51
|
Efficient Suppression of Natural Plasmid-Borne Gene Expression in Carbapenem-Resistant Klebsiella pneumoniae Using a Compact CRISPR Interference System. Antimicrob Agents Chemother 2022; 66:e0089022. [PMID: 36222525 PMCID: PMC9664848 DOI: 10.1128/aac.00890-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for efficient tools for genetic manipulation to assess plasmid function in clinical drug-resistant bacterial strains. To address this need, we developed an all-in-one CRISPR interference (CRISPRi) system that easily inhibited the gene expression of a natural multidrug-resistant plasmid in an sequence type 23 (ST23) Klebsiella pneumoniae isolate. We established an integrative CRISPRi system plasmid, pdCas9gRNA, harboring a dcas9 gene and a single guide RNA (sgRNA) unit under the control of anhydrotetracycline-induced and J23119 promoters, respectively, using a one-step cloning method. This system can repress the single resistance gene blaNDM-1, with a >1,000-fold reduction in the meropenem MIC, or simultaneously silence the resistance genes blaNDM-1 and blaSHV-12, with a 16-fold and 8-fold respective reduction in the meropenem and aztreonam MIC on a large natural multidrug-resistant pNK01067-NDM-1 plasmid in an ST23 K. pneumoniae isolate. Furthermore, an sgRNA targeting the blaNDM-1 promoter region can silence the entire blaNDM-1-bleMBL-trpF operon, confirming the existence of the operon. We also used this tool to knock down the multicopy resistance gene blaKPC-2 in pathogenic Escherichia coli, increasing the susceptibility to meropenem. In a word, the all-in-one CRISPRi system can be used for efficient interrogation of indigenous plasmid-borne gene functions, providing a rapid, easy genetic manipulation tool for clinical K. pneumoniae isolates.
Collapse
|
52
|
Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol 2022; 106:6365-6381. [DOI: 10.1007/s00253-022-12150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
53
|
Bahadori Z, Shafaghi M, Madanchi H, Ranjbar MM, Shabani AA, Mousavi SF. In silico designing of a novel epitope-based candidate vaccine against Streptococcus pneumoniae with introduction of a new domain of PepO as adjuvant. J Transl Med 2022; 20:389. [PMID: 36059030 PMCID: PMC9440865 DOI: 10.1186/s12967-022-03590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.
Collapse
Affiliation(s)
- Zohreh Bahadori
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Shafaghi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Agricultural Research, Education, and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. .,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
54
|
Comas I, Moreno-Molina M. Phenogenomics of Mycobacterium abscessus. Nat Microbiol 2022; 7:1325-1326. [PMID: 36008618 DOI: 10.1038/s41564-022-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Iñaki Comas
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain. .,CIBER in Epidemiology and Public Health, Madrid, Spain.
| | | |
Collapse
|
55
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
56
|
Dewachter L, Dénéréaz J, Liu X, de Bakker V, Costa C, Baldry M, Sirard JC, Veening JW. Amoxicillin-resistant Streptococcus pneumoniae can be resensitized by targeting the mevalonate pathway as indicated by sCRilecs-seq. eLife 2022; 11:e75607. [PMID: 35748540 PMCID: PMC9363119 DOI: 10.7554/elife.75607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance in the important opportunistic human pathogen Streptococcus pneumoniae is on the rise. This is particularly problematic in the case of the β-lactam antibiotic amoxicillin, which is the first-line therapy. It is therefore crucial to uncover targets that would kill or resensitize amoxicillin-resistant pneumococci. To do so, we developed a genome-wide, single-cell based, gene silencing screen using CRISPR interference called sCRilecs-seq (subsets of CRISPR interference libraries extracted by fluorescence activated cell sorting coupled to next generation sequencing). Since amoxicillin affects growth and division, sCRilecs-seq was used to identify targets that are responsible for maintaining proper cell size. Our screen revealed that downregulation of the mevalonate pathway leads to extensive cell elongation. Further investigation into this phenotype indicates that it is caused by a reduced availability of cell wall precursors at the site of cell wall synthesis due to a limitation in the production of undecaprenyl phosphate (Und-P), the lipid carrier that is responsible for transporting these precursors across the cell membrane. The data suggest that, whereas peptidoglycan synthesis continues even with reduced Und-P levels, cell constriction is specifically halted. We successfully exploited this knowledge to create a combination treatment strategy where the FDA-approved drug clomiphene, an inhibitor of Und-P synthesis, is paired up with amoxicillin. Our results show that clomiphene potentiates the antimicrobial activity of amoxicillin and that combination therapy resensitizes amoxicillin-resistant S. pneumoniae. These findings could provide a starting point to develop a solution for the increasing amount of hard-to-treat amoxicillin-resistant pneumococcal infections.
Collapse
Affiliation(s)
- Liselot Dewachter
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science CenterShenzhenChina
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleLilleFrance
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleLilleFrance
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleLilleFrance
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| |
Collapse
|
57
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
58
|
Kurushima J, Tomita H. Advances of genetic engineering in Streptococci and Enterococci. Microbiol Immunol 2022; 66:411-417. [PMID: 35703039 DOI: 10.1111/1348-0421.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
In the post-genome era, reverse genetic engineering is an indispensable methodology for experimental molecular biology to provide a deeper understanding of the principal relationship between genomic features and biological phenotypes. Technically, genetic engineering is carried out through allele replacement of a target genomic locus with a designed nucleotide sequence, so called site-directed mutagenesis. To artificially manipulate allele replacement through homologous recombination, researchers have improved various methodologies that are optimized to the bacterial species of interest. Here, we review widely used genetic engineering technologies, particularly for streptococci and enterococci, and recent advances that enable more effective and flexible manipulation. The development of genetic engineering has been promoted by synthetic biology approaches based on basic biology knowledge of horizontal gene transfer systems, such as natural conjugative transfer, natural transformation, and the CRISPR/Cas system. Therefore, this review also describes basic insights into molecular biology that underlie improvements in genetic engineering technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan.,Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| |
Collapse
|
59
|
Flores-Kim J, Dobihal GS, Bernhardt TG, Rudner DZ. WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae. eLife 2022; 11:e76392. [PMID: 35593695 PMCID: PMC9208761 DOI: 10.7554/elife.76392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked teichoic acids (LTAs). Because LytA binds to both species of teichoic acids, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis during exponential growth . We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active peptidoglycan (PG) synthesis. Our results support a model in which the WTA tailoring activity of WhyD during exponential growth directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- UMass Chan Medical SchoolWorcesterUnited States
| | | | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| | - David Z Rudner
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
60
|
Hu F, Zhang Y, Liu Q, Wang Z. PurA facilitates Edwardsiella piscicida to escape NF-κB signaling activation. FISH & SHELLFISH IMMUNOLOGY 2022; 124:254-260. [PMID: 35395412 DOI: 10.1016/j.fsi.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The host NF-κB signaling pathway plays critical role in defensing against bacterial infection. However, bacteria also evolve strategies to escape from host clearance. Edwardsiella piscicida is a threatening pathogen in aquaculture, while the molecular mechanism of E. piscicida in inhibiting NF-κB signaling remains largely unknown. Herein, using E. piscicida transposon insertion mutant library combined with a NF-κB luciferase reporter system, we identified forty-six genes of E. piscicida, which were involved in inhibiting the NF-κB signaling activation in vitro. Moreover, we further explored the top 10 significantly changed mutants through zebrafish larvae infection model and validated that six genes were involved in inhibiting NF-κB activation in vivo. Specifically, we identified the adenylosuccinate synthase mutated strain (ΔpurA) infection exhibited a robust activation of NF-κB signaling, along with higher expression of cxcl8a and cxcl8b to mediate the recruitment of neutrophils in vivo. Taken together, these results identified the key factors of E. piscicida in inhibiting NF-κB activation, which will contribute to better understanding the pathogenesis of this important pathogen.
Collapse
Affiliation(s)
- Feizi Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
61
|
Khan K, Jalal K, Khan A, Al-Harrasi A, Uddin R. Comparative Metabolic Pathways Analysis and Subtractive Genomics Profiling to Prioritize Potential Drug Targets Against Streptococcus pneumoniae. Front Microbiol 2022; 12:796363. [PMID: 35222301 PMCID: PMC8866961 DOI: 10.3389/fmicb.2021.796363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae is a notorious pathogen that affects ∼450 million people worldwide and causes up to four million deaths per annum. Despite availability of antibiotics (i.e., penicillin, doxycycline, or clarithromycin) and conjugate vaccines (e.g., PCVs), it is still challenging to treat because of its drug resistance ability. The rise of antibiotic resistance in S. pneumoniae is a major source of concern across the world. Computational subtractive genomics is one of the most applied techniques in which the whole proteome of the bacterial pathogen is gradually reduced to a limited number of potential therapeutic targets. Whole-genome sequencing has greatly reduced the time required and provides more opportunities for drug target identification. The goal of this work is to evaluate and analyze metabolic pathways in serotype 14 of S. pneumonia to identify potential drug targets. In the present study, 47 potent drug targets were identified against S. pneumonia by employing the computational subtractive genomics approach. Among these, two proteins are prioritized (i.e., 4-oxalocrotonate tautomerase and Sensor histidine kinase uniquely present in S. pneumonia) as novel drug targets and selected for further structure-based studies. The identified proteins may provide a platform for the discovery of a lead drug candidate that may be capable of inhibiting these proteins and, therefore, could be helpful in minimizing the associated risk related to the drug-resistant S. pneumoniae. Finally, these enzymatic proteins could be of prime interest against S. pneumoniae to design rational targeted therapy.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
62
|
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. NATURE REVIEWS. METHODS PRIMERS 2022; 2:9. [PMID: 37214176 PMCID: PMC10200264 DOI: 10.1038/s43586-022-00098-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development - with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florence Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Keith A. Lawson
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas M. Norman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Geoff Stanley
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Mathew Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
63
|
de Bakker V, Liu X, Bravo AM, Veening JW. CRISPRi-seq for genome-wide fitness quantification in bacteria. Nat Protoc 2022; 17:252-281. [PMID: 34997243 DOI: 10.1038/s41596-021-00639-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
CRISPR interference (CRISPRi) is a powerful tool to link essential and nonessential genes to specific phenotypes and to explore their functions. Here we describe a protocol for CRISPRi screenings to assess genome-wide gene fitness in a single sequencing step (CRISPRi-seq). We demonstrate the use of the protocol in Streptococcus pneumoniae, an important human pathogen; however, the protocol can easily be adapted for use in other organisms. The protocol includes a pipeline for single-guide RNA library design, workflows for pooled CRISPRi library construction, growth assays and sequencing steps, a read analysis tool (2FAST2Q) and instructions for fitness quantification. We describe how to make an IPTG-inducible system with small libraries that are easy to handle and cost-effective and overcome bottleneck issues, which can be a problem when using similar, transposon mutagenesis-based methods. Ultimately, the procedure yields a fitness score per single-guide RNA target for any given growth condition. A genome-wide screening can be finished in 1 week with a constructed library. Data analysis and follow-up confirmation experiments can be completed in another 2-3 weeks.
Collapse
Affiliation(s)
- Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Afonso M Bravo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
64
|
Okahashi N, Sumitomo T, Nakata M, Kawabata S. Secondary streptococcal infection following influenza. Microbiol Immunol 2022; 66:253-263. [PMID: 35088451 DOI: 10.1111/1348-0421.12965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
Secondary bacterial infection following influenza A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Streptococcus pneumoniae has been identified as a predominant pathogen in secondary pneumonia cases that develop following influenza. Although IAV has been shown to enhance susceptibility to the secondary bacterial infection, the underlying mechanism of the viral-bacterial synergy leading to disease progression is complex and remains elusive. In this review, cooperative interactions of viruses and streptococci during co- or secondary infection with IAV are described. IAV infects the upper respiratory tract, therefore, streptococci that inhabit or infect the respiratory tract are of special interest. Since many excellent reviews on the co-infection of IAV and S. pneumoniae have already been published, this review is intended to describe the unique interactions between other streptococci and IAV. Both streptococcal and IAV infections modulate the host epithelial barrier of the respiratory tract in various ways. IAV infection directly disrupts epithelial barriers, though at the same time the virus modifies the properties of infected cells to enhance streptococcal adherence and invasion. Mitis group streptococci produce neuraminidases, which promote IAV infection in a unique manner. The studies reviewed here have revealed intriguing mechanisms underlying secondary streptococcal infection following influenza. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
65
|
Wu RJ, Liang J, Liang YH, Xiong L. A spectrum-effect based method for screening antibacterial constituents in Niuhuang Shangqing Pill using comprehensive two-dimensional liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123121. [PMID: 35042147 DOI: 10.1016/j.jchromb.2022.123121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022]
Abstract
To investigate and screen the active antibacterial constituents of Niuhuang Shangqing Pill (NSP), the current study developed a two-dimensional liquid chromatography (2DLC) method combining microcalorimetry technique. 60% ethanol extracts from 10 batches of different commercial NSP samples were analyzed and their chemical fingerprint were developed by the comprehensive 2DLC system of Shimadzu Nexera X2. Anti-streptococcus pneumoniae (SP) constituents were determined by microcalorimetry. Thermal kinetic parameters of the SP thermogram affected by 60% ethanol extracts from 10 NSP samples were analyzed by principal component analysis. Spectrum-effect correlation between comprehensive 2DLC fingerprint and the antibacterial activity were analyzed by orthogonal partial least squares (OPLS) and orthogonal partial least squares discriminant analysis (OPLS-DA). Findings showed that peak X1 (unknown), X9 (aloe-emodin), X10 (baicalein), X11 (unknown), X14 (wogonin), X15 (glycyrrhizic acid) and X17 (unknown) are the relevant components that are in positive correlation with inhibitory rate. Regarding inhibitory rate, X17 is the most powerful one, followed by X14, X15, X10, X11, X1 and X9, suggesting that compound X17, wogonin, glycyrrhizic acid and baicalein are the major active antibacterial components of NSP. The current method employing 2DLC with microcalorimetry technique proposes a new insight for screening and identifying antibacterial components in complex herbal formula.
Collapse
Affiliation(s)
- Rui-Jun Wu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jian Liang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yong-Hong Liang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Xiong
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330029, China
| |
Collapse
|
66
|
Tavares BADR, Paes JA, Zaha A, Ferreira HB. Reannotation of Mycoplasma hyopneumoniae hypothetical proteins revealed novel potential virulence factors. Microb Pathog 2021; 162:105344. [PMID: 34864146 DOI: 10.1016/j.micpath.2021.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Mycoplasma hyopneumoniae is a bacterium that inhabits the swine respiratory tract, causing porcine enzootic pneumonia, which generates significant economic losses to the swine industry worldwide. The knowledge on M. hyopneumoniae biology and virulence have been significantly increased by genomics studies. However, around 30% of the predicted proteins remained of unknown function so far. According to the original annotation, the genome of M. hyopneumoniae 7448, a Brazilian pathogenic strain, had 693 coding DNA sequences, 244 of which were annotated as coding for hypothetical or uncharacterized proteins. Among them, there may be still several genes coding for unknown virulence factors. Therefore, this study aimed to functionally reannotate the whole set of 244 M. hyopneumoniae 7448 proteins of unknown function based on currently available database and bioinformatic tools, in order to predict novel potential virulence factors. Predictions of physicochemical properties, subcellular localization, function, overall association to virulence and antigenicity are provided. With that, 159 out of the set of 244 proteins of unknown function had a putative function associated to them, allowing identification of novel enzymes, membrane transporters, lipoproteins, DNA-binding proteins and adhesins. Furthermore, 139 proteins were generally associated to virulence, 14 of which had a function assigned and were differentially expressed between pathogenic and non-pathogenic strains of M. hyopneumoniae. Moreover, all extracellular or cytoplasmic membrane predicted proteins had putative epitopes identified. Overall, these analyses improved the functional annotation of M. hyopneumoniae 7448 genome from 65% to 87% and allowed the identification of new potential virulence factors.
Collapse
Affiliation(s)
- Bryan Augusto da Rosa Tavares
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
67
|
Hullahalli K, Waldor MK. Pathogen clonal expansion underlies multiorgan dissemination and organ-specific outcomes during murine systemic infection. eLife 2021; 10:e70910. [PMID: 34636322 PMCID: PMC8545400 DOI: 10.7554/elife.70910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
The dissemination of pathogens through blood and their establishment within organs lead to severe clinical outcomes. However, the within-host dynamics that underlie pathogen spread to and clearance from systemic organs remain largely uncharacterized. In animal models of infection, the observed pathogen population results from the combined contributions of bacterial replication, persistence, death, and dissemination, each of which can vary across organs. Quantifying the contribution of each these processes is required to interpret and understand experimental phenotypes. Here, we leveraged STAMPR, a new barcoding framework, to investigate the population dynamics of extraintestinal pathogenic Escherichia coli, a common cause of bacteremia, during murine systemic infection. We show that while bacteria are largely cleared by most organs, organ-specific clearance failures are pervasive and result from dramatic expansions of clones representing less than 0.0001% of the inoculum. Clonal expansion underlies the variability in bacterial burden between animals, and stochastic dissemination of clones profoundly alters the pathogen population structure within organs. Despite variable pathogen expansion events, host bottlenecks are consistent yet highly sensitive to infection variables, including inoculum size and macrophage depletion. We adapted our barcoding methodology to facilitate multiplexed validation of bacterial fitness determinants identified with transposon mutagenesis and confirmed the importance of bacterial hexose metabolism and cell envelope homeostasis pathways for organ-specific pathogen survival. Collectively, our findings provide a comprehensive map of the population biology that underlies bacterial systemic infection and a framework for barcode-based high-resolution mapping of infection dynamics.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| |
Collapse
|
68
|
Abstract
Pathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering these dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult because measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-based Analysis of Microbial Populations). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP, which accounts for such population expansions. Using data from systemic infection of barcoded extraintestinal pathogenic E. coli, we show that this new framework, along with the metrics it yields, enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent barcoded Pseudomonas aeruginosa data set, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan), when coupled with barcoded data sets, enables a more complete assessment of within-host bacterial population dynamics. IMPORTANCE Barcoded bacteria are often employed to monitor pathogen population dynamics during infection. The accuracy of these measurements is diminished by unequal bacterial expansion rates. Here, we develop computational tools to circumvent this limitation and establish additional metrics that collectively enhance the fidelity of measuring within-host pathogen founding population sizes and dissemination patterns. These new tools will benefit future studies of the dynamics of pathogens and symbionts within their respective hosts and may have additional barcode-based applications beyond host-microbe interactions.
Collapse
|
69
|
Dynamic Pneumococcal Genetic Adaptations Support Bacterial Growth and Inflammation during Coinfection with Influenza. Infect Immun 2021; 89:e0002321. [PMID: 33875471 PMCID: PMC8208518 DOI: 10.1128/iai.00023-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the primary bacterial pathogens that complicates influenza virus infections. These bacterial coinfections increase influenza-associated morbidity and mortality through a number of immunological and viral-mediated mechanisms, but the specific bacterial genes that contribute to postinfluenza pathogenicity are not known. Here, we used genome-wide transposon mutagenesis (Tn-Seq) to reveal bacterial genes that confer improved fitness in influenza virus-infected hosts. The majority of the 32 genes identified are involved in bacterial metabolism, including nucleotide biosynthesis, amino acid biosynthesis, protein translation, and membrane transport. We generated mutants with single-gene deletions (SGD) of five of the genes identified, SPD1414, SPD2047 (cbiO1), SPD0058 (purD), SPD1098, and SPD0822 (proB), to investigate their effects on in vivo fitness, disease severity, and host immune responses. The growth of the SGD mutants was slightly attenuated in vitro and in vivo, but each still grew to high titers in the lungs of mock- and influenza virus-infected hosts. Despite high bacterial loads, mortality was significantly reduced or delayed with all SGD mutants. Time-dependent reductions in pulmonary neutrophils, inflammatory macrophages, and select proinflammatory cytokines and chemokines were also observed. Immunohistochemical staining further revealed altered neutrophil distribution with reduced degeneration in the lungs of influenza virus-SGD mutant-coinfected animals. These studies demonstrate a critical role for specific bacterial genes and for bacterial metabolism in driving virulence and modulating immune function during influenza-associated bacterial pneumonia.
Collapse
|
70
|
Kobras CM, Fenton AK, Sheppard SK. Next-generation microbiology: from comparative genomics to gene function. Genome Biol 2021; 22:123. [PMID: 33926534 PMCID: PMC8082670 DOI: 10.1186/s13059-021-02344-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
Microbiology is at a turning point in its 120-year history. Widespread next-generation sequencing has revealed genetic complexity among bacteria that could hardly have been imagined by pioneers such as Pasteur, Escherich and Koch. This data cascade brings enormous potential to improve our understanding of individual bacterial cells and the genetic basis of phenotype variation. However, this revolution in data science cannot replace established microbiology practices, presenting the challenge of how to integrate these new techniques. Contrasting comparative and functional genomic approaches, we evoke molecular microbiology theory and established practice to present a conceptual framework and practical roadmap for next-generation microbiology.
Collapse
Affiliation(s)
- Carolin M Kobras
- Department of Molecular Biology & Biotechnology, University of Sheffield, The Florey Institute for Host-Pathogen Interactions, Sheffield, UK
| | - Andrew K Fenton
- Department of Molecular Biology & Biotechnology, University of Sheffield, The Florey Institute for Host-Pathogen Interactions, Sheffield, UK.
| | - Samuel K Sheppard
- Department of Biology & Biochemistry, University of Bath, Milner Centre for Evolution, Bath, UK.
| |
Collapse
|
71
|
Zhang R, Xu W, Shao S, Wang Q. Gene Silencing Through CRISPR Interference in Bacteria: Current Advances and Future Prospects. Front Microbiol 2021; 12:635227. [PMID: 33868193 PMCID: PMC8044314 DOI: 10.3389/fmicb.2021.635227] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Functional genetic screening is an important method that has been widely used to explore the biological processes and functional annotation of genetic elements. CRISPR/Cas (Clustered regularly interspaced short palindromic repeat sequences/CRISPR-associated protein) is the newest tool in the geneticist's toolbox, allowing researchers to edit a genome with unprecedented ease, accuracy, and high-throughput. Most recently, CRISPR interference (CRISPRi) has been developed as an emerging technology that exploits the catalytically inactive Cas9 (dCas9) and single-guide RNA (sgRNA) to repress sequence-specific genes. In this review, we summarized the characteristics of the CRISPRi system, such as programmable, highly efficient, and specific. Moreover, we demonstrated its applications in functional genetic screening and highlighted its potential to dissect the underlying mechanism of pathogenesis. The recent development of the CRISPRi system will provide a high-throughput, practical, and efficient tool for the discovery of functionally important genes in bacteria.
Collapse
Affiliation(s)
- Riyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensheng Xu
- Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
72
|
Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:643326. [PMID: 33828999 PMCID: PMC8019817 DOI: 10.3389/fcimb.2021.643326] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karina Hentrich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
73
|
Rousset F, Cabezas-Caballero J, Piastra-Facon F, Fernández-Rodríguez J, Clermont O, Denamur E, Rocha EPC, Bikard D. The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nat Microbiol 2021; 6:301-312. [PMID: 33462433 DOI: 10.1038/s41564-020-00839-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/20/2020] [Indexed: 01/28/2023]
Abstract
Bacteria from the same species can differ widely in their gene content. In Escherichia coli, the set of genes shared by all strains, known as the core genome, represents about half the number of genes present in any strain. Although recent advances in bacterial genomics have unravelled genes required for fitness in various experimental conditions, most studies have focused on single model strains. As a result, the impact of the species' genetic diversity on core processes of the bacterial cell remains largely under-investigated. Here, we have developed a CRISPR interference platform for high-throughput gene repression that is compatible with most E. coli isolates and closely related species. We have applied it to assess the importance of ~3,400 nearly ubiquitous genes in three growth conditions in 18 representative E. coli strains spanning most common phylogroups and lifestyles of the species. Our screens revealed extensive variations in gene essentiality between strains and conditions. Investigation of the genetic determinants for these variations highlighted the importance of epistatic interactions with mobile genetic elements. In particular, we have shown how prophage-encoded defence systems against phage infection can trigger the essentiality of persistent genes that are usually non-essential. This study provides broad insights into the evolvability of gene essentiality and argues for the importance of studying various isolates from the same species under diverse conditions.
Collapse
Affiliation(s)
- François Rousset
- Synthetic Biology, Department of Microbiology, Institut Pasteur, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | | | | | | | | | - Erick Denamur
- Université de Paris, IAME, INSERM UMR1137, Paris, France.,AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France.
| | - David Bikard
- Synthetic Biology, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
74
|
Synefiaridou D, Veening JW. Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V. Appl Environ Microbiol 2021; 87:e02762-20. [PMID: 33397704 PMCID: PMC8105017 DOI: 10.1128/aem.02762-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by the detection and cleavage of invading foreign DNA. Modified versions of this system can be exploited as a biotechnological tool for precise genome editing at a targeted locus. Here, we developed a replicative plasmid that carries the CRISPR-Cas9 system for RNA-programmable genome editing by counterselection in the opportunistic human pathogen Streptococcus pneumoniae Specifically, we demonstrate an approach for making targeted markerless gene knockouts and large genome deletions. After a precise double-stranded break (DSB) is introduced, the cells' DNA repair mechanism of homology-directed repair (HDR) is exploited to select successful transformants. This is achieved through the transformation of a template DNA fragment that will recombine in the genome and eliminate recognition of the target of the Cas9 endonuclease. Next, the newly engineered strain can be easily cured from the plasmid, which is temperature sensitive for replication, by growing it at the nonpermissive temperature. This allows for consecutive rounds of genome editing. Using this system, we engineered a strain with three major virulence factors deleted. The approaches developed here could potentially be adapted for use with other Gram-positive bacteria.IMPORTANCEStreptococcus pneumoniae (the pneumococcus) is an important opportunistic human pathogen killing more than 1 million people each year. Having the availability of a system capable of easy genome editing would significantly facilitate drug discovery and efforts to identify new vaccine candidates. Here, we introduced an easy-to-use system to perform multiple rounds of genome editing in the pneumococcus by putting the CRISPR-Cas9 system on a temperature-sensitive replicative plasmid. The approaches used here will advance genome editing projects in this important human pathogen.
Collapse
Affiliation(s)
- Dimitra Synefiaridou
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
75
|
Westermann AJ, Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions. Nat Rev Genet 2021; 22:361-378. [PMID: 33597744 DOI: 10.1038/s41576-021-00326-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
The human body is constantly exposed to microorganisms, which entails manifold interactions between human cells and diverse commensal or pathogenic bacteria. The cellular states of the interacting cells are decisive for the outcome of these encounters such as whether bacterial virulence programmes and host defence or tolerance mechanisms are induced. This Review summarizes how next-generation RNA sequencing (RNA-seq) has become a primary technology to study host-microbe interactions with high resolution, improving our understanding of the physiological consequences and the mechanisms at play. We illustrate how the discriminatory power and sensitivity of RNA-seq helps to dissect increasingly complex cellular interactions in time and space down to the single-cell level. We also outline how future transcriptomics may answer currently open questions in host-microbe interactions and inform treatment schemes for microbial disorders.
Collapse
Affiliation(s)
- Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
76
|
Schmidt K, Engel P. Mechanisms underlying gut microbiota-host interactions in insects. J Exp Biol 2021; 224:224/2/jeb207696. [PMID: 33509844 DOI: 10.1242/jeb.207696] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects are the most diverse group of animals and colonize almost all environments on our planet. This diversity is reflected in the structure and function of the microbial communities inhabiting the insect digestive system. As in mammals, the gut microbiota of insects can have important symbiotic functions, complementing host nutrition, facilitating dietary breakdown or providing protection against pathogens. There is an increasing number of insect models that are experimentally tractable, facilitating mechanistic studies of gut microbiota-host interactions. In this Review, we will summarize recent findings that have advanced our understanding of the molecular mechanisms underlying the symbiosis between insects and their gut microbiota. We will open the article with a general introduction to the insect gut microbiota and then turn towards the discussion of particular mechanisms and molecular processes governing the colonization of the insect gut environment as well as the diverse beneficial roles mediated by the gut microbiota. The Review highlights that, although the gut microbiota of insects is an active field of research with implications for fundamental and applied science, we are still in an early stage of understanding molecular mechanisms. However, the expanding capability to culture microbiomes and to manipulate microbe-host interactions in insects promises new molecular insights from diverse symbioses.
Collapse
Affiliation(s)
- Konstantin Schmidt
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
77
|
CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA. Nat Microbiol 2021; 6:1175-1187. [PMID: 34373624 PMCID: PMC8387234 DOI: 10.1038/s41564-021-00949-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Most bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.
Collapse
|
78
|
Todor H, Silvis MR, Osadnik H, Gross CA. Bacterial CRISPR screens for gene function. Curr Opin Microbiol 2020; 59:102-109. [PMID: 33285498 DOI: 10.1016/j.mib.2020.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
In this review we describe the application of CRISPR tools for functional genomics screens in bacteria, with a focus on the use of interference (CRISPRi) approaches. We review recent developments in CRISPRi titration, which has enabled essential gene functional screens, and genome-scale pooled CRISPRi screens. We summarize progress toward enabling CRISPRi screens in non-model and pathogenic bacteria, including the development of new dCas9 variants. Taking into account the current state of the field, we provide a forward-looking analysis of CRISPRi strategies for determining gene function in bacteria.
Collapse
Affiliation(s)
- Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie R Silvis
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco 94158 CA, USA.
| |
Collapse
|
79
|
Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2020; 117:27608-27619. [PMID: 33087560 PMCID: PMC7959565 DOI: 10.1073/pnas.1920015117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for enormous global morbidity and mortality. Despite this, the pneumococcus makes up part of the commensal nasopharyngeal flora. How the pneumococcus switches from this commensal to pathogenic state and causes disease is unclear and very likely involves variability in expression of its virulence factors. Here, we used synthetic biology approaches to generate complex gene-regulatory networks such as logic gates and toggle switches. We show that these networks are functional in vivo to control capsule production in an influenza-superinfection model. This opens the field of systematically testing the role of phenotypic variation in pneumococcal virulence. The approaches used here may serve as an example for synthetic biology projects in unrelated organisms. Streptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.
Collapse
|