51
|
Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond) 2011; 26:355-69. [PMID: 22173078 DOI: 10.1038/eye.2011.309] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease.
Collapse
|
52
|
Yue BYJT. Myocilin and Optineurin: Differential Characteristics and Functional Consequences. Taiwan J Ophthalmol 2011; 1:6-11. [PMID: 24163790 DOI: 10.1016/j.tjo.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells and their axons. This review describes the characteristics of myocilin and optineurin protein products and summarizes the consequences of ectopically expressed wild type and mutant myocilin and optineurin in trabecular meshwork and/or neuronal cells. Myocilin and optineurin exhibit differential characteristics and have divergent functional consequences. They contribute to the development of glaucoma likely via distinct mechanisms.
Collapse
Affiliation(s)
- Beatrice Y J T Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
53
|
Blanco-Marchite C, Sánchez-Sánchez F, López-Garrido MP, Iñigez-de-Onzoño M, López-Martínez F, López-Sánchez E, Alvarez L, Rodríguez-Calvo PP, Méndez-Hernández C, Fernández-Vega L, García-Sánchez J, Coca-Prados M, García-Feijoo J, Escribano J. WDR36 and P53 gene variants and susceptibility to primary open-angle glaucoma: analysis of gene-gene interactions. Invest Ophthalmol Vis Sci 2011; 52:8467-78. [PMID: 21931130 DOI: 10.1167/iovs.11-7489] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To investigate the role of WDR36 and P53 sequence variations in POAG susceptibility. METHODS The authors performed a case-control genetic association study in 268 unrelated Spanish patients (POAG1) and 380 control subjects matched for sex, age, and ethnicity. WDR36 sequence variations were screened by either direct DNA sequencing or denaturing high-performance liquid chromatography. P53 polymorphisms p.R72P and c.97-147ins16bp were analyzed by single-nucleotide polymorphism (SNP) genotyping and PCR, respectively. Positive SNP and haplotype associations were reanalyzed in a second sample of 211 patients and in combined cases (n = 479). RESULTS The authors identified almost 50 WDR36 sequence variations, of which approximately two-thirds were rare and one-third were polymorphisms. Approximately half the variants were novel. Eight patients (2.9%) carried rare mutations that were not identified in the control group (P = 0.001). Six Tag SNPs were expected to be structured in three common haplotypes. Haplotype H2 was consistently associated with the disease (P = 0.0024 in combined cases). According to a dominant model, genotypes containing allele P of the P53 p.R72P SNP slightly increased glaucoma risk. Glaucoma susceptibility associated with different WDR36 genotypes also increased significantly in combination with the P53 RP risk genotype, indicating the existence of a genetic interaction. For instance, the OR of the H2 diplotype estimated for POAG1 and combined cases rose approximately 1.6 times in the two-locus genotype H2/RP. CONCLUSIONS Rare WDR36 variants and the P53 p.R72P polymorphism behaved as moderate glaucoma risk factors in Spanish patients. The authors provide evidence for a genetic interaction between WDR36 and P53 variants in POAG susceptibility, although this finding must be confirmed in other populations.
Collapse
Affiliation(s)
- Cristina Blanco-Marchite
- Servicio de Oftalmología, Complejo Hospitalario Universitario de Albacete (Hospital Perpetuo Socorro), Albacete, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res 2011; 93:331-9. [PMID: 21871452 DOI: 10.1016/j.exer.2011.08.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
Glaucoma is a family of diseases whose pathology is defined by the progressive loss of retinal ganglion cells. Clinically, glaucoma presents as a distinctive optic neuropathy with associated visual field loss. Primary open-angle glaucoma (POAG), chronic angle-closure glaucoma (ACG), and exfoliation glaucoma (XFG) are the most prevalent forms of glaucoma globally and are the most common causes of glaucoma-related blindness worldwide. A host of genetic and environmental factors contribute to glaucoma phenotypes. This review examines the current status of genetic investigations of POAG, ACG, XFG, including the less common forms of glaucoma primary congenital glaucoma (PCG), the developmental glaucomas, and pigment dispersion glaucoma.
Collapse
Affiliation(s)
- Yutao Liu
- Center for Human Genetics, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
55
|
Transgenic mice with overexpression of mutated human optineurin(E50K) in the retina. Mol Biol Rep 2011; 39:1119-24. [DOI: 10.1007/s11033-011-0840-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
56
|
Ghanem AA, Mady SM, Arafa LF, Elewa AM. Serotonin and hydroxyindolacetic acid levels in aqueous humor of patients with primary open-angle glaucoma. Interv Med Appl Sci 2011. [DOI: 10.1556/imas.3.2011.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Purpose
To investigate the levels of 5-HT (serotonin, 5-hydroxytryptamine) and 5-HIAA (5-hydroxyindolacetic acid) in the aqueous humor and plasma of subjects with primary open-angle glaucoma (POAG) and to correlate their concentrations with the severity of glaucoma.
Methods
Thirty-five patients with POAG and 30 patients with senile cataract (control group) of matched age and gender were included in the study prospectively. Aqueous humor samples were obtained by paracentesis from glaucoma and cataract patients who were undergoing elective surgery. Aqueous humor and corresponding plasma samples were analyzed for 5-HT and 5-HIAA levels by high performance liquid chromatography with electrochemical detection.
Results
5-HT and 5-HIAA levels were significantly higher in the aqueous humor of POAG patients than in that of the comparative group of cataract patients. There was no significant difference in the 5-HT and 5-HIAA levels in plasma of POAG and cataract patients. A positive correlation was found between 5-HT and 5-HIAA in the aqueous humor of POAG patients. The 5-HT turnover (5-HIAA/5-HT) was higher in POAG than in cataract patients, but the difference was not significant. No significant correlation was found between levels and severity of visual field loss.
Conclusion
Increased levels of 5-HT and 5-HIAA aqueous humor may be associated with POAG.
Collapse
Affiliation(s)
- Asaad A. Ghanem
- 1 Ophthalmology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Salah M. Mady
- 2 Ophthalmology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Lamiaa F. Arafa
- 3 Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Elewa
- 4 Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
57
|
Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma. PLoS One 2011; 6:e20649. [PMID: 21655191 PMCID: PMC3105107 DOI: 10.1371/journal.pone.0020649] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022] Open
Abstract
The statistical power of genome-wide association (GWA) studies to detect risk alleles for human diseases is limited by the unfavorable ratio of SNPs to study subjects. This multiple testing problem can be surmounted with very large population sizes when common alleles of large effects give rise to disease status. However, GWA approaches fall short when many rare alleles may give rise to a common disease, or when the number of subjects that can be recruited is limited. Here, we demonstrate that this multiple testing problem can be overcome by a comparative genomics approach in which an initial genome-wide screen in a genetically amenable model organism is used to identify human orthologues that may harbor risk alleles for adult-onset primary open angle glaucoma (POAG). Glaucoma is a major cause of blindness, which affects over 60 million people worldwide. Several genes have been associated with juvenile onset glaucoma, but genetic factors that predispose to adult onset primary open angle glaucoma (POAG) remain largely unknown. Previous genome-wide analysis in a Drosophila ocular hypertension model identified transcripts with altered regulation and showed induction of the unfolded protein response (UPR) upon overexpression of transgenic human glaucoma-associated myocilin (MYOC). We selected 16 orthologous genes with 62 polymorphic markers and identified in two independent human populations two genes of the UPR that harbor POAG risk alleles, BIRC6 and PDIA5. Thus, effectiveness of the UPR in response to accumulation of misfolded or aggregated proteins may contribute to the pathogenesis of POAG and provide targets for early therapeutic intervention.
Collapse
|
58
|
Khor CC, Ramdas WD, Vithana EN, Cornes BK, Sim X, Tay WT, Saw SM, Zheng Y, Lavanya R, Wu R, Wang JJ, Mitchell P, Uitterlinden AG, Rivadeneira F, Teo YY, Chia KS, Seielstad M, Hibberd M, Vingerling JR, Klaver CCW, Jansonius NM, Tai ES, Wong TY, van Duijn CM, Aung T. Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet 2011; 20:1864-72. [PMID: 21307088 DOI: 10.1093/hmg/ddr060] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Damage to the optic nerve (e.g. from glaucoma) has an adverse and often irreversible impact on vision. Earlier studies have suggested that the size of the optic nerve head could be governed by hereditary factors. We conducted a genome-wide association study (GWAS) on 4445 Singaporean individuals (n = 2132 of Indian and n = 2313 of Malay ancestry, respectively), with replication in Rotterdam, the Netherlands (n = 9326 individuals of Caucasian ancestry) using the most widely reported parameter for optic disc traits, the optic disc area. We identified a novel locus on chromosome 22q13.1, CARD10, which strongly associates with optic disc area in both Singaporean cohorts as well as in the Rotterdam Study (RS; rs9607469, per-allele change in optic disc area = 0.051 mm(2); P(meta) = 2.73×10(-12)) and confirmed the association between CDC7/TGFBR3 (lead single nucleotide polymorphism (SNP) rs1192415, P(meta) = 7.57×10(-17)) and ATOH7 (lead SNP rs7916697, P(meta) = 2.00 × 10(-15)) and optic disc area in Asians. This is the first Asian-based GWAS on optic disc area, identifying a novel locus for the optic disc area, but also confirming the results found in Caucasian persons suggesting that there are general genetic determinants applicable to the size of the optic disc across different ethnicities.
Collapse
Affiliation(s)
- Chiea Chuen Khor
- Infectious Diseases, Genome Institute of Singapore, A*STAR, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ghanem AA, Elewa AM, Arafa LF. Endothelin-1 and nitric oxide levels in patients with glaucoma. Ophthalmic Res 2011; 46:98-102. [PMID: 21282966 DOI: 10.1159/000323584] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 12/06/2010] [Indexed: 01/22/2023]
Abstract
AIMS To investigate the levels of endothelin-1 (ET-1) and nitric oxide (NO) in the aqueous humor and plasma of human eyes with different types of glaucoma: primary open-angle glaucoma (POAG) and chronic closed-angle glaucoma (CCAG). METHODS Patients were classified into 3 groups: group I comprised 35 patients with POAG, group II comprised 25 patients with CCAG, and 30 patients with senile cataract (group III) were used as a control group. Aqueous humor and corresponding plasma were analyzed for ET-1 and NO concentrations by enzyme-linked immunosorbent assay. A Bonferroni correction for multiple comparisons was performed. RESULTS There was no significant difference in plasma levels of either ET-1 or NO metabolites between the groups studied. ET-1 and NO were significantly elevated in the aqueous humor of patients with CCAG and POAG compared to the corresponding value in patients with cataract (p < 0.001). ET-1 and NO concentrations in the aqueous humor were more marked in CCAG than in POAG. NO levels were correlated with ET-1 in the aqueous humor of patients with glaucoma (p < 0.001). CONCLUSIONS Increased concentrations of ET-1 and NO in aqueous humor may be useful with POAG and CCAG. In addition, ET-1 and NO may have useful metabolite levels in the aqueous humor of POAG and CCAG patients as a result of glaucoma damage and may not be a cause of it.
Collapse
Affiliation(s)
- Asaad A Ghanem
- Ophthalmology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | |
Collapse
|
60
|
Abstract
Glaucoma is a genetically heterogeneous disorder and is the second cause of blindness worldwide owing to the progressive degeneration of retinal ganglion neurons. Very few genes causing glaucoma were identified to this date. In this study, we screened 10 candidate genes of glaucoma between the D14S261 and D14S121 markers of chromosome 14q11, a critical region previously linked to primary open-angle glaucoma (POAG). Mutation analyses of two large cohorts of patients with POAG, normal tension glaucoma (NTG) and juvenile open-angle glaucoma (JOAG), and control subjects, found only association of non-synonymous heterozygous variants of the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) with POAG, NTG and JOAG. The 20 non-synonymous variants identified in RPGRIP1 were all distinct from variants causing photoreceptor dystrophies and were found throughout all but one domain (RPGR-interacting domain) of RPGRIP1. Among them, 14 missense variants clustered within or around the C2 domains of RPGRIP1. Yeast two-hybrid analyses of a subset of the missense mutations within the C2 domains of RPGRIP1 shows that five of them (p.R598Q, p.A635G, p.T806I, p.A837G and p.I838V) decrease the association of the C2 domains with nephrocystin-4 (NPHPH). When considering only these five confirmed C2-domain mutations, the association remains statistically significant (P=0.001). Altogether, the data support that heterozygous non-synonymous variants of RPGRIP1 may cause or increase the susceptibility to various forms of glaucoma and that among other factors, physical impairment of the interaction of RPGRIP1with different proteins may contribute to the pathogenesis of forms of glaucoma.
Collapse
|
61
|
Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, Sigurdsson A, Jonasdottir A, Gudjonsson SA, Magnusson KP, Stefansson H, Lam DSC, Tam POS, Gudmundsdottir GJ, Southgate L, Burdon KP, Gottfredsdottir MS, Aldred MA, Mitchell P, St Clair D, Collier DA, Tang N, Sveinsson O, Macgregor S, Martin NG, Cree AJ, Gibson J, Macleod A, Jacob A, Ennis S, Young TL, Chan JCN, Karwatowski WSS, Hammond CJ, Thordarson K, Zhang M, Wadelius C, Lotery AJ, Trembath RC, Pang CP, Hoh J, Craig JE, Kong A, Mackey DA, Jonasson F, Thorsteinsdottir U, Stefansson K. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 2010; 42:906-9. [PMID: 20835238 DOI: 10.1038/ng.661] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 08/18/2010] [Indexed: 12/22/2022]
Abstract
We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10⁻¹⁰). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG.
Collapse
|
62
|
Abstract
Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible.
Collapse
Affiliation(s)
- Bao Jian Fan
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
63
|
Abstract
Vision research has often led to significant advances in our understanding of biology. There has also been particular success in translating basic research in the eye into breakthrough clinical therapies that mark important milestones for ophthalmology and also for medical research. Anti-VEGF therapy for age-related macular degeneration was named as one of the top ten science advancements of the year 2006. Only two years later, successful transfer of the RPE65 gene into retinal pigment epithelium of patients with Leber congenital amaurosis was noted as one of the most important clinical applications of gene therapy. The articles in this Review series outline current developments in vision research and highlight its continued importance in ophthalmology and medicine.
Collapse
Affiliation(s)
- Andreas Stahl
- Department of Ophthalmology, Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
64
|
Lai TYY, Chen LJ, Yam GHF, Tham CCY, Pang CP. Development of novel drugs for ocular diseases: possibilities for individualized therapy. Per Med 2010; 7:371-386. [DOI: 10.2217/pme.10.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In clinical ophthalmology, new and old drug regimens are available for the treatment of major eye diseases, including potentially blinding conditions, such as glaucoma, and various macular diseases. In glaucoma, therapeutic treatment mainly deals with control of intraocular pressure at low levels but the clinical courses of patients can be very variable. Very often, specific drug combinations and dosages have to be formulated for individual glaucoma patients. In neovascular age-related macular degeneration, choroidal neovascularization can lead to progressive and irreversible visual impairment if not treated early. In recent years, clinical trials using photodynamic therapy with verteporfin and various anti-VEGF antibodies, such as ranibizumab and bevacizumab, have enhanced the treatment outcomes of neovascular age-related macular degeneration. In diabetic macular edema, intravitreal triamcinolone acetonide and anti-VEGF therapy are effective in some patients. Again, responses to treatment are not uniform in all macular patients. Traditional herbal medicine has long been known to play a role in the practice of personalized formulations in Asia. Potential preventive and therapeutic effects have been claimed in individual eye patients. Meanwhile, advanced technologies in molecular biology have led to identification of genes associated with many eye diseases and development of the concept of individual medicine, in which the genotype of a person can be used as a basis for disease prediction or prophylactic treatments. Moreover, pharmacogenomic studies have demonstrated the association of various genotypes or haplotypes with responses to drug therapies, providing hope for tailormade personalized treatments. The combination of genotypic information with clinical features for the prescription of treatment modes in eye diseases is under vigorous research.
Collapse
Affiliation(s)
- Timothy YY Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | - Gary HF Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | - Clement CY Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | | |
Collapse
|
65
|
Mokbel TH, Ghanem AA, Kishk H, Arafa LF, El-Baiomy AA. Erythropoietin and soluble CD44 levels in patients with primary open-angle glaucoma. Clin Exp Ophthalmol 2010; 38:560-5. [DOI: 10.1111/j.1442-9071.2010.02318.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Meguro A, Inoko H, Ota M, Mizuki N, Bahram S. Genome-wide association study of normal tension glaucoma: common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology 2010; 117:1331-8.e5. [PMID: 20363506 DOI: 10.1016/j.ophtha.2009.12.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Factors contributing to the development of normal tension glaucoma (NTG), degenerative optic neuropathy characterized by the progressive loss of retinal ganglion cells, optic nerve axons, and visual fields, have not been determined. To identify genetic risk factors for NTG, we performed a genome-wide association study of NTG. DESIGN Case-control study. PARTICIPANTS The study cohort consisted of 305 Japanese patients with NTG and 355 controls. METHODS We genotyped 500,568 single-nucleotide polymorphisms (SNPs) and assessed the allelic diversity among cases and controls. MAIN OUTCOME MEASURES Genotypes of 500,568 SNPs. RESULTS The 2 most strongly NTG-associated SNPs, rs3213787 and rs735860, are located in an intron of SRBD1 and the 3'-untranslated region of ELOVL5 (P = 2.5 x 10(-9), odds ratio = 2.80 and P = 4.1 x 10(-6), odds ratio = 1.69), respectively. Real-time quantitative reverse transcription-polymerase chain reaction assays showed significantly increased expression of each gene in the white blood cells of subjects harboring the risk allele of these SNPs. CONCLUSIONS Our genome-wide association study identified SRBD1 and ELOVL5 as new susceptibility genes for NTG. Because SRBD1 and ELOVL5 are reportedly involved in the induction of cell growth inhibition or apoptosis, the regulation of SRBD1 and ELOVL5 cascades may play an important physiologic role in the risk of NTG development. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
-
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Rautenstrauss B, Mardin C. Targeting glaucoma beyond intraocular pressure. EXPERT REVIEW OF OPHTHALMOLOGY 2010. [DOI: 10.1586/eop.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene. PLoS One 2010; 5:e9168. [PMID: 20161783 PMCID: PMC2820081 DOI: 10.1371/journal.pone.0009168] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Background Glaucoma is a major blinding disease. The most common form of this disease, primary open angle glaucoma (POAG), is genetically heterogeneous. One of the candidate genes, optineurin, is linked principally to normal tension glaucoma, a subtype of POAG. The present study was undertaken to illustrate the basic characteristics of optineurin. Methodology/Principal Findings Lysates from rat retinal ganglion RGC5 cells were subjected to N- or O-deglycosylation or membrane protein extraction. The phosphorylation status was evaluated after immunoprecipitation. It was found that while phosphorylated, optineurin was neither N- nor O-glycosylated, and was by itself not a membrane protein. RGC5 and human retinal pigment epithelial cells were double stained with anti-optineurin and anti-GM130. The endogenous optineurin exhibited a diffuse, cytoplasmic distribution, but a population of the protein was associated with the Golgi apparatus. Turnover experiments showed that the endogenous optineurin was relatively short-lived, with a half-life of approximately 8 hours. Native blue gel electrophoresis revealed that the endogenous optineurin formed homohexamers. Optineurin also interacted with molecules including Rab8, myosin VI, and transferrin receptor to assemble into supermolecular complexes. When overexpressed, optineurin–green fluorescence protein (GFP) fusion protein formed punctate structures termed “foci” in the perinuclear region. Treatment of nocadazole resulted in dispersion of the optineurin foci. In addition, tetracycline-regulated optineurin-GFPs expressing RGC5 stable cell lines were established for the first time. Conclusions/Significance The present study provides new information regarding basic characteristics of optineurin that are important for future efforts in defining precisely how optineurin functions normally and how mutations may result in pathology. The inducible optineurin-GFP–expressing cell lines are also anticipated to facilitate in-depth studies of optineurin. Furthermore, the demonstrations that optineurin is an aggregation-prone protein and that the foci formation is microtubule-dependent bear similarities to features documented in neurodegenerative diseases, supporting a neurodegenerative paradigm for glaucoma.
Collapse
|
69
|
Motushchuk AE, Komarova TY, Grudinina NA, Rakhmanov VV, Mandelshtam MY, Astakhov YS, Vasilyev VB. Genetic variants of CYP1B1 and WDR36 in the patients with primary congenital glaucoma and primary open angle glaucoma from saint-Petersburg. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409120102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Koga T, Shen X, Park JS, Qiu Y, Park BC, Shyam R, Yue BYJT. Differential effects of myocilin and optineurin, two glaucoma genes, on neurite outgrowth. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:343-52. [PMID: 19959812 DOI: 10.2353/ajpath.2010.090194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons. To investigate the effects of force-expressed wild-type and mutant myocilin and optineurin on neurite outgrowth in neuronal cells, we transiently transfected cells with pEGFP-N1 (mock control) as well as myocilin and optineurin plasmids including pMYOC(WT)-EGFP, pMYOC(P370L)-EGFP, pMYOC(1-367)-EGFP, pOPTN(WT)-EGFP, and pOPTN(E50K)-EGFP. PC12 cells transfected with pEGFP-N1 produced, as anticipated, long and extensive neuritis on nerve growth factor induction. The neurite length in those cells transfected with myocilin constructs was shortened and the number of neurites was also reduced. A similar inhibitory effect on neurite outgrowth was also elicited by myocilin transfection in RGC5 cells. In contrast, neither transfection of the optineurin constructs pOPTN(WT)-EGFP and pOPTN(E50K)-EGFP nor the myocilin and optineurin small-interfering RNA treatments induced significant alterations in neurite outgrowth. Transfection with the wild-type optineurin construct, but not with that of the wild-type myocilin, increased the apoptotic activity in cells. These results demonstrated that the two glaucoma genes, myocilin and optineurin, exhibited differential effects on neurite outgrowth. They may contribute to the development of neurodegenerative glaucoma via distinct mechanisms.
Collapse
Affiliation(s)
- Takahisa Koga
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstätter JH, Michels-Rautenstrauss K, Weisschuh N, Gramer E, Ramdas WD, van Koolwijk LM, Klaver CC, Vingerling JR, Weber BH, Kruse FE, Rautenstrauss B, Barde YA, Reis A. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet 2009; 85:447-56. [PMID: 19765683 DOI: 10.1016/j.ajhg.2009.08.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/20/2009] [Accepted: 08/28/2009] [Indexed: 12/25/2022] Open
Abstract
Glaucoma, a main cause of blindness in the developed world, is characterized by progressive degeneration of retinal ganglion cells (RGCs), resulting in irreversible loss of vision. Although members of the neurotrophin gene family in various species are known to support the survival of numerous neuronal populations, including RGCs, it is less clear whether they are also required for survival and maintenance of adult neurons in humans. Here, we report seven different heterozygous mutations in the Neurotrophin-4 (NTF4) gene accounting for about 1.7% of primary open-angle glaucoma patients of European origin. Molecular modeling predicted a decreased affinity of neurotrophin 4 protein (NT-4) mutants with its specific tyrosine kinase receptor B (TrkB). Expression of recombinant NT-4 carrying the most frequent mutation was demonstrated to lead to decreased activation of TrkB. These findings suggest a pathway in the pathophysiology of glaucoma through loss of neurotrophic function and may eventually open the possibility of using ligands activating TrkB to prevent the progression of the disease.
Collapse
|
72
|
López-Garrido MP, Blanco-Marchite C, Sánchez-Sánchez F, López-Sánchez E, Chaqués-Alepuz V, Campos-Mollo E, Salinas-Sánchez AS, Escribano J. Functional analysis of CYP1B1 mutations and association of heterozygous hypomorphic alleles with primary open-angle glaucoma. Clin Genet 2009; 77:70-8. [PMID: 19793111 DOI: 10.1111/j.1399-0004.2009.01284.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Glaucoma is an inherited complex and heterogeneous disease, and one of the most prevalent causes of definitive blindness in the world. Recent reports have indicated that heterozygous mutations of the CYTOCHOROME P4501B1 (CYP1B1) gene are present in 4-10% of patients with primary open-angle glaucoma (POAG). To further evaluate the role of CYP1B1 mutations in POAG we extended our previous association study and carried out a functional analysis of the mutations identified by polymerase chain reaction (PCR) DNA sequencing of the three exons of the gene in a total of 245 unrelated Spanish patients and 326 control subjects. Eight of nine different mutations identified in these patients were cloned and functionally assessed by measuring ethoxyresorufin O-deethylation activity and CYP1B1 stability in transiently transfected HEK-293T cells. All these mutants showed reduced catalytic activity, ranging from 20% to 60% of wild-type and/or decreased protein stability and, therefore, they were classified as hypomorphic alleles. No null alleles were identified in these patients. We found heterozygous hypomorphic CYP1B1 mutations in 17 (6.7%) patients and in seven controls (2.1%) showing that these mutations are associated with an increased risk of POAG (p = 0.005; odds ratio = 3.2; 95% confidence interval = 1.30-9.19). Our data suggest that hypomorphic CYP1B1 mutations are, to date, the main known genetic risk factor in POAG.
Collapse
Affiliation(s)
- M-P López-Garrido
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. de Almansa, no. 14, 02006, Albacete, Spain
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Macdonald IM. Pharmacogenetics - getting closer. Open Ophthalmol J 2009; 3:46-9. [PMID: 19816587 DOI: 10.2174/1874364100903020046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/12/2009] [Accepted: 03/29/2009] [Indexed: 11/22/2022] Open
Abstract
This review is written for the generalist to provide an understanding of the application of genetics to the care of patients with glaucoma and the broader concepts of personalized medicine. More specifically, the review will link advances in the genetics of glaucoma with the concepts of pharmacogenetics and its potential to improve patient care.
Collapse
Affiliation(s)
- Ian M Macdonald
- Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
74
|
Wolf C, Gramer E, Müller-Myhsok B, Pasutto F, Reinthal E, Wissinger B, Weisschuh N. Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study. BMC MEDICAL GENETICS 2009; 10:91. [PMID: 19754948 PMCID: PMC2751751 DOI: 10.1186/1471-2350-10-91] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/15/2009] [Indexed: 04/21/2023]
Abstract
Background Normal tension glaucoma is a major subtype of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. Monogenic forms following classical inheritance patterns are rare in this glaucoma subtype. Instead, multigenic inheritance is proposed for the majority of cases. The present study tested common sequence variants in candidate genes for association with normal tension glaucoma in the German population. Methods Ninety-eight SNPs were selected to tag the common genetic variation in nine genes, namely OPTN (optineurin), RDX (radixin), SNX16 (sorting nexin 16), OPA1 (optic atrophy 1), MFN1 (mitofusin 1), MFN2 (mitofusin 2), PARL (presenilin associated, rhomboid-like), SOD2 (superoxide dismutase 2, mitochondrial) and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1). These SNPs were genotyped in 285 cases and 282 fully evaluated matched controls. Statistical analyses comprised single polymorphism association as well as haplogroup based association testing. Results Results suggested that genetic variation in five of the candidate genes (RDX, SNX16, OPA1, SOD2 and CYP1B1) is unlikely to confer major risk to develop normal tension glaucoma in the German population. In contrast, we observed a trend towards association of single SNPs in OPTN, MFN1, MFN2 and PARL. The SNPs of OPTN, MFN2 and PARL were further analysed by multimarker haplotype-based association testing. We identified a risk haplotype being more frequent in patients and a vice versa situation for the complementary protective haplotype in each of the three genes. Conclusion Common variants of OPTN, PARL, MFN1 and MFN2 should be analysed in other cohorts to confirm their involvement in normal tension glaucoma.
Collapse
Affiliation(s)
- Christiane Wolf
- Centre for Ophthalmology, Institute for Ophthalmic Research, Molecular Genetics Laboratory, Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality.
Collapse
|
76
|
Kamio M, Meguro A, Ota M, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, Negi A, Sagara T, Nishida T, Inatani M, Tanihara H, Aihara M, Araie M, Fukuchi T, Abe H, Higashide T, Sugiyama K, Kanamoto T, Kiuchi Y, Iwase A, Ohno S, Inoko H, Mizuki N. Investigation of the association between the GLC3A locus and normal tension glaucoma in Japanese patients by microsatellite analysis. Clin Ophthalmol 2009; 3:183-8. [PMID: 19668563 PMCID: PMC2708983 DOI: 10.2147/opth.s4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose: To investigate whether the GLC3A locus harboring the CYP1B1 gene is associated with normal tension glaucoma (NTG) in Japanese patients. Materials and Methods: One hundred forty-two Japanese patients with NTG and 101 Japanese healthy controls were recruited. Patients exhibiting a comparatively early onset were selected as this suggests that genetic factors may show stronger involvement. Genotyping and assessment of allelic diversity was performed on 13 highly polymorphic microsatellite markers in and around the GLC3A locus. Results: There were decreased frequencies of the 444 allele of D2S0416i and the 258 allele of D2S0425i in cases compared to controls (P = 0.022 and P = 0.034, respectively). However, this statistical significance disappeared when corrected (Pc > 0.05). We did not find any significant association between the remaining 11 microsatellite markers, including D2S177, which may be associated with CYP1B1, and NTG (P > 0.05). Conclusions: Our study showed no association between the GLCA3 locus and NTG, suggesting that the CYP1B1 gene, which is reportedly involved in a range of glaucoma phenotypes, may not be an associated factor in the pathogenesis of NTG.
Collapse
Affiliation(s)
- M Kamio
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Nakamura K, Ota M, Meguro A, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, Negi A, Sagara T, Nishida T, Inatani M, Tanihara H, Aihara M, Araie M, Fukuchi T, Abe H, Higashide T, Sugiyama K, Kanamoto T, Kiuchi Y, Iwase A, Ohno S, Inoko H, Mizuki N. Association of microsatellite polymorphisms of the GPDS1 locus with normal tension glaucoma in the Japanese population. Clin Ophthalmol 2009; 3:307-12. [PMID: 19668583 PMCID: PMC2708999 DOI: 10.2147/opth.s5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To investigate whether the GPDS1 locus, a potential causative locus of pigment-dispersion syndrome, is associated with normal-tension glaucoma (NTG) in Japanese patients. MATERIALS AND METHODS We used polymerase chain reaction amplification with sequence-specific primers to analyze 20 polymorphic microsatellite markers in and around the GPDS1 locus with an automated DNA analyzer and automated fragment detection by fluorescent-based technology. The DNA samples used for these analyses were obtained from ethnicity- and gender-matched patients, including 141 Japanese patients with NTG and 101 healthy controls. Patients exhibiting a comparatively early onset were selected as this suggests that genetic factors may show stronger involvement. RESULTS One allele of D7S2462 exhibited a frequency that was significantly decreased in NTG cases compared to controls (P = 0.0013, Pc = 0.019, OR = 0.48, 95% CI = 0.30-0.75). Alleles at another six microsatellite loci were positively or negatively associated with NTG, but these associations did not retain statistical significance after Bonferroni correction (P < 0.05, Pc > 0.05). CONCLUSION Our study showed a significant association between the GPDS1 locus and NTG, suggesting that there may be some genetic risk factor(s) in the development of NTG.
Collapse
Affiliation(s)
- Kayo Nakamura
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N, Yazdani S, Babrzadeh F, Suri F, Ronaghi M, Elahi E, Paisán-Ruiz C. Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet 2009; 18:3969-77. [PMID: 19656777 DOI: 10.1093/hmg/ddp338] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is a heterogeneous group of optic neuropathies that manifests by optic nerve head cupping or degeneration of the optic nerve, resulting in a specific pattern of visual field loss. Glaucoma leads to blindness if left untreated, and is considered the second leading cause of blindness worldwide. The subgroup primary congenital glaucoma (PCG) is characterized by an anatomical defect in the trabecular meshwork, and age at onset in the neonatal or infantile period. It is the most severe form of glaucoma. CYP1B1 was the first gene genetically linked to PCG, and CYP1B1 mutations are the cause of disease in 20-100% of patients in different populations. Here, we report that LTBP2 encoding latent transforming growth factor beta binding protein 2 is a PCG causing gene, confirming results recently reported. A disease-associated locus on chromosome 14 was identified by performing whole genome autozygosity mapping in Iranian PCG families using high density single nucleotide polymorphism chips, and two disease-segregating loss of function mutations in LTBP2, p.Ser472fsX3 and p.Tyr1793fsX55, were observed in two families while sequencing candidate genes in the locus. The p.Tyr1793fsX55 mutation affects an amino acid close to the C-terminal of the encoded protein. Subsequently, LTBP2 expression was shown in human eyes, including the trabecular meshwork and ciliary processes that are thought to be relevant to the etiology of PCG.
Collapse
|
79
|
Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci U S A 2009; 106:12838-42. [PMID: 19625618 DOI: 10.1073/pnas.0906397106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the major type of glaucoma. To discover genetic markers associated with POAG, we examined a total of 1,575 Japanese subjects in a genome-wide association study (stage 1) and a subsequent study (stage 2). Both studies were carried out at a single institution. In the stage 1 association study, we compared SNPs between 418 POAG patients and 300 control subjects. First, low-quality data were eliminated by a stringent filter, and 331,838 autosomal SNPs were selected for analysis. Poorly clustered SNPs were eliminated by a visual assessment, leaving 255 that showed a significant deviation (P < 0.001) in the allele frequency comparison. In the stage 2 analysis, we tested these 255 SNPs for association in DNA samples from a separate group of 409 POAG and 448 control subjects. High-quality genotype data were selected and used to calculate the combined P values of stages 1 and 2 by the Mantel-Haenszel test. These analyses yielded 6 SNPs with P < 0.0001. All 6 SNPs showed a significant association (P < 0.05) in stage 2, demonstrating a confirmed association with POAG. Although we could not link the SNPs to the annotated gene(s), it turned out that we have identified 3 genetic loci probably associated with POAG. These findings would provide the foundation for future studies to build on, such as for the metaanalysis, to reveal the molecular mechanism of the POAG pathogenesis.
Collapse
|
80
|
Abstract
In this study, three single-nucleotide polymorphisms (SNPs) on the lysyl oxidase-like 1 (LOXL1) gene associated with exfoliation syndrome (XFS) and exfoliation glaucoma (XFG) were investigated in the Finnish population. A case-control study of 59 sporadic patients with XFS, 82 with XFG, 71 with primary open-angle glaucoma (POAG) and 26 individuals without these disorders from the southern Finnish population, and a family study of an extended family with 28 patients with XFS or XFG and 92 unaffected relatives from Kökar islands, Southwestern Finnish archipelago, were conducted. Anonymous blood donors (n=404) were studied as population-based controls. Three SNPs, rs1048661 (R141L), rs3825942 (G153D) and rs2165241, of the LOXL1 gene were genotyped by PCR sequencing. Association and linkage analyses were carried out. In both case-control and family materials, significant association for allele G of rs1048661 (P=2.65 x 10(-5); P=0.0007), allele G of rs3825942 (P=2.24 x 10(-8); P=0.49) and allele T of rs2165241 (P=2.62 x 10(-13); P<0.0001) was found in XFS/XFG. However, linkage was not observed for LOXL1 risk alleles. The corresponding three-locus haplotype GGT increased the risk of XFS/ XFG nearly 15-fold relative to low-risk haplotype GAC (odds ratio (OR): 14.9, P=1.6 x 10(-16)). In conclusion, the earlier reported polymorphisms of the LOXL1 gene showed significant association also in the Finnish population.
Collapse
|
81
|
Footz TK, Johnson JL, Dubois S, Boivin N, Raymond V, Walter MA. Glaucoma-associated WDR36 variants encode functional defects in a yeast model system. Hum Mol Genet 2009; 18:1276-1287. [PMID: 19150991 DOI: 10.1093/hmg/ddp027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. POAG is associated with a characteristic progression of changes to ocular morphology and degeneration at the optic nerve head with the loss of visual fields. Physical mapping efforts identified genomic loci in which to search for causative POAG gene mutations. WDR36, at locus GLC1G, was initially identified as a gene with a low frequency of non-synonymous sequence variations that were exclusive to adult-onset POAG patients. It has since been shown that rare WDR36 sequence variants are also present in the normal population at similarly low frequencies. The lack of a consistent genotype:phenotype correlation prompted us to investigate the functional consequences of WDR36 sequence variations. WDR36 is involved in rRNA processing, a critical step in ribosome biogenesis, and is very similar to yeast Utp21p which is a member of the small subunit (SSU) processome complex responsible for maturation of 18S rRNA. We, therefore, developed a yeast model system to test the functional and phenotypic consequences of POAG-associated sequence variants introduced into UTP21. Alone, the POAG variants did not produce any significant defects in cell viability or rRNA processing. However, when combined with disruption of STI1 (which synthetically interacts with UTP21), 5 of the 11 tested variants had increased or decreased cell viability which corresponded to reduced or elevated levels of pre-rRNA, respectively. These results demonstrate that, in the correct genetic background, WDR36 sequence variants can lead to an altered cellular phenotype, supporting the theory that WDR36 participates in polygenic forms of glaucoma.
Collapse
Affiliation(s)
- Tim K Footz
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
82
|
Howell GR, Libby RT, John SWM. Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. PROGRESS IN BRAIN RESEARCH 2009; 173:303-21. [PMID: 18929118 DOI: 10.1016/s0079-6123(08)01122-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Here we review how mouse studies are contributing to understanding glaucoma. We include discussion of aqueous humor drainage and intraocular pressure elevation, because new treatments to avoid exposure to high pressure will indirectly protect neurons from glaucoma, and complement direct neuroprotective strategies. We describe how mouse models are adding to both the understanding of glaucomatous neurodegeneration and the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
83
|
Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res 2008; 88:837-44. [PMID: 19061886 DOI: 10.1016/j.exer.2008.11.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/26/2008] [Accepted: 11/04/2008] [Indexed: 12/24/2022]
Abstract
Glaucoma is the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), as the most prevalent form of glaucoma, is a complex inherited disorder and affects more than 2 million individuals in the United States. It has become increasingly clear that a host of genetic as well as environmental factors are likely to contribute to the phenotype. A number of chromosomal and genetic associations have been reported for POAG. This review examines what is currently known about the underlying genetic structure, what remains to be learned, and how this may affect our medical management of this major blinding disease.
Collapse
Affiliation(s)
- R Rand Allingham
- Duke University Eye Center, Duke University, Durham, NC 27710, USA.
| | | | | |
Collapse
|
84
|
Skarie JM, Link BA. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. Hum Mol Genet 2008; 17:2474-85. [PMID: 18469340 DOI: 10.1093/hmg/ddn147] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is a genetically complex neuropathy that affects retinal ganglion cells and is a leading cause of blindness worldwide. WDR36, a gene of unknown function, was recently identified as causative for POAG at locus GLC1G. Subsequent studies found disease-associated variants in control populations, leaving the role of WDR36 in this disease unclear. To address this issue, we determined the function of WDR36. We studied Wdr36 in zebrafish and found it is the functional homolog of yeast Utp21. Utp21 is cell essential and functions in the nucleolar processing of 18S rRNA, which is required for ribosome biogenesis. Evidence for functional homology comes from sequence alignment, ubiquitous expression, sub-cellular localization to the nucleolus and loss-of-function phenotypes that include defects in 18S rRNA processing and abnormal nucleolar morphology. Additionally, we show that loss of Wdr36 function leads to an activation of the p53 stress-response pathway, suggesting that co-inheritance of defects in p53 pathway genes may influence the impact of WDR36 variants on POAG. Although these results overall do not provide evidence for or against a role of WDR36 in POAG, they do provide important baseline information for future studies.
Collapse
Affiliation(s)
- Jonathan M Skarie
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
85
|
Abstract
Glaucoma is a leading cause of blindness, estimated to affect 60 million people by 2010, and represents a heterogeneous group of neurodegenerative disease. The two major types of glaucoma include primary open-angle glaucoma (POAG) and primary congenital glaucoma (PCG). A genetically heterogeneous group of developmental disorders known as anterior segment dysgenesis (ASD) have been reported to be associated with increased intraocular pressure (IOP) and glaucoma. These include Peters' anomaly, Rieger's anomaly, aniridia, iris hypoplasia, and iridogoniodysgenesis. Genetic linkage analysis and mutation studies have identified CYP1B1 as a causative gene in PCG, as a modifier gene in POAG, and, on rare occasions, as causative gene in POAG as well as in several ASD disorders. CYP1B1-deficient mice exhibit abnormalities in their ocular drainage structure and trabecular meshwork that are similar to those reported in human PCG patients. Accordingly, it is speculated that diminished or absent metabolism of key endogenous CYP1B1 substrates adversely affects the development of the trabecular meshwork. CYP1B1 protein is involved in the metabolism of steroids, retinol and retinal, arachidonate, and melatonin. The conserved expression of CYP1B1 in both murine and human eyes, its higher expression in fetal than adult eyes, and its biochemical properties are consistent with this hypothesis. The exact role of CYP1B1 in the pathogenesis of glaucoma and other ASD disorders remains to be elucidated.
Collapse
Affiliation(s)
- Vasilis Vasiliou
- Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
86
|
Association between open-angle glaucoma and gene polymorphism for heat-shock protein 70-1. Jpn J Ophthalmol 2007; 51:417-23. [PMID: 18158591 DOI: 10.1007/s10384-007-0475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 06/25/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE Heat-shock proteins (HSPs) or antibodies against them may contribute to glaucomatous optic neuropathy. We investigated the associations of HSP70-1 polymorphisms with open-angle glaucoma (OAG) in a Japanese population. METHODS In 241 normal Japanese controls and 501 Japanese OAG patients, including 211 with primary open-angle glaucoma (POAG) and 290 with normal-tension glaucoma (NTG), two single-nucleotide polymorphisms, A-110C and G+190C, of HSP70-1 were identified by using an Invader assay and polymerase chain reaction-restriction fragment length polymorphism, respectively. Genotype distributions were compared between controls and OAG patients. Age at diagnosis, untreated maximum intraocular pressure, and visual field defects at diagnosis were examined for associations with the polymorphisms. RESULTS Distribution of the A-110C genotype (AA versus AC+CC) differed significantly between controls and OAG patients (P = 0.007), POAG patients (P = 0.007), or NTG patients (P = 0.032). The genotype distribution of the G+190C polymorphism did not differ significantly between the controls and any patient group. No significant differences in the clinical characteristics of the patients were detected between genotype-defined groups by logistic regression analysis. CONCLUSION The A-110C polymorphism of HSP70-1 may be associated with OAG pathogenesis in Japanese patients.
Collapse
|
87
|
Nolan MJ, Giovingo MC, Miller AM, Wertz RD, Ritch R, Liebmann JM, Allingham RR, Herndon LW, Wax MB, Smolyak R, Hasan F, Barnett EM, Samples JR, Knepper PA. Aqueous humor sCD44 concentration and visual field loss in primary open-angle glaucoma. J Glaucoma 2007; 16:419-29. [PMID: 17700283 DOI: 10.1097/ijg.0b013e318050ab4b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To correlate aqueous humor soluble CD44 (sCD44) concentration, visual field loss, and glaucoma risk factors in primary open-angle glaucoma (POAG) patients. METHODS Aqueous samples were obtained by paracentesis from normal and glaucoma patients who were undergoing elective surgery and analyzed for sCD44 concentration by enzyme-linked immunosorbent assay. RESULTS In normal aqueous (n=124) the sCD44 concentration was 5.88+/-0.27 ng/mL, whereas in POAG aqueous (n=90) the sCD44 concentration was 12.76+/-0.66 ng/mL, a 2.2-fold increase (P<0.000001). In POAG patients with prior successful filtration surgery (n=13), the sCD44 concentration was decreased by 43% to 7.32+/-1.44 (P=0.001) in comparison with POAG patients without filtration surgery; however, the sCD44 concentration in the prior successful filtration subgroup with no medications and normal intraocular pressure was 12.62+/-3.81 (P=0.05) compared with normal. The sCD44 concentration of normal pressure glaucoma patients was 9.19+/-1.75 ng/mL, a 1.6-fold increase compared with normal (P=0.02). Race and intraocular pressure pulse amplitude were significant POAG risk factors in this cohort of patients. In both normal and POAG patients with mild and moderate visual field loss, sCD44 concentration was greater in African Americans than in whites (P=0.04). CONCLUSIONS sCD44 concentration in the aqueous of POAG patients correlated with the severity of visual field loss in all stages in white patients and in mild to moderate stages in African American patients. sCD44 concentration in aqueous is a possible protein biomarker of visual field loss in POAG.
Collapse
Affiliation(s)
- Michael J Nolan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Takahashi Y, Katai N, Murata T, Taniguchi SI, Hayashi T. Development of spontaneous optic neuropathy in NF-kappaBetap50-deficient mice: requirement for NF-kappaBetap50 in ganglion cell survival. Neuropathol Appl Neurobiol 2007; 33:692-705. [PMID: 17931357 DOI: 10.1111/j.1365-2990.2007.00862.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the transcription factor NF-kappaBeta is known to regulate cell death and survival, its precise role in cell death within the central nervous system remains unknown. The purpose of this study was to investigate the role of NF-kappaBetap50 in the age-related survival of retinal ganglion cells (RGCs). Eyes of mice with a deleted NF-kappaBetap50 gene and its wild-type mice at each of age were studied by histopathological studies. The number of RGCs was counted using retrograde labelling methods. Mice were subjected to intravitreous injection of N-methyl-D aspartate (NMDA) to induce RGC death. In p50-deficient mice, the number of RGCs significantly decreased with age in total independence of intraocular pressure measurement. Optic nerves of p50-deficient mice showed hypertrophy astrocytes and enlargement of the axons, together with a decreased number of axons. Immunohistochemistry showed a strong expression of glial fibrillary acidic protein. The histological results show obvious excavation of the optic nerve head in p50-deficient mice at 10 months of age. Intravitreal injection of NMDA in young p50-deficient mice damaged RGCs more intensively than in control animals. We further noticed that autoantibodies against RGCs were produced in p50-deficient mice. Our results show that p50 deficiency induced age-related RGC death, indicating a new insight into the role of p50 in the pathophysiology of neuropathy, and further experiments with p50-deficient mice may provide new targets for therapeutic intervention for human glaucoma.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Molecular Oncology and Angiology, Research Center on Ageing and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto-city, Nagano, Japan
| | | | | | | | | |
Collapse
|
89
|
Park BC, Tibudan M, Samaraweera M, Shen X, Yue BYJT. Interaction between two glaucoma genes, optineurin and myocilin. Genes Cells 2007; 12:969-79. [PMID: 17663725 DOI: 10.1111/j.1365-2443.2007.01102.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myocilin (MYOC) and optineurin (OPTN) are two genes linked to glaucoma, a major blinding disease. To investigate the possible molecular interactions between MYOC and OPTN genes, we over-expressed MYOC and examined its effect on the level of endogenous OPTN in human trabecular meshwork (TM) cells and vice versa. We noted that over-expressing MYOC did not affect the OPTN level, whereas OPTN over-expression induced an up-regulation of the endogenous MYOC. This induction was also observed in other ocular and non-ocular cell types including PC12 cells. The endogenous levels of both OPTN and MYOC genes were in addition found increased when PC12 cells underwent differentiation upon treatment with nerve growth factor (NGF). Over-expression of OPTN resulted in prolonged turnover rate of MYOC mRNA but had little effect on the promoter activity of the MYOC gene. The over-expressed OPTN was localized in the cytoplasm, not translocated into the nucleus. These results indicate that interaction exists between OPTN and MYOC genes. Regulation of MYOC expression by OPTN is achieved primarily through control of the mRNA stability.
Collapse
Affiliation(s)
- Bum-Chan Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
90
|
Park BC, Shen X, Samaraweera M, Yue BYJT. Studies of optineurin, a glaucoma gene: Golgi fragmentation and cell death from overexpression of wild-type and mutant optineurin in two ocular cell types. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:1976-89. [PMID: 17148662 PMCID: PMC1762487 DOI: 10.2353/ajpath.2006.060400] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Optineurin (OPTN) has recently been linked to glaucoma, a major cause of blindness worldwide. Mutations in OPTN such as Glu50-->Lys (E50K) have been reported in patients, particularly those with normal pressure glaucoma. Here, we show that the endogenous OPTN was not secreted in two ocular cell types, human trabecular meshwork and retinal pigment epithelial cells. It localized instead in the cytoplasm in a diffuse pattern without a distinct association with the Golgi apparatus. When overexpressed, however, wild-type OPTN-green fluorescent protein (GFP) formed foci especially around the Golgi, colocalizing partially with the common endocytic pathway marker transferrin receptor in both cell types. Fragmentation of the Golgi was also observed. On nocodazole treatment, the OPTN foci were dispersed into the cytoplasm. Overexpression of mutant OPTNE50K-GFP resulted in a greater number (P<0.0055) and size of the foci, compared with the wild type, and the Golgi alteration was potentiated. Cell loss observed in OPTN-expressing cultures was also more pronounced in OPTNE50K-GFP compared with that of wild-type OPTN-GFP counterparts (P<0.01). This study highlights a possible role of OPTN in vesicle trafficking and Golgi integrity. It also provides in-sights into the possible mechanisms why E50K would exhibit a propensity toward the development of glaucoma.
Collapse
Affiliation(s)
- Bum-Chan Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois, 1855 W. Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|