51
|
Nair VD, Vasoya M, Nair V, Smith GR, Pincas H, Ge Y, Douglas CM, Esser KA, Sealfon SC. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics 2021; 113:3827-3841. [PMID: 34547403 DOI: 10.1016/j.ygeno.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Chromatin accessibility is a key factor influencing gene expression. We optimized the Omni-ATAC-seq protocol and used it together with RNA-seq to investigate cis-regulatory elements in rat white adipose and skeletal muscle, two tissues with contrasting metabolic functions. While promoter accessibility correlated with RNA expression, integration of the two datasets identified tissue-specific differentially accessible regions (DARs) that predominantly localized in intergenic and intron regions. DARs were mapped to differentially expressed (DE) genes enriched in distinct biological processes in each tissue. Randomly selected DE genes were validated by qPCR. Top enriched motifs in DARs predicted binding sites for transcription factors (TFs) showing tissue-specific up-regulation. The correlation between differential chromatin accessibility at a given TF binding motif and differential expression of target genes further supported the functional relevance of that motif. Our study identified cis-regulatory regions that likely play a major role in the regulation of tissue-specific gene expression in adipose and muscle.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishnu Nair
- Department of Computer Sciences, Columbia University, New York, NY 10027, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
52
|
Loker R, Sanner JE, Mann RS. Cell-type-specific Hox regulatory strategies orchestrate tissue identity. Curr Biol 2021; 31:4246-4255.e4. [PMID: 34358443 PMCID: PMC8511240 DOI: 10.1016/j.cub.2021.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
Hox proteins are homeodomain transcription factors that diversify serially homologous segments along the animal body axis, as revealed by the classic bithorax phenotype of Drosophila melanogaster, in which mutations in Ultrabithorax (Ubx) transform the third thoracic segment into the likeness of the second thoracic segment. To specify segment identity, we show that Ubx both increases and decreases chromatin accessibility, coinciding with its dual role as both an activator and repressor of transcription. However, the choice of transcriptional activity executed by Ubx is spatially regulated and depends on the availability of cofactors, with Ubx acting as a repressor in some populations and as an activator in others. Ubx-mediated changes to chromatin accessibility positively and negatively affect the binding of Scalloped (Sd), a transcription factor that is required for appendage development in both segments. These findings illustrate how a single Hox protein can modify complex gene regulatory networks to transform the identity of an entire tissue.
Collapse
Affiliation(s)
- Ryan Loker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jordyn E Sanner
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
53
|
Man N, Mas G, Karl DL, Sun J, Liu F, Yang Q, Torres-Martin M, Itonaga H, Martinez C, Chen S, Xu Y, Duffort S, Hamard PJ, Chen C, Zucconi BE, Cimmino L, Yang FC, Xu M, Cole PA, Figueroa ME, Nimer SD. p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia. JCI Insight 2021; 6:138478. [PMID: 34622806 PMCID: PMC8525640 DOI: 10.1172/jci.insight.138478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.
Collapse
Affiliation(s)
- Na Man
- Sylvester Comprehensive Cancer Center
| | | | | | - Jun Sun
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | - Fan Liu
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qin Yang
- Sylvester Comprehensive Cancer Center
| | | | | | | | - Shi Chen
- Sylvester Comprehensive Cancer Center
| | - Ye Xu
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | | | | | | | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
54
|
Sarropoulos I, Sepp M, Frömel R, Leiss K, Trost N, Leushkin E, Okonechnikov K, Joshi P, Giere P, Kutscher LM, Cardoso-Moreira M, Pfister SM, Kaessmann H. Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science 2021; 373:eabg4696. [PMID: 34446581 PMCID: PMC7611596 DOI: 10.1126/science.abg4696] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022]
Abstract
Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.
Collapse
Affiliation(s)
- Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.
| | - Robert Frömel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Developmental Origins of Pediatric Cancer Group, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
- Evolutionary Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.
| |
Collapse
|
55
|
Weidemüller P, Kholmatov M, Petsalaki E, Zaugg JB. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021; 21:e2000034. [PMID: 34314098 DOI: 10.1002/pmic.202000034] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023]
Abstract
Transcription factors (TFs) are key regulators of intrinsic cellular processes, such as differentiation and development, and of the cellular response to external perturbation through signaling pathways. In this review we focus on the role of TFs as a link between signaling pathways and gene regulation. Cell signaling tends to result in the modulation of a set of TFs that then lead to changes in the cell's transcriptional program. We highlight the molecular layers at which TF activity can be measured and the associated technical and conceptual challenges. These layers include post-translational modifications (PTMs) of the TF, regulation of TF binding to DNA through chromatin accessibility and epigenetics, and expression of target genes. We highlight that a large number of TFs are understudied in both signaling and gene regulation studies, and that our knowledge about known TF targets has a strong literature bias. We argue that TFs serve as a perfect bridge between the fields of gene regulation and signaling, and that separating these fields hinders our understanding of cell functions. Multi-omics approaches that measure multiple dimensions of TF activity are ideally suited to study the interplay of cell signaling and gene regulation using TFs as the anchor to link the two fields.
Collapse
Affiliation(s)
- Paula Weidemüller
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Maksim Kholmatov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Evangelia Petsalaki
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| |
Collapse
|
56
|
Wang S, Lee MP, Jones S, Liu J, Waldhaus J. Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data. Genome Res 2021; 31:1885-1899. [PMID: 33837132 DOI: 10.1101/gr.271080.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Auditory hair cells transduce sound to the brain and in mammals these cells reside together with supporting cells in the sensory epithelium of the cochlea, called the organ of Corti. To establish the organ's delicate function during development and differentiation, spatiotemporal gene expression is strictly controlled by chromatin accessibility and cell type-specific transcription factors, jointly representing the regulatory landscape. Bulk-sequencing technology and cellular heterogeneity obscured investigations on the interplay between transcription factors and chromatin accessibility in inner ear development. To study the formation of the regulatory landscape in hair cells, we collected single-cell chromatin accessibility profiles accompanied by single-cell RNA data from genetically labeled murine hair cells and supporting cells after birth. Using an integrative approach, we predicted cell type-specific activating and repressing functions of developmental transcription factors. Furthermore, by integrating gene expression and chromatin accessibility datasets, we reconstructed gene regulatory networks. Then, using a comparative approach, 20 hair cell-specific activators and repressors, including putative downstream target genes, were identified. Clustering of target genes resolved groups of related transcription factors and was utilized to infer their developmental functions. Finally, the heterogeneity in the single-cell data allowed us to spatially reconstruct transcriptional as well as chromatin accessibility trajectories, indicating that gradual changes in the chromatin accessibility landscape were lagging behind the transcriptional identity of hair cells along the organ's longitudinal axis. Overall, this study provides a strategy to spatially reconstruct the formation of a lineage specific regulatory landscape using a single-cell multi-omics approach.
Collapse
Affiliation(s)
- Shuze Wang
- University of Michigan, Kresge Hearing Research Institute
| | - Mary P Lee
- University of Michigan, Kresge Hearing Research Institute
| | - Scott Jones
- University of Michigan, Kresge Hearing Research Institute
| | | | - Joerg Waldhaus
- University of Michigan, Kresge Hearing Research Institute;
| |
Collapse
|
57
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
58
|
Zhou A, Xie S, Feng Y, Sun D, Liu S, Sun Z, Li M, Zhang C, Zou J. Insights Into the Albinism Mechanism for Two Distinct Color Morphs of Northern Snakehead, Channa argus Through Histological and Transcriptome Analyses. Front Genet 2020; 11:830. [PMID: 33193565 PMCID: PMC7530302 DOI: 10.3389/fgene.2020.00830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
The great northern snakehead (Channa argus) is one of the most important economic and conservational fish in China. In this study, the melanocytes in the skin of two distinct color morphs C. argus were investigated and compared through employment of the microscopic analysis, hematoxylin and eosin (H&E) and Masson Fontana staining. Our results demonstrated the uneven distribution of melanocytes with extremely low density and most of them were in the state of aging or death. Meanwhile, there was no obvious pigment layer and melanocytes distribution pattern found in the albino-type (AT), while the melanocytes were evenly distributed with abundance in the bicolor-type (BT). The transcriptome analysis through Illumina HiSeq sequencing showed that a total of 34.93 Gb Clean Data was obtained, and Q30 base percentage reached 92.66%. The BT and AT northern snakeheads transcriptome data included a total of 56,039,701 and 60,410,063 clean reads (n = 3), respectively. In gene expression analyses, the sample correlation coefficients (r) were ranged between 0.92 and 1.00; the contribution of PC1 and PC2 were 50.25 and 13.73% by using PCA cluster analysis, the total number of DEGs were 1024 (559 up-regulated and 465 down-regulated), and the number of annotated DEGs was 767 (COG 172, KEGG 262, GO 288, SwissProt 548, Pfam 579 and NR 765). Additionally, 46,363 ± 873 and 44,947 ± 392 single nucleotide polymorphisms (SNPs) were compiled via genetic structure analysis, respectively. Ten key pigment-related genes were screened using qRT-PCR. And all of them revealed extremely higher expression levels in the skin of BT than those of AT. This is the first study to analyze the mechanism of albino characteristics of Channa via histology and transcriptomics, and also provide the oretical and practical support for the protection and development of germplasm resources for C. argus.
Collapse
Affiliation(s)
- Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yongyong Feng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuolin Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Mingzhi Li
- Independent Researcher, Guangzhou, China
| | - Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
59
|
ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat Commun 2020; 11:4267. [PMID: 32848148 PMCID: PMC7449963 DOI: 10.1038/s41467-020-18035-1] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
While footprinting analysis of ATAC-seq data can theoretically enable investigation of transcription factor (TF) binding, the lack of a computational tool able to conduct different levels of footprinting analysis has so-far hindered the widespread application of this method. Here we present TOBIAS, a comprehensive, accurate, and fast footprinting framework enabling genome-wide investigation of TF binding dynamics for hundreds of TFs simultaneously. We validate TOBIAS using paired ATAC-seq and ChIP-seq data, and find that TOBIAS outperforms existing methods for bias correction and footprinting. As a proof-of-concept, we illustrate how TOBIAS can unveil complex TF dynamics during zygotic genome activation in both humans and mice, and propose how zygotic Dux activates cascades of TFs, binds to repeat elements and induces expression of novel genetic elements.
Collapse
|
60
|
Bunina D, Abazova N, Diaz N, Noh KM, Krijgsveld J, Zaugg JB. Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons. Cell Syst 2020; 10:480-494.e8. [PMID: 32553182 PMCID: PMC7322528 DOI: 10.1016/j.cels.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Cellular differentiation requires dramatic changes in chromatin organization, transcriptional regulation, and protein production. To understand the regulatory connections between these processes, we generated proteomic, transcriptomic, and chromatin accessibility data during differentiation of mouse embryonic stem cells (ESCs) into postmitotic neurons and found extensive associations between different molecular layers within and across differentiation time points. We observed that SOX2, as a regulator of pluripotency and neuronal genes, redistributes from pluripotency enhancers to neuronal promoters during differentiation, likely driven by changes in its protein interaction network. We identified ATRX as a major SOX2 partner in neurons, whose co-localization correlated with an increase in active enhancer marks and increased expression of nearby genes, which we experimentally confirmed for three loci. Collectively, our data provide key insights into the regulatory transformation of SOX2 during neuronal differentiation, and we highlight the significance of multi-omic approaches in understanding gene regulation in complex systems. Complex interplay of RNA, protein, and chromatin during neuronal differentiation Multi-omic profiling reveals divergent roles of SOX2 in stem cells and neurons SOX2 on-chromatin interaction network changes from pluripotent to neuronal factors ATRX interacts with SOX2 in neurons and co-binds highly expressed neuronal genes
Collapse
Affiliation(s)
- Daria Bunina
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany; Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany
| | - Nade Abazova
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Nichole Diaz
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany.
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Heidelberg University, Medical Faculty Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany.
| |
Collapse
|
61
|
Smith JP, Sheffield NC. Analytical Approaches for ATAC-seq Data Analysis. CURRENT PROTOCOLS IN HUMAN GENETICS 2020; 106:e101. [PMID: 32543102 PMCID: PMC8191135 DOI: 10.1002/cphg.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ATAC-seq, the assay for transposase-accessible chromatin using sequencing, is a quick and efficient approach to investigating the chromatin accessibility landscape. Investigating chromatin accessibility has broad utility for answering many biological questions, such as mapping nucleosomes, identifying transcription factor binding sites, and measuring differential activity of DNA regulatory elements. Because the ATAC-seq protocol is both simple and relatively inexpensive, there has been a rapid increase in the availability of chromatin accessibility data. Furthermore, advances in ATAC-seq protocols are rapidly extending its breadth to additional experimental conditions, cell types, and species. Accompanying the increase in data, there has also been an explosion of new tools and analytical approaches for analyzing it. Here, we explain the fundamentals of ATAC-seq data processing, summarize common analysis approaches, and review computational tools to provide recommendations for different research questions. This primer provides a starting point and a reference for analysis of ATAC-seq data. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jason P. Smith
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Nathan C. Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
62
|
Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension. Nat Commun 2020; 11:1673. [PMID: 32245974 PMCID: PMC7125148 DOI: 10.1038/s41467-020-15463-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/13/2020] [Indexed: 11/24/2022] Open
Abstract
Environmental and epigenetic factors often play an important role in polygenic disorders. However, how such factors affect disease-specific tissues at the molecular level remains to be understood. Here, we address this in pulmonary arterial hypertension (PAH). We obtain pulmonary arterial endothelial cells (PAECs) from lungs of patients and controls (n = 19), and perform chromatin, transcriptomic and interaction profiling. Overall, we observe extensive remodeling at active enhancers in PAH PAECs and identify hundreds of differentially active TFs, yet find very little transcriptomic changes in steady-state. We devise a disease-specific enhancer-gene regulatory network and predict that primed enhancers in PAH PAECs are activated by the differentially active TFs, resulting in an aberrant response to endothelial signals, which could lead to disturbed angiogenesis and endothelial-to-mesenchymal-transition. We validate these predictions for a selection of target genes in PAECs stimulated with TGF-β, VEGF or serotonin. Our study highlights the role of chromatin state and enhancers in disease-relevant cell types of PAH. Pulmonary arterial hypertension (PAH) is a heterogeneous disease, causing severe breathing problems and cardiac morbidity. Here, the authors study chromatin marks in pulmonary arterial endothelial cells from PAH patients and controls and find changes in transcription factor and enhancer activity that suggest an aberrant response to signalling in PAH.
Collapse
|
63
|
Yan F, Powell DR, Curtis DJ, Wong NC. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis. Genome Biol 2020; 21:22. [PMID: 32014034 PMCID: PMC6996192 DOI: 10.1186/s13059-020-1929-3] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) is widely used in studying chromatin biology, but a comprehensive review of the analysis tools has not been completed yet. Here, we discuss the major steps in ATAC-seq data analysis, including pre-analysis (quality check and alignment), core analysis (peak calling), and advanced analysis (peak differential analysis and annotation, motif enrichment, footprinting, and nucleosome position analysis). We also review the reconstruction of transcriptional regulatory networks with multiomics data and highlight the current challenges of each step. Finally, we describe the potential of single-cell ATAC-seq and highlight the necessity of developing ATAC-seq specific analysis tools to obtain biologically meaningful insights.
Collapse
Affiliation(s)
- Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|