeutic candidates. In parallel, this study demonstrates the polypharmacological nature of tricyclic THQ-containing scaffolds accessible through Povarov reactions.
Collapse
Affiliation(s)
- Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätstr. 150, Bochum, 44780, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Helen Lightfoot
- Safety & Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany.
| |
Collapse
|
54
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
55
|
Nguyen LD, Chau RK, Krichevsky AM. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer's Disease and Related Dementias. Genes (Basel) 2021; 12:2005. [PMID: 34946953 PMCID: PMC8701955 DOI: 10.3390/genes12122005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel K Chau
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
56
|
Missios P, da Rocha EL, Pearson DS, Philipp J, Aleman MM, Pirouz M, Farache D, Franses JW, Kubaczka C, Tsanov KM, Jha DK, Pepe-Mooney B, Powers JT, Gregory RI, Lee AS, Dominguez D, Ting DT, Daley GQ. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. J Clin Invest 2021; 131:e145142. [PMID: 34779407 PMCID: PMC8592552 DOI: 10.1172/jci145142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
High expression of LIN28B is associated with aggressive malignancy and poor survival. Here, probing MYCN-amplified neuroblastoma as a model system, we showed that LIN28B expression was associated with enhanced cell migration in vitro and invasive and metastatic behavior in murine xenografts. Sequence analysis of the polyribosome fraction of LIN28B-expressing neuroblastoma cells revealed let-7-independent enrichment of transcripts encoding components of the translational and ribosomal apparatus and depletion of transcripts of neuronal developmental programs. We further observed that LIN28B utilizes both its cold shock and zinc finger RNA binding domains to preferentially interact with MYCN-induced transcripts of the ribosomal complex, enhancing their translation. These data demonstrated that LIN28B couples the MYCN-driven transcriptional program to enhanced ribosomal translation, thereby implicating LIN28B as a posttranscriptional driver of the metastatic phenotype.
Collapse
Affiliation(s)
- Pavlos Missios
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Edroaldo Lummertz da Rocha
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel S. Pearson
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Philipp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Maria M. Aleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehdi Pirouz
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joseph W. Franses
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaloyan M. Tsanov
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak K. Jha
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Pepe-Mooney
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - John T. Powers
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard I. Gregory
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA
| | - Amy S.Y. Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David T. Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George Q. Daley
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Shrivastava G, Aljabali AA, Shahcheraghi SH, Lotfi M, Shastri MD, Shukla SD, Chellappan DK, Jha NK, Anand K, Dureja H, Pabari RM, Mishra V, Almutary AG, Alnuqaydan AM, Charbe N, Prasher P, Negi P, Goyal R, Dua K, Gupta G, Serrano-Aroca Á, Bahar B, Barh D, Panda PK, Takayama K, Lundstorm K, McCarron P, Bakshi H, Tambuwala MM. Targeting LIN28: a new hope in prostate cancer theranostics. Future Oncol 2021; 17:3873-3880. [PMID: 34263659 DOI: 10.2217/fon-2021-0247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.
Collapse
Affiliation(s)
- Garima Shrivastava
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Alaa Aa Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid-Jordan
| | - Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Madhur D Shastri
- School of Pharmacy & Pharmacology, University of Tasmania, Hobart, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine & Public Health, The University of Newcastle, Callaghan, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences & National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Harish Dureja
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502329, India
| | - Ritesh M Pabari
- RCSI, University of Medicine & Health Sciences, Dublin, Ireland
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Nitin Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 340, Región Metropolitana, Chile
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain
| | - Bojlul Bahar
- International Institute of Nutritional Sciences & Food Safety Studies, University of Central Lancashire, Preston, United Kingdom
| | - Debmalya Barh
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - Kazuo Takayama
- Center for IPS Cell Research & Application, Kyoto University, Kyoto 606-8397, Japan
| | | | - Paul McCarron
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Hamid Bakshi
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| |
Collapse
|
58
|
Kim YM, Hong S. Controversial roles of cold‑inducible RNA‑binding protein in human cancer (Review). Int J Oncol 2021; 59:91. [PMID: 34558638 DOI: 10.3892/ijo.2021.5271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRBP) is a cold‑shock protein comprised of an RNA‑binding motif that is induced by several stressors, such as cold shock, UV radiation, nutrient deprivation, reactive oxygen species and hypoxia. CIRBP can modulate post‑transcriptional regulation of target mRNA, which is required to control DNA repair, circadian rhythms, cell growth, telomere integrity and cardiac physiology. In addition, the crucial function of CIRBP in various human diseases, including cancers and inflammatory disease, has been reported. Although CIRBP is primarily considered to be an oncogene, it may also serve a role in tumor suppression. In the present study, the controversial roles of CIRBP in various human cancers is summarized, with a focus on the interconnectivity between CIRBP and its target mRNAs involved in tumorigenesis. CIRBP may represent an important prognostic marker and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
59
|
Rengifo-Gonzalez JC, El Hage K, Clément MJ, Steiner E, Joshi V, Craveur P, Durand D, Pastré D, Bouhss A. The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation. eLife 2021; 10:67605. [PMID: 34490845 PMCID: PMC8523171 DOI: 10.7554/elife.67605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
TDP-43 is a nuclear RNA-binding protein that forms neuronal cytoplasmic inclusions in two major neurodegenerative diseases, ALS and FTLD. While the self-assembly of TDP-43 by its structured N-terminal and intrinsically disordered C-terminal domains has been widely studied, the mechanism by which mRNA preserves TDP-43 solubility in the nucleus has not been addressed. Here, we demonstrate that tandem RNA recognition motifs of TDP-43 bind to long GU-repeats in a cooperative manner through intermolecular interactions. Moreover, using mutants whose cooperativity is impaired, we found that the cooperative binding of TDP-43 to mRNA may be critical to maintain the solubility of TDP-43 in the nucleus and the miscibility of TDP-43 in cytoplasmic stress granules. We anticipate that the knowledge of a higher order assembly of TDP-43 on mRNA may clarify its role in intron processing and provide a means of interfering with the cytoplasmic aggregation of TDP-43.
Collapse
Affiliation(s)
- Juan Carlos Rengifo-Gonzalez
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Krystel El Hage
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Emilie Steiner
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Vandana Joshi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | | | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - David Pastré
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| |
Collapse
|
60
|
Liu J, Sauer MA, Hussein SG, Yang J, Tenen DG, Chai L. SALL4 and microRNA: The Role of Let-7. Genes (Basel) 2021; 12:1301. [PMID: 34573282 PMCID: PMC8467721 DOI: 10.3390/genes12091301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
SALL4 is a zinc finger transcription factor that belongs to the spalt-like (SALL) gene family. It plays important roles in the maintenance of self-renewal and pluripotency of embryonic stem cells, and its expression is repressed in most adult organs. SALL4 re-expression has been observed in different types of human cancers, and dysregulation of SALL4 contributes to the pathogenesis, metastasis, and even drug resistance of multiple cancer types. Surprisingly, little is known regarding how SALL4 expression is controlled, but recently microRNAs (miRNAs) have emerged as important regulators of SALL4. Due to the ability of regulating targets differentially in specific tissues, and recent advances in systemic and organ specific miRNA delivery mechanisms, miRNAs have emerged as promising therapeutic targets for cancer treatment. In this review, we summarize current knowledge of the interaction between SALL4 and miRNAs in mammalian development and cancer, paying particular attention to the emerging roles of the Let-7/Lin28 axis. In addition, we discuss the therapeutic prospects of targeting SALL4 using miRNA-based strategies, with a focus on the Let-7/LIN28 axis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Madeline A. Sauer
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | | | - Junyu Yang
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Daniel G. Tenen
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| |
Collapse
|
61
|
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651. [PMID: 34145432 PMCID: PMC8212082 DOI: 10.1038/s41573-021-00219-z] [Citation(s) in RCA: 974] [Impact Index Per Article: 243.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.
Collapse
Affiliation(s)
- Melanie Winkle
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division - Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences - National Research Centre, Cairo, Egypt
| | - Muller Fabbri
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
| |
Collapse
|
62
|
Borgelt L, Li F, Hommen P, Lampe P, Hwang J, Goebel GL, Sievers S, Wu P. Trisubstituted Pyrrolinones as Small-Molecule Inhibitors Disrupting the Protein-RNA Interaction of LIN28 and Let-7. ACS Med Chem Lett 2021; 12:893-898. [PMID: 34136077 PMCID: PMC8201479 DOI: 10.1021/acsmedchemlett.0c00546] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Modulation of protein-RNA interaction (PRI) using small molecules is a promising strategy to develop therapeutics. LIN28 is an RNA-binding protein that blocks the maturation of the tumor suppressor let-7 microRNAs. Herein, we performed a fluorescence polarization-based screening and identified trisubstituted pyrrolinones as small-molecule inhibitors disrupting the LIN28-let-7 interaction. The most potent compound C902 showed dose-dependent inhibition in an EMSA validation assay, enhanced thermal stability of the cold shock domain of LIN28, and increased mature let-7 levels in JAR cells. The structure-activity relationship study revealed key structural features contributing to either PRI inhibition or stabilization of protein-protein interaction (PPI). The pyrrolinones identified in this study not only represent a new class of LIN28-binding molecules that diversify the limited available LIN28 inhibitors but also represent the first examples of small molecules that showed substituent-dependent PRI inhibitory and PPI activating activities.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Fu Li
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Pascal Hommen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Philipp Lampe
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Jimin Hwang
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Sonja Sievers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
63
|
Julio AR, Backus KM. New approaches to target RNA binding proteins. Curr Opin Chem Biol 2021; 62:13-23. [PMID: 33535093 PMCID: PMC8823266 DOI: 10.1016/j.cbpa.2020.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
RNA binding proteins (RBPs) are a large and diverse class of proteins that regulate all aspects of RNA biology. As RBP dysregulation has been implicated in a number of human disorders, including cancers and neurodegenerative disease, small molecule chemical probes that target individual RBPs represent useful tools for deciphering RBP function and guiding the production of new therapeutics. While RBPs are often thought of as tough-to-drug, the discovery of a number of small molecules that target RBPs has spurred considerable recent interest in new strategies for RBP chemical probe discovery. Here we review current and emerging technologies for high throughput RBP-small molecule screening that we expect will help unlock the full therapeutic potential of this exciting protein class.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
64
|
Lin28, a major translation reprogramming factor, gains access to YB-1-packaged mRNA through its cold-shock domain. Commun Biol 2021; 4:359. [PMID: 33742080 PMCID: PMC7979924 DOI: 10.1038/s42003-021-01862-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein Lin28 (Lin28a) is an important pluripotency factor that reprograms translation and promotes cancer progression. Although Lin28 blocks let-7 microRNA maturation, Lin28 also binds to a large set of cytoplasmic mRNAs directly. However, how Lin28 regulates the processing of many mRNAs to reprogram global translation remains unknown. We show here, using a structural and cellular approach, a mixing of Lin28 with YB-1 (YBX1) in the presence of mRNA owing to their cold-shock domain, a conserved β-barrel structure that binds to ssRNA cooperatively. In contrast, the other RNA binding-proteins without cold-shock domains tested, HuR, G3BP-1, FUS and LARP-6, did not mix with YB-1. Given that YB-1 is the core component of dormant mRNPs, a model in which Lin28 gains access to mRNPs through its co-association with YB-1 to mRNA may provide a means for Lin28 to reprogram translation. We anticipate that the translational plasticity provided by mRNPs may contribute to Lin28 functions in development and adaptation of cancer cells to an adverse environment. Samsonova et al. show a cooperative association of Lin28 and YB-1 for their target mRNA through their cold-shock domain, which is a conserved β-barrel structure that binds to single-stranded RNA. This study suggests that the association of Lin28 with YB-1 in mRNPs may contribute to the translational plasticity during development and the adaptation of cancer cells to adverse environments.
Collapse
|
65
|
Luo J, Zou H, Deng L, Sun X, Yuan P, Li P. Lin28 Inhibits the Differentiation from Mouse Embryonic Stem Cells to Glial Lineage Cells through Upregulation of Yap1. Stem Cells Int 2021; 2021:6674283. [PMID: 33688355 PMCID: PMC7920735 DOI: 10.1155/2021/6674283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
The RNA-binding protein Lin28 regulates neurogliogenesis in mammals, independently of the let-7 microRNA. However, the detailed regulatory mechanism remains obscured. Here, we established Lin28a or Lin28b overexpression mouse embryonic stem cells (ESCs) and found that these cells expressed similar levels of the core pluripotent factors, such as Oct4 and Sox2, and increased Yap1 but decreased lineage-specific markers compared to the control ESCs. Further differentiation of these ESCs to neuronal and glial lineage cells revealed that Lin28a/b overexpression did not affect the expression of neuronal marker βIII-tubulin, but dramatically inhibited the glial lineage markers, such as Gfap and Mbp. Interestingly, overexpression of Yap1 in mouse ESCs phenocopied Lin28a/b overexpression ESCs by showing defect in glial cell differentiation. Inhibition of Yap1/Tead-mediated transcription with verteporfin partially rescued the differentiation defect of Lin28a/b overexpression ESCs. Mechanistically, we demonstrated that Lin28 can directly bind to Yap1 mRNA, and the induction of Yap1 by Lin28a in mESCs is independent of Let7. Taken together, our results unravel a novel Lin28-Yap1 regulatory axis during mESC to glial lineage cell differentiation, which may shed light on glial cell generation in vitro.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Sun
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
66
|
Lovnicki J, Gan Y, Feng T, Li Y, Xie N, Ho CH, Lee AR, Chen X, Nappi L, Han B, Fazli L, Huang J, Gleave ME, Dong X. LIN28B promotes the development of neuroendocrine prostate cancer. J Clin Invest 2021; 130:5338-5348. [PMID: 32634132 DOI: 10.1172/jci135373] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (t-NEPC) is a highly aggressive subtype of prostate cancer with poor patient survival. Emerging evidence indicates that t-NEPC can develop when prostate adenocarcinoma cells acquire cancer stem-like cell signaling in the presence of androgen receptor inhibition, followed by redifferentiation toward neuroendocrine lineage and subsequent t-NEPC progression. Whether the stem-like signaling is controlled by the core pluripotency stem cell genes (e.g., LIN28 and SOX2) remains unknown. Here, we report that the transcription of the LIN28B isoform and SOX2 were co-upregulated in t-NEPC patient tumors, patient-derived xenografts, transgenic mice, and cell models. Immunohistochemistry validated that LIN28B and SOX2 protein expression were elevated in t-NEPC patient biopsies. Using prostate adenocarcinoma and t-NEPC cell models, we demonstrated that LIN28B induced a stem-like gene network, neuroendocrine biomarkers, and neuroendocrine cell morphology. LIN28B depletion by CRISPR inhibited t-NEPC tumorigenesis and xenograft growth. These LIN28B functions were mediated mainly through the suppression of let-7 miRNA expression, resulting in de-repression of the transcription factor HMGA2 and HMGA2-mediated SOX2 expression. This study revealed a mechanism by which t-NEPC can develop through the LIN28B/let-7/SOX2 axis that regulates a cancer cell stem-like gene network, highlighting LIN28B as a potential therapeutic target in t-NEPC.
Collapse
Affiliation(s)
- Jessica Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Gan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Feng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Key Laboratory of Experimental Teratology, Ministry of Education, and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yinan Li
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ning Xie
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chia-Hao Ho
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bo Han
- Key Laboratory of Experimental Teratology, Ministry of Education, and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
67
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA‐PROTACs: Degraders of RNA‐Binding Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Antoine Cléry
- Department of Biology ETH Zurich Hönggerbergring 64 8093 Zurich Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
68
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA-PROTACs: Degraders of RNA-Binding Proteins. Angew Chem Int Ed Engl 2021; 60:3163-3169. [PMID: 33108679 PMCID: PMC7898822 DOI: 10.1002/anie.202012330] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Defects in the functions of RNA binding proteins (RBPs) are at the origin of many diseases; however, targeting RBPs with conventional drugs has proven difficult. PROTACs are a new class of drugs that mediate selective degradation of a target protein through a cell's ubiquitination machinery. PROTACs comprise a moiety that binds the selected protein, conjugated to a ligand of an E3 ligase. Herein, we introduce RNA-PROTACs as a new concept in the targeting of RBPs. These chimeric structures employ small RNA mimics as targeting groups that dock the RNA-binding site of the RBP, whereupon a conjugated E3-recruiting peptide derived from the HIF-1α protein directs the RBP for proteasomal degradation. We performed a proof-of-concept demonstration with the degradation of two RBPs-a stem cell factor LIN28 and a splicing factor RBFOX1-and showed their use in cancer cell lines. The RNA-PROTAC approach opens the way to rapid, selective targeting of RBPs in a rational and general fashion.
Collapse
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Antoine Cléry
- Department of BiologyETH ZurichHönggerbergring 648093ZurichSwitzerland
| | - François Halloy
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|
69
|
Johnson DT, Davis AG, Zhou JH, Ball ED, Zhang DE. MicroRNA let-7b downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3'UTR. Exp Hematol Oncol 2021; 10:8. [PMID: 33531067 PMCID: PMC7856722 DOI: 10.1186/s40164-021-00204-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Acute myeloid leukemia (AML) with the t(8;21)(q22;q22) chromosomal translocation is among the most common subtypes of AML and produces the AML1-ETO (RUNX1-ETO, RUNX1-RUNX1T1) oncogenic fusion gene. AML1-ETO functions as an aberrant transcription factor which plays a key role in blocking normal hematopoiesis. Thus, the expression of AML1-ETO is critical to t(8;21) AML leukemogenesis and maintenance. Post-transcriptional regulation of gene expression is often mediated through interactions between trans-factors and cis-elements within transcript 3′-untranslated regions (UTR). AML1-ETO uses the 3′UTR of the ETO gene, which is not normally expressed in hematopoietic cells. Therefore, the mechanisms regulating AML1-ETO expression via the 3’UTR are attractive therapeutic targets. Methods We used RNA-sequencing of t(8;21) patients and cell lines to examine the 3′UTR isoforms used by AML1-ETO transcripts. Using luciferase assay approaches, we test the relative contribution of 3′UTR cis elements to AML1-ETO expression. We further use let-7b microRNA mimics and anti-let-7b sponges for functional studies of t(8;21) AML cell lines. Results In this study, we examine the regulation of AML1-ETO via the 3’UTR. We demonstrate that AML1-ETO transcripts primarily use a 3.7 kb isoform of the ETO 3′UTR in both t(8;21) patients and cell lines. We identify a negative regulatory element within the AML1-ETO 3′UTR. We further demonstrate that the let-7b microRNA directly represses AML1-ETO through this site. Finally, we find that let-7b inhibits the proliferation of t(8;21) AML cell lines, rescues expression of AML1-ETO target genes, and promotes differentiation. Conclusions AML1-ETO is post-transcriptionally regulated by let-7b, which contributes to the leukemic phenotype of t(8;21) AML and may be important for t(8;21) leukemogenesis and maintenance.
Collapse
Affiliation(s)
- Daniel T Johnson
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jie-Hua Zhou
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,BMT Division, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Edward D Ball
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,BMT Division, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA. .,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA. .,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA. .,Department of Pathology, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
70
|
Elcheva IA, Spiegelman VS. Targeting RNA-binding proteins in acute and chronic leukemia. Leukemia 2021; 35:360-376. [PMID: 33149266 PMCID: PMC7868134 DOI: 10.1038/s41375-020-01066-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
RNA-binding proteins (RBPs) play a crucial role in cellular physiology by regulating RNA processing, translation, and turnover. In neoplasms, RBP support of cancer-relevant expression of alternatively spliced, modified, and stabilized mRNA transcripts is essential to self-renewal, proliferation, and adaptation to stress. In this review, we assess the impact of key families of RBPs in leukemogenesis, review progress in targeting those proteins with small molecules, and discuss how multilevel composition of posttranscriptional regulation of gene expression could be used for potential therapies in acute and chronic leukemia.
Collapse
Affiliation(s)
- Irina A Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
71
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|
72
|
Rangel-Guerrero SI, Franco-Urquijo PA, Martínez-Salas E, Alvarez-Salas LM. Structural insights of the pre-let-7 interaction with LIN28B. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:194-211. [PMID: 33319653 DOI: 10.1080/15257770.2020.1859116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Let-7:LIN28 regulatory loop is a paradigm in miRNA regulation. LIN28 harbors two RNA binding domains, which interact with well-conserved sequences in pre-let-7 RNAs, the GNGAY and the GGAG motifs. Here, the differential binding between LIN28B and pre-let-7 members was associated with the structural characteristics of the pre-let-7 family mapped by SHAPE, uncovering diverse structural patterns within pre-let-7 members. Pre-let-7 mutants supported a relevant role of the GGAG motif location and the preE-stem stability for the interaction with LIN28B. Based on these results, we propose a core RNA structure for LIN28B interaction.
Collapse
Affiliation(s)
- Sergio Israel Rangel-Guerrero
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Pablo Alberto Franco-Urquijo
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | | | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
73
|
Raghuram N, Khan S, Mumal I, Bouffet E, Huang A. Embryonal tumors with multi-layered rosettes: a disease of dysregulated miRNAs. J Neurooncol 2020; 150:63-73. [PMID: 33090313 DOI: 10.1007/s11060-020-03633-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION ETMRs are highly lethal, pediatric embryonal brain tumors, previously classified as various histologic diagnoses including supratentorial primitive neuroectodermal tumors (sPNET) and CNS PNET. With recognition that these tumors harbor recurrent amplification of a novel oncogenic miRNA cluster on chr19, C19MC, ETMRs were designated as a distinct biological and molecular entity with a spectrum of histologic and clinical manifestations. METHODS We reviewed published literature describing clinical presentation, the genetic and epigenetic drivers of oncogenesis, and recent therapeutic strategies adopted to combat these aggressive tumors. RESULTS As a consequence of C19MC amplification, ETMRs upregulate several oncogenic and pluripotency proteins, including LIN28A, DNMT3B and MYCN, that confer a unique epigenetic signature reminiscent of nascent embryonic stem cells. In this review, we focus on the dysregulation of miRNAs in ETMR, the major pathogenic mechanism identified in this disease. CONCLUSION Despite the use of multi-modal therapeutic regimens, ETMR patients have dismal survival. Understanding the unique biology of these tumors has provided new insights towards novel therapeutic targets.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Division of Hematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Sara Khan
- Monash Children's Cancer Centre, Monash Children's Hospital. Monash Health. Center for Cancer Research, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, School of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, 3168, Australia.,Division of Hematology/Oncology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Iqra Mumal
- Division of Hematology/Oncology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Eric Bouffet
- Division of Hematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Annie Huang
- Division of Hematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G1X8, Canada. .,Division of Hematology/Oncology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada. .,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
74
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
75
|
Weiße J, Rosemann J, Krauspe V, Kappler M, Eckert AW, Haemmerle M, Gutschner T. RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E6835. [PMID: 32957697 PMCID: PMC7555251 DOI: 10.3390/ijms21186835] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.
Collapse
Affiliation(s)
- Jonas Weiße
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Julia Rosemann
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Vanessa Krauspe
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Alexander W. Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| |
Collapse
|
76
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
77
|
Franses JW, Philipp J, Missios P, Bhan I, Liu A, Yashaswini C, Tai E, Zhu H, Ligorio M, Nicholson B, Tassoni EM, Desai N, Kulkarni AS, Szabolcs A, Hong TS, Liss AS, Fernandez-Del Castillo C, Ryan DP, Maheswaran S, Haber DA, Daley GQ, Ting DT. Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nat Commun 2020; 11:3303. [PMID: 32620742 PMCID: PMC7335061 DOI: 10.1038/s41467-020-17150-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) lethality is due to metastatic dissemination. Characterization of rare, heterogeneous circulating tumor cells (CTCs) can provide insight into metastasis and guide development of novel therapies. Using the CTC-iChip to purify CTCs from PDAC patients for RNA-seq characterization, we identify three major correlated gene sets, with stemness genes LIN28B/KLF4, WNT5A, and LGALS3 enriched in each correlated gene set; only LIN28B CTC expression was prognostic. CRISPR knockout of LIN28B-an oncofetal RNA-binding protein exerting diverse effects via negative regulation of let-7 miRNAs and other RNA targets-in cell and animal models confers a less aggressive/metastatic phenotype. This correlates with de-repression of let-7 miRNAs and is mimicked by silencing of downstream let-7 target HMGA2 or chemical inhibition of LIN28B/let-7 binding. Molecular characterization of CTCs provides a unique opportunity to correlated gene set metastatic profiles, identify drivers of dissemination, and develop therapies targeting the "seeds" of metastasis.
Collapse
Affiliation(s)
- Joseph W Franses
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Julia Philipp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Pavlos Missios
- Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - Irun Bhan
- Massachusetts General Hospital Division of Gastroenterology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ann Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Chittampalli Yashaswini
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Eric Tai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Huili Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Matteo Ligorio
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Elizabeth M Tassoni
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Niyati Desai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Anupriya S Kulkarni
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Annamaria Szabolcs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Theodore S Hong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew S Liss
- Massachusetts General Hospital Department of Surgery, Harvard Medical School, Boston, MA, 02114, USA
| | | | - David P Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20615, USA
| | - George Q Daley
- Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
78
|
Glaß M, Michl P, Hüttelmaier S. RNA Binding Proteins as Drivers and Therapeutic Target Candidates in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21114190. [PMID: 32545414 PMCID: PMC7312628 DOI: 10.3390/ijms21114190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) belong to the most frequent and most deadly malignancies in the western world. Mutations in KRAS and TP53 along with some other frequent polymorphisms occur almost universally and are likely to be responsible for tumor initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses observed in PDAC patients, which limits efficiency of current therapeutic strategies. Instead, recent classifications of PDAC tumor samples are based on transcriptomics data and thus include information about epigenetic, transcriptomic, and post-transcriptomic deregulations. RNA binding proteins (RBPs) are important post-transcriptional regulators involved in every aspect of the RNA life cycle and thus considerably influence the transcriptome. In this study, we systematically investigated deregulated expression, prognostic value, and essentiality reported for RBPs in PDAC or PDAC cancer models using publicly available data. We identified 44 RBPs with suggested oncogenic potential. These include various proteins, e.g., IGF2 mRNA binding proteins (IGF2BPs), with reported tumor-promoting roles. We further characterized these RBPs and found common patterns regarding their expression, interaction, and regulation by microRNAs. These analyses suggest four prime candidate oncogenic RBPs with partially validated target potential: APOBEC1, IGF2BP1 and 3, and OASL.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany;
- Correspondence:
| | - Patrick Michl
- Universitätsklinik und Poliklinik für Innere Medizin I, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany;
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany;
| |
Collapse
|
79
|
Prieto C, Kharas MG. RNA Regulators in Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034967. [PMID: 31615866 DOI: 10.1101/cshperspect.a034967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Posttranscriptional regulation of mRNA is a powerful and tightly controlled process in which cells command the integrity, diversity, and abundance of their protein products. RNA-binding proteins (RBPs) are the principal players that control many intermediary steps of posttranscriptional regulation. Recent advances in this field have discovered the importance of RBPs in hematological diseases. Herein we will review a number of RBPs that have been determined to play critical functions in leukemia and lymphoma. Furthermore, we will discuss the potential therapeutic strategies that are currently being studied to specifically target RBPs in these diseases.
Collapse
Affiliation(s)
- Camila Prieto
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
80
|
RNA-Targeted Therapies and High-Throughput Screening Methods. Int J Mol Sci 2020; 21:ijms21082996. [PMID: 32340368 PMCID: PMC7216119 DOI: 10.3390/ijms21082996] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.
Collapse
|
81
|
A nanobody targeting the LIN28:let-7 interaction fragment of TUT4 blocks uridylation of let-7. Proc Natl Acad Sci U S A 2020; 117:4653-4663. [PMID: 32060122 PMCID: PMC7060709 DOI: 10.1073/pnas.1919409117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Terminal uridylyltransferases are writers of poly(U) tails in diverse RNA uridylation pathways. In the let-7 pathway, the LIN28:pre-let-7:TUTase ribonucleoprotein complex regulates the processing and maturation of the let-7 microRNA, and plays an important role in both physiology and disease. The presence of redundant TUTase orthologs and the diverse pathways poses challenges to revealing the molecular mechanisms of TUTases. We developed a precise tool to identify nanobodies that inhibited the LIN28:pre-let-7:TUTase interaction. The nanobody Nb-S2A4 specifically interacted with the LIN28:let-7 interaction fragment in TUT4, which is critical for oligouridylation and monouridylation of let-7. Our data illustrate that the nanobody tool is effective in distinguishing functions among protein orthologs and diverse pathways. The LIN28:pre-let-7:TUTase ternary complex regulates pluripotency and oncogenesis by controlling processing of the let-7 family of microRNAs. The complex oligouridylates the 3′ ends of pre-let-7 molecules, leading to their degradation via the DIS3L2 exonuclease. Previous studies suggest that components of this complex are potential therapeutic targets in malignancies that aberrantly express LIN28. In this study we developed a functional epitope selection approach to identify nanobody inhibitors of the LIN28:pre-let-7:TUT4 complex. We demonstrate that one of the identified nanobodies, Nb-S2A4, targets the 106-residue LIN28:let-7 interaction (LLI) fragment of TUT4. Nb-S2A4 can effectively inhibit oligouridylation and monouridylation of pre-let-7g in vitro. Expressing Nb-S2A4 allows maturation of the let-7 species in cells expressing LIN28, highlighting the therapeutic potential of targeting the LLI fragment.
Collapse
|
82
|
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem 2020; 188:112008. [DOI: 10.1016/j.ejmech.2019.112008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
|
83
|
Byun WG, Lim D, Park SB. Discovery of Small-Molecule Modulators of Protein-RNA Interactions by Fluorescence Intensity-Based Binding Assay. Chembiochem 2019; 21:818-824. [PMID: 31587454 DOI: 10.1002/cbic.201900467] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Protein-RNA interactions mediate various cellular processes, the dysregulation of which has been associated with a list of diseases. Thus, novel experimental tools for monitoring protein-RNA interactions are highly desirable to identify new chemical modulators of these therapeutic targets. In this study, we constructed simple fluorescence intensity-based protein-RNA binding assays by testing multiple environment-sensitive organic fluorophores. We selected the oncogenic interaction between Lin28 and the let-7 microRNA and the important immunomodulatory Roquin-Tnf CDE interaction as representative targets. We adapted this assay to high-throughput screening for the identification of pyrazolyl thiazolidinedione-type molecules as potent small-molecule inhibitors of protein-microRNA interactions. We clearly showed the structure-activity relationships of this new class of Lin28-let-7 interaction inhibitors, and confirmed that cellular mature let-7 microRNAs and their target genes could be modulated upon treatment with the pyrazolyl thiazolidinedione-type inhibitor. We expect that our simple and adaptable screening approach can be applied for the development of various assay systems aimed at the identification of bioactive small molecules targeting protein-RNA interactions.
Collapse
Affiliation(s)
- Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, South Korea
| | - Donghyun Lim
- Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, South Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
84
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
85
|
Wu K, Zhang R, Lu Y, Wen L, Li Y, Duan R, Yao Y, Jia Y. Lin28B regulates the fate of grafted mesenchymal stem cells and enhances their protective effects against Alzheimer's disease by upregulating IGF‐2. J Cell Physiol 2019; 234:21860-21876. [PMID: 31066045 DOI: 10.1002/jcp.28750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kaimin Wu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Ruiyi Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanhui Lu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Lulu Wen
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanfei Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Ranran Duan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yaobing Yao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanjie Jia
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
86
|
Crystal structure of the Lin28-interacting module of human terminal uridylyltransferase that regulates let-7 expression. Nat Commun 2019; 10:1960. [PMID: 31036859 PMCID: PMC6488673 DOI: 10.1038/s41467-019-09966-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
Lin28-dependent oligo-uridylylation of precursor let-7 (pre-let-7) by terminal uridylyltransferase 4/7 (TUT4/7) represses let-7 expression by blocking Dicer processing, and regulates cell differentiation and proliferation. The interaction between the Lin28:pre-let-7 complex and the N-terminal Lin28-interacting module (LIM) of TUT4/7 is required for pre-let-7 oligo-uridylylation by the C-terminal catalytic module (CM) of TUT4/7. Here, we report crystallographic and biochemical analyses of the LIM of human TUT4. The LIM consists of the N-terminal Cys2His2-type zinc finger (ZF) and the non-catalytic nucleotidyltransferase domain (nc-NTD). The ZF of LIM adopts a distinct structural domain, and its structure is homologous to those of double-stranded RNA binding zinc fingers. The interaction between the ZF and pre-let-7 stabilizes the Lin28:pre-let-7:TUT4 ternary complex, and enhances the oligo-uridylylation reaction by the CM. Thus, the ZF in LIM and the zinc-knuckle in the CM, which interacts with the oligo-uridylylated tail, together facilitate Lin28-dependent pre-let-7 oligo-uridylylation.
Collapse
|
87
|
D'Agostino VG, Sighel D, Zucal C, Bonomo I, Micaelli M, Lolli G, Provenzani A, Quattrone A, Adami V. Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery. SLAS DISCOVERY 2019; 24:314-331. [PMID: 30616427 DOI: 10.1177/2472555218818065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts.
Collapse
Affiliation(s)
- Vito Giuseppe D'Agostino
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Denise Sighel
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Chiara Zucal
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Isabelle Bonomo
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Mariachiara Micaelli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Graziano Lolli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Provenzani
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Valentina Adami
- 2 University of Trento, HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| |
Collapse
|
88
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that bind complementary target mRNAs and repress their expression. Precursor miRNA molecules undergo nuclear and cytoplasmic processing events, carried out by the endoribonucleases DROSHA and DICER, respectively, to produce mature miRNAs that are loaded onto the RISC (RNA-induced silencing complex) to exert their biological function. Regulation of mature miRNA levels is critical in development, differentiation, and disease, as demonstrated by multiple levels of control during their biogenesis cascade. Here, we will focus on post-transcriptional mechanisms and will discuss the impact of cis-acting sequences in precursor miRNAs, as well as trans-acting factors that bind to these precursors and influence their processing. In particular, we will highlight the role of general RNA-binding proteins (RBPs) as factors that control the processing of specific miRNAs, revealing a complex layer of regulation in miRNA production and function.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang 314400, P.R. China
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
89
|
Lim D, Byun WG, Park SB. Restoring Let-7 microRNA Biogenesis Using a Small-Molecule Inhibitor of the Protein-RNA Interaction. ACS Med Chem Lett 2018; 9:1181-1185. [PMID: 30613323 DOI: 10.1021/acsmedchemlett.8b00323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Abnormal function of RNA-binding proteins can lead to dysregulation of RNA function, causing a variety of disease states. Thus, developing small-molecule modulators of protein-RNA interactions is one of the key challenges in chemical biology. Herein, we performed a high-throughput screening of chemical libraries using a Förster resonance energy transfer-based Lin28-let-7 interaction assay to identify a potent small-molecule inhibitor of the protein-microRNA interaction, as it is an important target implicated in stem cell-like phenotypes in cancer cells. The new inhibitor KCB3602 selectively restored cellular let-7 microRNA levels, decreased the expression of a panel of oncogenes responsible for cancer stem cell maintenance, and showed potential anticancer activities. We expect that our Lin28-let-7 interaction inhibitor will provide a good starting point for pharmacological eradication of cancer stem cells.
Collapse
Affiliation(s)
- Donghyun Lim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
90
|
Yashiro Y, Tomita K. Function and Regulation of Human Terminal Uridylyltransferases. Front Genet 2018; 9:538. [PMID: 30483311 PMCID: PMC6240794 DOI: 10.3389/fgene.2018.00538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
RNA uridylylation plays a pivotal role in the biogenesis and metabolism of functional RNAs, and regulates cellular gene expression. RNA uridylylation is catalyzed by a subset of proteins from the non-canonical terminal nucleotidyltransferase family. In human, three proteins (TUT1, TUT4, and TUT7) have been shown to exhibit template-independent uridylylation activity at 3′-end of specific RNAs. TUT1 catalyzes oligo-uridylylation of U6 small nuclear (sn) RNA, which catalyzes mRNA splicing. Oligo-uridylylation of U6 snRNA is required for U6 snRNA maturation, U4/U6-di-snRNP formation, and U6 snRNA recycling during mRNA splicing. TUT4 and TUT7 catalyze mono- or oligo-uridylylation of precursor let-7 (pre–let-7). Let-7 RNA is broadly expressed in somatic cells and regulates cellular proliferation and differentiation. Mono-uridylylation of pre–let-7 by TUT4/7 promotes subsequent Dicer processing to up-regulate let-7 biogenesis. Oligo-uridylylation of pre–let-7 by TUT4/7 is dependent on an RNA-binding protein, Lin28. Oligo-uridylylated pre–let-7 is less responsive to processing by Dicer and degraded by an exonuclease DIS3L2. As a result, let-7 expression is repressed. Uridylylation of pre–let-7 depends on the context of the 3′-region of pre–let-7 and cell type. In this review, we focus on the 3′ uridylylation of U6 snRNA and pre-let-7, and describe the current understanding of mechanism of activity and regulation of human TUT1 and TUT4/7, based on their crystal structures that have been recently solved.
Collapse
Affiliation(s)
- Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
91
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|