51
|
Nagappan A, Kalokairinou L, Wexler A. Ethical and Legal Considerations of Alternative Neurotherapies. AJOB Neurosci 2021; 12:257-269. [PMID: 33759705 DOI: 10.1080/21507740.2021.1896601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurotherapies for diagnostics and treatment-such as electroencephalography (EEG) neurofeedback, single-photon emission computerized tomography (SPECT) imaging for neuropsychiatric evaluation, and off-label/experimental uses of brain stimulation-are continuously being offered to the public outside mainstream healthcare settings. Because these neurotherapies share many key features of complementary and alternative medicine (CAM) techniques-and meet the definition of CAM as set out in Kaptchuk and Eisenberg-here we refer to them as "alternative neurotherapies." By explicitly linking these alternative neurotherapy practices under a common conceptual framework, this paper draws attention to, and critically considers, the cross-cutting ethical and legal issues related to the provision of these services. The first section of this paper provides an updated empirical overview of uses of SPECT neuropsychiatric evaluations, EEG neurofeedback, and experimental/off-label forms of brain stimulation. Next, drawing on CAM bioethics scholarship, we highlight the pertinent ethical issues in the alternative neurotherapy context, including the truthful representation of evidence base, marketing to vulnerable populations, potential harms, provider competency, and conflicts of interest. Finally, we consider the principal legal issues at stake for the provision of alternative neurotherapies in the U.S., namely those related to licensing and scope-of-practice considerations. We conclude with recommendations for future research in this domain.
Collapse
|
52
|
Sungura R, Onyambu C, Mpolya E, Sauli E, Vianney JM. The extended scope of neuroimaging and prospects in brain atrophy mitigation: A systematic review. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
53
|
Trambaiolli LR, Kohl SH, Linden DEJ, Mehler DMA. Neurofeedback training in major depressive disorder: A systematic review of clinical efficacy, study quality and reporting practices. Neurosci Biobehav Rev 2021; 125:33-56. [PMID: 33587957 DOI: 10.1016/j.neubiorev.2021.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N = 480 patients in experimental and N = 194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Division of Basic Neuroscience, McLean Hospital, Harvard Medical School, Boston, USA.
| | - Simon H Kohl
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Germany; Department of Child and Adolescent Psychiatry, Medical Faculty, RWTH Aachen University, Germany
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | | |
Collapse
|
54
|
The Current Evidence Levels for Biofeedback and Neurofeedback Interventions in Treating Depression: A Narrative Review. Neural Plast 2021; 2021:8878857. [PMID: 33613671 PMCID: PMC7878101 DOI: 10.1155/2021/8878857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
This article is aimed at showing the current level of evidence for the usage of biofeedback and neurofeedback to treat depression along with a detailed review of the studies in the field and a discussion of rationale for utilizing each protocol. La Vaque et al. criteria endorsed by the Association for Applied Psychophysiology and Biofeedback and International Society for Neuroregulation & Research were accepted as a means of study evaluation. Heart rate variability (HRV) biofeedback was found to be moderately supportable as a treatment of MDD while outcome measure was a subjective questionnaire like Beck Depression Inventory (level 3/5, “probably efficacious”). Electroencephalographic (EEG) neurofeedback protocols, namely, alpha-theta, alpha, and sensorimotor rhythm upregulation, all qualify for level 2/5, “possibly efficacious.” Frontal alpha asymmetry protocol also received limited evidence of effect in depression (level 2/5, “possibly efficacious”). Finally, the two most influential real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocols targeting the amygdala and the frontal cortices both demonstrate some effectiveness, though lack replications (level 2/5, “possibly efficacious”). Thus, neurofeedback specifically targeting depression is moderately supported by existing studies (all fit level 2/5, “possibly efficacious”). The greatest complication preventing certain protocols from reaching higher evidence levels is a relatively high number of uncontrolled studies and an absence of accurate replications arising from the heterogeneity in protocol details, course lengths, measures of improvement, control conditions, and sample characteristics.
Collapse
|
55
|
Dudek E, Dodell-Feder D. The efficacy of real-time functional magnetic resonance imaging neurofeedback for psychiatric illness: A meta-analysis of brain and behavioral outcomes. Neurosci Biobehav Rev 2021; 121:291-306. [PMID: 33370575 PMCID: PMC7856210 DOI: 10.1016/j.neubiorev.2020.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) has gained popularity as an experimental treatment for a variety of psychiatric illnesses. However, there has yet to be a quantitative review regarding its efficacy. Here, we present the first meta-analysis of rtfMRI-NF for psychiatric disorders, evaluating its impact on brain and behavioral outcomes. Our literature review identified 17 studies and 105 effect sizes across brain and behavioral outcomes. We find that rtfMRI-NF produces a medium-sized effect on neural activity during training (g = .59, 95 % CI [.44, .75], p < .0001), a large-sized effect after training when no neurofeedback is provided (g = .84, 95 % CI [.37, 1.31], p = .005), and small-sized effects for behavioral outcomes (symptoms g = .37, 95 % CI [.16, .58], p = .002; cognition g = .23, 95 % CI [-.33, .78], p = .288). Mixed-effects analyses revealed few moderators. Together, these data suggest a positive impact of rtfMRI-NF on brain and behavioral outcomes, although more research is needed to determine how rtfMRI-NF works, for whom, and under what circumstances.
Collapse
Affiliation(s)
- Emily Dudek
- Department of Psychology, University of Rochester, United States
| | - David Dodell-Feder
- Department of Psychology, University of Rochester, United States; Department of Neuroscience, University of Rochester Medical Center, United States.
| |
Collapse
|
56
|
Hirano J, Takamiya A, Yamamoto Y, Minami F, Mimura M, Yamagata B. Similar Hemodynamic Signal Patterns Between Compact NIRS and 52-Channel NIRS During a Verbal Fluency Task. Front Psychiatry 2021; 12:772339. [PMID: 34975575 PMCID: PMC8716818 DOI: 10.3389/fpsyt.2021.772339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022] Open
Abstract
Multichannel near-infrared spectroscopy (NIRS), including 52-channel NIRS (52ch-NIRS), has been used increasingly to capture hemodynamic changes in the brain because of its safety, low cost, portability, and high temporal resolution. However, optode caps might cause pain and motion artifacts if worn for extended periods of time because of the weight of the cables and the pressure of the optodes on the scalp. Recently, a small NIRS apparatus called compact NIRS (cNIRS) has been developed, and uses only a few flexible sensors. Because this device is expected to be more suitable than 52ch-NIRS in the clinical practice for patients with children or psychiatric conditions, we tested whether the two systems were clinically comparable. Specifically, we evaluated the correlation between patterns of hemodynamic changes generated by 52ch-NIRS and cNIRS in the frontopolar region. We scanned 14 healthy adults with 52ch-NIRS and cNIRS, and measured activation patterns of oxygenated-hemoglobin [oxy-Hb] and deoxygenated-hemoglobin [deoxy-Hb] in the frontal pole while they performed a verbal fluency task. We performed detailed temporal domain comparisons of time-course patterns between the two NIRS-based signals. We found that 52ch-NIRS and cNIRS showed significant correlations in [oxy-Hb] and [deoxy-Hb] time-course changes in numerous channels. Our findings indicate that cNIRS and 52ch-NIRS capture similar task-dependent hemodynamic changes due to metabolic demand, which supports the validity of cNIRS measurement techniques. Therefore, this small device has a strong potential for clinical application with infants and children, as well as for use in the rehabilitation or treatment of patients with psychiatric disorders using biofeedback.
Collapse
Affiliation(s)
- Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fusaka Minami
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
57
|
Sidhu A, Cooke A. Electroencephalographic neurofeedback training can decrease conscious motor control and increase single and dual-task psychomotor performance. Exp Brain Res 2021; 239:301-313. [PMID: 33165672 PMCID: PMC7884304 DOI: 10.1007/s00221-020-05935-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022]
Abstract
The control of human movements is thought to automize with repetition, promoting consistent execution and reduced dual-task costs. However, contingencies such as illness or constraints to regular movement patterns can promote conscious motor control, which can reduce movement proficiency and make dual-task situations more difficult. This experiment evaluated whether electroencephalographic neurofeedback training can reduce the adverse effects of conscious motor control. Twenty-five participants completed the timed-up-and-go task while wearing a leg brace to de-automize their regular movement, under both single and dual-task (walking + serial sevens) conditions, both before and after 30-min of neurofeedback training. Three different types of neurofeedback were prescribed across three laboratory visits. We hypothesised that training to decrease central EEG alpha-power at scalp sites above the supplementary motor area would facilitate performance compared to opposite (increase central EEG alpha-power) or sham neurofeedback training. Results revealed a pre-test to post-test improvement in performance on the single-task and on both aspects of the dual-task when participants were trained to decrease central EEG alpha-power. There were no benefits of opposite or sham neurofeedback training. Mediation analyses revealed that the improvement in dual-task motor performance was mediated by the improvement in cognitive performance. This suggests that the neurofeedback protocol was beneficial because it helped to reduce conscious control of the motor task. The findings could have important implications for rehabilitation and high-performance (e.g., elite sport) domains; neurofeedback could be prescribed to help alleviate the problems that can arise when individuals exert conscious motor control.
Collapse
Affiliation(s)
- Amanpreet Sidhu
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Gwynedd, Bangor, LL57 2PZ, UK
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Andrew Cooke
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Gwynedd, Bangor, LL57 2PZ, UK.
| |
Collapse
|
58
|
Schmidt J, Martin A. The Influence of Physiological and Psychological Learning Mechanisms in Neurofeedback vs. Mental Imagery Against Binge Eating. Appl Psychophysiol Biofeedback 2020; 45:293-305. [PMID: 32990891 PMCID: PMC7644525 DOI: 10.1007/s10484-020-09486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
In biofeedback research, the debate on physiological versus psychological learning has a long tradition and is still relevant today, regarding new developments of biofeedback for behavior modification. Analyzing the role of these learning mechanisms may help improving the protocols and answer the question, whether feedback of physiological functions is necessary to modify a target behavior. We explored the presence and impact of physiological (EEG changes) versus psychological learning (changes in somatic self-efficacy) in a recently developed EEG neurofeedback protocol for binge eating. The protocol targets a reduction of food-cue induced cortical arousal through regulation of EEG high beta activity. In an experimental study accompanying a randomized controlled trial, pre and post treatment EEG measurements were analyzed in a neurofeedback group (n = 18) and an active mental imagery control group without physiological feedback (n = 18). Physiological learning in terms of EEG high beta reduction only occurred in the neurofeedback group. Post treatment, participants with successfully reduced binge eating episodes (≥ 50% reduction) showed lower EEG high beta activity than unsuccessful participants (p = .02) after neurofeedback, but not after mental imagery. Further, lower EEG high beta activity at post-treatment predicted fewer binge eating episodes in neurofeedback only. In mental imagery, somatic self-efficacy predicted treatment success instead of EEG activity. Altogether, the results indicate that physiological changes serve as a specific treatment mechanism in neurofeedback against binge eating. Reducing cortical arousal may improve eating behaviors and corresponding neurofeedback techniques should therefore be considered in future treatments.
Collapse
Affiliation(s)
- Jennifer Schmidt
- HSD Hochschule Döpfer University of Applied Sciences, Waidmarkt 3 & 9, 50676, Cologne, Germany.
| | - Alexandra Martin
- Clinical Psychology and Psychotherapy, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
59
|
He S, Mostofi A, Syed E, Torrecillos F, Tinkhauser G, Fischer P, Pogosyan A, Hasegawa H, Li Y, Ashkan K, Pereira E, Brown P, Tan H. Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients. eLife 2020; 9:e60979. [PMID: 33205752 PMCID: PMC7695453 DOI: 10.7554/elife.60979] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson's disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.
Collapse
Affiliation(s)
- Shenghong He
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Abteen Mostofi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of LondonLondonUnited Kingdom
| | - Emilie Syed
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Gerd Tinkhauser
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Department of Neurology, Bern University Hospital and University of BernBernSwitzerland
| | - Petra Fischer
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Harutomo Hasegawa
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's Health PartnersLondonUnited Kingdom
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of TechnologyGuangzhouChina
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's Health PartnersLondonUnited Kingdom
| | - Erlick Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of LondonLondonUnited Kingdom
| | - Peter Brown
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
60
|
Belinskaya A, Smetanin N, Lebedev MA, Ossadtchi A. Short-delay neurofeedback facilitates training of the parietal alpha rhythm. J Neural Eng 2020; 17. [PMID: 33166941 DOI: 10.1088/1741-2552/abc8d7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Feedback latency was shown to be a critical parameter in a range of applications that imply learning. The therapeutic effects of neurofeedback (NFB) remain controversial. We hypothesized that often encountered unreliable results of NFB intervention could be associated with large feedback latency values that are often uncontrolled and may preclude the efficient learning. APPROACH We engaged our subjects into a parietal alpha power unpregulating paradigm faciliated by visual neurofeedback based on the invidually extracted envelope of the alpha-rhythm at P4 electrode. NFB was displayed either as soon as EEG envelope was processed, or with an extra 250 or 500-ms delay. The feedback training consisted of 15 two-minute long blocks interleaved with 15s pauses. We have also recorded two minute long baselines immediately before and after the training. MAIN RESULTS The time course of NFB-induced changes in the alpha rhythm power clearly depended on NFB latency, as shown with the adaptive Neyman test. NFB had a strong effect on the alpha-spindle incidence rate, but not on their duration or amplitude. The sustained changes in alpha activity measured after the completion of NFB training were negatively correlated to latency, with the maximum change for the shortest tested latency and no change for the longest. SIGNIFICANCE Here we for the first time show that visual NFB of parietal electroencephalographic (EEG) alpha-activity is efficient only when delivered to human subjects at short latency, which guarantees that NFB arrives when an alpha spindle is still ongoing. Such a considerable effect of NFB latency on the alpha-activity temporal structure could explain some of the previous inconsistent results, where latency was neither controlled nor documented. Clinical practitioners and manufacturers of NFB equipment should add latency to their specifications while enabling latency monitoring and supporting short-latency operations.
Collapse
Affiliation(s)
- Anastasia Belinskaya
- Centre for Bioelectric Interfaces, National Research University Higher School of Economics, Moskva, Moskva, RUSSIAN FEDERATION
| | - Nikolai Smetanin
- Centre for Bioelectric Interfaces, National Research University Higher School of Economics, Moskva, Moskva, RUSSIAN FEDERATION
| | - M A Lebedev
- Center for Bioelectric Interfaces, National Research University Higher School of Economics, Moskva, Moskva, RUSSIAN FEDERATION
| | - Alexei Ossadtchi
- Center for bioelectirc interfaces, National Research University Higher School of Economics, Moskva, Moskva, RUSSIAN FEDERATION
| |
Collapse
|
61
|
Muñoz-Moldes S, Cleeremans A. Delineating implicit and explicit processes in neurofeedback learning. Neurosci Biobehav Rev 2020; 118:681-688. [PMID: 32918947 PMCID: PMC7758707 DOI: 10.1016/j.neubiorev.2020.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/09/2020] [Accepted: 09/05/2020] [Indexed: 11/21/2022]
Abstract
Neurofeedback allows humans to self-regulate neural activity in specific brain regions and is considered a promising tool for psychiatric interventions. Recently, methods have been developed to use neurofeedback implicitly, prompting a theoretical debate on the role of awareness in neurofeedback learning. We offer a critical review of the role of awareness in neurofeedback learning, with a special focus on recently developed neurofeedback paradigms. We detail differences in instructions and propose a fine-grained categorization of tasks based on the degree of involvement of explicit and implicit processes. Finally, we review the methods used to measure awareness in neurofeedback and propose new candidate measures. We conclude that explicit processes cannot be eschewed in most current implicit tasks that have explicit goals, and suggest ways in which awareness could be better measured in the future. Investigating awareness during learning will help understand the learning mechanisms underlying neurofeedback learning and will help shape future tasks.
Collapse
Affiliation(s)
- Santiago Muñoz-Moldes
- Consciousness, Cognition and Computation group, Center for Research in Cognition & Neuroscience, Faculty of Psychology and Education, Université Libre de Bruxelles, 1050 Brussels, Belgium; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Axel Cleeremans
- Consciousness, Cognition and Computation group, Center for Research in Cognition & Neuroscience, Faculty of Psychology and Education, Université Libre de Bruxelles, 1050 Brussels, Belgium.
| |
Collapse
|
62
|
Selected Abstracts From the 2019 International Neuroethics Society Annual Meeting. AJOB Neurosci 2020; 11:W1-W15. [PMID: 33196352 DOI: 10.1080/21507740.2020.1830869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
63
|
Stiso J, Corsi MC, Vettel JM, Garcia J, Pasqualetti F, De Vico Fallani F, Lucas TH, Bassett DS. Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior. J Neural Eng 2020; 17:046018. [PMID: 32369802 PMCID: PMC7734596 DOI: 10.1088/1741-2552/ab9064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Motor imagery-based brain-computer interfaces (BCIs) use an individual's ability to volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many individuals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered initial evidence that coherent activity across spatially distributed and functionally diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. APPROACH Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix decomposition method - non-negative matrix factorization - to simultaneously identify regularized, covarying subgraphs of functional connectivity, to assess their similarity to task performance, and to detect their time-varying expression. MAIN RESULTS We find that learning is marked by diffuse brain-behavior relations: good learners displayed many subgraphs whose temporal expression tracked performance. Individuals also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in sensors near regions important for sustaining attention. To test this model, we use tools that stipulate regional dynamics on a networked system (network control theory), and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of sensors located near brain regions important for attention. SIGNIFICANCE The nature of our contribution to the neuroscience of BCI learning is therefore both computational and theoretical; we first use a minimally-constrained, individual specific method of identifying mesoscale structure in dynamic brain activity to show how global connectivity and interactions between distributed networks supports BCI learning, and then we use a formal network model of control to lend theoretical support to the hypothesis that these identified subgraphs are well suited to modulate attention.
Collapse
Affiliation(s)
- Jennifer Stiso
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie-Constance Corsi
- Inria Paris, Aramis project-team, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Epinire, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universit, F-75013, Paris, France
| | - Jean M. Vettel
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Research & Engineering Directorate, US CCDC Army Research Laboratory, Aberdeen, MD, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Javier Garcia
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Research & Engineering Directorate, US CCDC Army Research Laboratory, Aberdeen, MD, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA 92521
| | - Fabrizio De Vico Fallani
- Inria Paris, Aramis project-team, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Epinire, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universit, F-75013, Paris, France
| | - Timothy H. Lucas
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
64
|
Kohl SH, Mehler DMA, Lührs M, Thibault RT, Konrad K, Sorger B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice. Front Neurosci 2020; 14:594. [PMID: 32848528 PMCID: PMC7396619 DOI: 10.3389/fnins.2020.00594] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1–2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.
Collapse
Affiliation(s)
- Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kerstin Konrad
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
65
|
Fingelkurts AA, Fingelkurts AA, Neves CFH. Neuro-assessment of leadership training. COACHING: AN INTERNATIONAL JOURNAL OF THEORY, RESEARCH AND PRACTICE 2020. [DOI: 10.1080/17521882.2019.1619796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Carlos F. H. Neves
- BM-Science – Brain and Mind Technologies Research Centre, Espoo, Finland
| |
Collapse
|
66
|
Dousset C, Kajosch H, Ingels A, Schröder E, Kornreich C, Campanella S. Preventing relapse in alcohol disorder with EEG-neurofeedback as a neuromodulation technique: A review and new insights regarding its application. Addict Behav 2020; 106:106391. [PMID: 32197211 DOI: 10.1016/j.addbeh.2020.106391] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Alcohol Use Disorder (AUD) has a disconcertingly high relapse rate (70-80% within a year following withdrawal). Preventing relapse or minimizing its extent is hence a challenging goal for long-term successful management of AUD. New perspectives that rely on diverse neuromodulation tools have been developed in this regard as care supports. This paper focuses on electroencephalogram-neurofeedback (EEG-NF), which is a tool that has experienced renewed interest in both clinical and research areas. We review the literature on EEG-based neurofeedback studies investigating the efficacy in AUD and including at least 10 neurofeedback training sessions. As neurofeedback is a form of biofeedback in which a measure of brain activity is provided as feedback in real-time to a subject, the high degree of temporal resolution of the EEG interface supports optimal learning. By offering a wide range of brain oscillation targets (alpha, beta, theta, delta, gamma, and SMR) the EEG-NF procedure increases the scope of possible investigations through a multitude of experimental protocols that can be considered to reinforce or inhibit specific forms of EEG activity associated with AUD-related cognitive impairments. The present review provides an overview of the EEG-NF protocols that have been used in AUD and it highlights the current paucity of robust evidence. Within this framework, this review presents the arguments in favor of the application of EEG-NF as an add-on tool in the management of alcohol disorders to enhance the cognitive abilities required to maintain abstinence more specifically, with a focus on inhibition and attentional skills.
Collapse
|
67
|
Towards a Pragmatic Approach to a Psychophysiological Unit of Analysis for Mental and Brain Disorders: An EEG-Copeia for Neurofeedback. Appl Psychophysiol Biofeedback 2020; 44:151-172. [PMID: 31098793 DOI: 10.1007/s10484-019-09440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article proposes what we call an "EEG-Copeia" for neurofeedback, like the "Pharmacopeia" for psychopharmacology. This paper proposes to define an "EEG-Copeia" as an organized list of scientifically validated EEG markers, characterized by a specific association with an identified cognitive process, that define a psychophysiological unit of analysis useful for mental or brain disorder evaluation and treatment. A characteristic of EEG neurofeedback for mental and brain disorders is that it targets a EEG markers related to a supposed cognitive process, whereas conventional treatments target clinical manifestations. This could explain why EEG neurofeedback studies encounter difficulty in achieving reproducibility and validation. The present paper suggests that a first step to optimize EEG neurofeedback protocols and future research is to target a valid EEG marker. The specificity of the cognitive skills trained and learned during real time feedback of the EEG marker could be enhanced and both the reliability of neurofeedback training and the therapeutic impact optimized. However, several of the most well-known EEG markers have seldom been applied for neurofeedback. Moreover, we lack a reliable and valid EEG targets library for further RCT to evaluate the efficacy of neurofeedback in mental and brain disorders. With the present manuscript, our aim is to foster dialogues between cognitive neuroscience and EEG neurofeedback according to a psychophysiological perspective. The primary objective of this review was to identify the most robust EEG target. EEG markers linked with one or several clearly identified cognitive-related processes will be identified. The secondary objective was to organize these EEG markers and related cognitive process in a psychophysiological unit of analysis matrix inspired by the Research Domain Criteria (RDoC) project.
Collapse
|
68
|
Wang J, He Z, Duan R. [Expression of ASPM in Lung Adenocarcinoma and Its Relationship with Development and Prognosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:29-35. [PMID: 31948535 PMCID: PMC7007395 DOI: 10.3779/j.issn.1009-3419.2020.01.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have shown that ASPM is a tumorigenesis associated protein, mutations in ASPM can lead to MCPH. This study mainly explores the relationship between the ASPM expression of lung adenocarcinoma and the development and prognosis of lung cancer. The aim of this study was to investigate the relationship between the expression of abnormal spindle-like microcephaly-associated protein (ASPM) in lung adenocarcinoma and the development and prognosis in lung cancer. METHODS A total of 90 cases of lung adenocarcinoma tissue specimens and 90 cases of benign pulmonary lesions were collected, the expression of ASPM was detected by immunohistochemical technique, and the expression of ASPM in 12 pairs of tissues was detected by real-time quantity polymerase chain reaction and western blot. RESULTS (1) The expression of ASPM in the tissue specimens of benign pulmonary lesions was negative while the expression level of ASPM in lung adenocarcinoma was significantly higher than lung tissue of benign pulmonary lesions (P<0.05). (2) The expression level of ASPM has no remarkable difference in lung adenocarcinoma with lymph node development and the lung cancer without lymph node development, there was no statistically significant (P<0.05). (3) The ASPM expression level in the tumor's size ≥4 cm was significantly higher than than of the size<4 cm (P<0.05). (4) Hierarchical analysis results show that T stage is related to ASPM expression level (P<0.05). (5) The high expression level of ASPM in lung adenocarcinoma was significantly positively correlated with the poor prognosis (P<0.05). CONCLUSIONS (1) The expression level of ASPM in lung cancer is obviously increased and closely related to the progress of lung adenocarcinoma. (2) The expression level of ASPM in lung adenocarcinoma was significantly positively correlated with poor prognosis (P<0.05). (3) Detection of the expression level of ASPM in lung adenocarcinoma help to predict the prognosis of lung adenocarcinoma in advance.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Zhenyu He
- Department of Radiotherapy, Cancer Hospital, Sun Yat-Sen University, Guangzhou 510060, China
| | - Renhui Duan
- Department of Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| |
Collapse
|
69
|
Lam SL, Criaud M, Alegria A, Barker GJ, Giampietro V, Rubia K. Neurofunctional and behavioural measures associated with fMRI-neurofeedback learning in adolescents with Attention-Deficit/Hyperactivity Disorder. NEUROIMAGE-CLINICAL 2020; 27:102291. [PMID: 32526685 PMCID: PMC7287276 DOI: 10.1016/j.nicl.2020.102291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Functional Magnetic Resonance Imaging Neurofeedback (fMRI-NF) targeting brain areas/networks shown to be dysfunctional by previous fMRI research is a promising novel neurotherapy for ADHD. Our pioneering study in 31 adolescents with ADHD showed that fMRI-NF of the right inferior frontal cortex (rIFC) and of the left parahippocampal gyrus (lPHG) was associated with clinical improvements. Previous studies using electro-encephalography-NF have shown, however, that not all ADHD patients learn to self-regulate, and the predictors of fMRI-NF self-regulation learning are not presently known. The aim of the current study was therefore to elucidate the potential predictors of fMRI-NF learning by investigating the relationship between fMRI-NF learning and baseline inhibitory brain function during an fMRI stop task, along with clinical and cognitive measures. fMRI-NF learning capacity was calculated for each participant by correlating the number of completed fMRI-NF runs with brain activation in their respective target regions from each run (rIFC or lPHG); higher correlation values were taken as a marker of better (linear) fMRI-NF learning. Linear correlations were then conducted between baseline measures and the participants' capacity for fMRI-NF learning. Better fMRI-NF learning was related to increased activation in left inferior fronto-striatal regions during the fMRI stop task. Poorer self-regulation during fMRI-NF training was associated with enhanced activation in posterior temporo-occipital and cerebellar regions. Cognitive and clinical measures were not associated with general fMRI-NF learning across all participants. A categorical analysis showed that 48% of adolescents with ADHD successfully learned fMRI-NF and this was also not associated with any baseline clinical or cognitive measures except that faster processing speed during inhibition and attention tasks predicted learning. Taken together, the findings suggest that imaging data are more predictive of fMRI-NF self-regulation skills in ADHD than behavioural data. Stronger baseline activation in fronto-striatal cognitive control regions predicts better fMRI-NF learning in ADHD.
Collapse
Affiliation(s)
- Sheut-Ling Lam
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Marion Criaud
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Analucia Alegria
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
70
|
[Nonpharmacological treatment options for attention deficit hyperactivity disorder in adulthood: an update]. DER NERVENARZT 2020; 91:591-598. [PMID: 32399608 DOI: 10.1007/s00115-020-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) in adulthood is a frequent disorder with a prevalence of 2.5%, which can successfully be treated by pharmacotherapy in 50-70% of cases, depending on the response criteria. Therefore, besides medication nonpharmacological interventions are an important component of the treatment. The essential nonpharmacological interventions are presented and described with respect to the evidence for treatment. According to the S3 guidelines an extensive psychoeducation (PE) functions as the basis of the treatment. If there is still a need for treatment after PE and the clarification of associated disorders, pharmacotherapy is applied. Further psychosocial interventions can then be used as accompaniment or supplement, e.g. when the effectiveness of medication treatment is insufficient. In particular, cognitive behavioral concepts and their variations (dialectic behavioral therapy, metacognitive training, reasoning and rehabilitation therapy) and coaching should be mentioned here, which show increasing evidence for treatment. Neurofeedback can be used if no other psychosocial treatment options are delayed or omitted due to the treatment. Mindfulness training and sport interventions seem to be meaningful as supplementation but similarly to the individualized cognitive training, further research studies are necessary to enable clear statements regarding treatment evidence in adulthood. Further controlled investigations regarding the effectiveness of nonpharmacological interventions on ADHD and associated symptoms and disorders are therefore desirable.
Collapse
|
71
|
Papoutsi M, Magerkurth J, Josephs O, Pépés SE, Ibitoye T, Reilmann R, Hunt N, Payne E, Weiskopf N, Langbehn D, Rees G, Tabrizi SJ. Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease. Brain Commun 2020; 2:fcaa049. [PMID: 32954301 PMCID: PMC7425518 DOI: 10.1093/braincomms/fcaa049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Non-invasive methods, such as neurofeedback training, could support cognitive symptom management in Huntington’s disease by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of neurofeedback training in Huntington’s disease by examining two different methods, activity and connectivity real-time functional MRI neurofeedback training. Thirty-two Huntington’s disease gene-carriers completed 16 runs of neurofeedback training, using an optimized real-time functional MRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the supplementary motor area, and another receiving neurofeedback based on the correlation of supplementary motor area and left striatum activity (connectivity neurofeedback training), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during neurofeedback training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants’ ability to upregulate neurofeedback training target levels without feedback (near transfer), as well as by examining change in objective, a priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher neurofeedback training target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two neurofeedback training methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and learning success. We conclude that although there is evidence that neurofeedback training can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust.
Collapse
Affiliation(s)
- Marina Papoutsi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
- Correspondence to: Marina Papoutsi, PhD UCL Huntington’s Disease Centre, Queen Square Institute of Neurology University College London, Russell Square House, 10–12 Russell Square London WC1B 5EH, UK E-mail:
| | - Joerg Magerkurth
- Birkbeck-UCL Centre for Neuroimaging, University College London, London WC1H 0AP, UK
| | - Oliver Josephs
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sophia E Pépés
- University of Oxford, Harris Manchester College, Oxford OX1 3TD, UK
| | - Temi Ibitoye
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
| | - Ralf Reilmann
- George Huntington Institute, 48149 Münster, Germany
- Department of Radiology, University of Muenster, 48149 Münster, Germany
- Section for Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tübingen, Germany
| | - Nigel Hunt
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Edwin Payne
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany
| | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Sarah J Tabrizi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
| |
Collapse
|
72
|
Wexler A, Nagappan A, Kopyto D, Choi R. Neuroenhancement for sale: assessing the website claims of neurofeedback providers in the United States. JOURNAL OF COGNITIVE ENHANCEMENT 2020; 4:379-388. [PMID: 34164596 DOI: 10.1007/s41465-020-00170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although electroencephalographic (EEG) neurofeedback is a technique that has been in existence for many decades, it has remained controversial, largely due to questions about efficacy. Yet neurofeedback is being widely offered to the public, often at great expense. To date, however, there has not been empirical data on which providers are utilizing neurofeedback, what they are offering it for, and how they are advertising the technique. The present study aimed to fill that gap by systematically analyzing the websites of neurofeedback practitioners in the United States. To that end, we obtained data from four directories of neurofeedback providers, extracting practitioner names, geographical locations, professional training, and website URLs. Only websites offering neurofeedback services (N=371) were included in the next step, wherein two coders independently coded the websites based on a codebook developed from preliminary analyses. We found that nearly all websites (97.0%) contained claims about at least one clinical indication, most commonly anxiety, ADHD/ADD, and depression; however, only 36.0% of providers had either a medical degree (MD) or a doctoral-level degree in psychology. The majority of websites advertised neurofeedback for cognitive (90.0%) or performance (67.9%) enhancement, and roughly three-quarters utilized language related to complementary and alternative medicine (CAM). In sum, there is a considerable divergence between the scientific literature on neurofeedback and the marketing of neurofeedback services to the general public, raising concerns regarding the misrepresentation of services and misleading advertising claims.
Collapse
Affiliation(s)
- Anna Wexler
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| | - Ashwini Nagappan
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| | - Deena Kopyto
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| | - Rebekah Choi
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
73
|
Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study. J Neurosci 2020; 40:4021-4032. [PMID: 32284339 PMCID: PMC7219286 DOI: 10.1523/jneurosci.0208-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022] Open
Abstract
Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. We conducted a double-blind sham-controlled study on 20 human volunteers (10 females) using a sequential neurofeedback-behavior task with the neurofeedback reflecting the occurrence of β bursts over sensorimotor cortex quantified in real time. The results show that neurofeedback training helps healthy participants learn to volitionally suppress β bursts in the sensorimotor cortex, with training being accompanied by reduced RT in subsequent cued movements. These changes were only significant in the real feedback group but not in the sham group, confirming the effect of neurofeedback training over simple motor imagery. In addition, RTs correlated with the rate and accumulated duration of β bursts in the contralateral motor cortex before the go-cue, but not with averaged β power. The reduced RTs induced by neurofeedback training positively correlated with reduced β bursts across all tested hemispheres. These results strengthen the link between the occurrence of β bursts in the sensorimotor cortex before the go-cue and slowed movement initiation in healthy motor control. The results also highlight the potential benefit of neurofeedback training in facilitating voluntary suppression of β bursts to speed up movement initiation. SIGNIFICANCE STATEMENT This double-blind sham-controlled study suggested that neurofeedback training can facilitate volitional suppression of β bursts in sensorimotor cortex in healthy motor control better than sham feedback. The training was accompanied by reduced reaction time (RT) in subsequent cued movements, and the reduced RT positively correlated with the level of reduction in cortical β bursts before the go-cue, but not with average β power. These results provide further evidence of a causal link between sensorimotor β bursts and movement initiation and suggest that neurofeedback training could potentially be used to train participants to speed up movement initiation.
Collapse
|
74
|
Gadea M, Aliño M, Hidalgo V, Espert R, Salvador A. Effects of a single session of SMR neurofeedback training on anxiety and cortisol levels. Neurophysiol Clin 2020; 50:167-173. [PMID: 32279927 DOI: 10.1016/j.neucli.2020.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES According to some studies, a putatively calming effect of EEG neurofeedback training could be useful as a therapeutic tool in psychiatric practice. With the aim of elucidating this possibility, we tested the efficacy of a single session of ↑sensorimotor (SMR)/↓theta neurofeedback training for mood improvement in 32 healthy men, taking into account trainability, independence and interpretability of the results. METHODS A pre-post design, with the following dependent variables, was applied: (i) psychometric measures of mood with regards to anxiety, depression, and anger (Profile of Mood State, POMS, and State Trait Anxiety Inventory, STAI); (ii) biological measures (salivary levels of cortisol); (iii) neurophysiological measures (EEG frequency band power analysis). In accordance with general recommendations for research in neurofeedback, a control group receiving sham neurofeedback was included. RESULTS Anxiety levels decreased after the real neurofeedback and increased after the sham neurofeedback (P<0.01, size effect 0.9 for comparison between groups). Cortisol decreased after the experiment in both groups, though with significantly more pronounced effects in the desired direction after the real neurofeedback (P<0.04; size effect 0.7). The group receiving real neurofeedback significantly enhanced their SMR band (P<0.004; size effect 0.88), without changes in the theta band. The group receiving sham neurofeedback did not show any EEG changes. CONCLUSIONS The improvement observed in anxiety was greater in the experimental group than in the sham group, confirmed by both subjective (psychometric) measures and objective (biological) measures. This was demonstrated to be associated with the real neurofeedback, though a nonspecific (placebo) effect likely also contributed.
Collapse
Affiliation(s)
- Marien Gadea
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Marta Aliño
- Department of Psychology, Universidad Internacional de Valencia, Valencia, Spain
| | - Vanesa Hidalgo
- Area of Psychobiology, Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - Raul Espert
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Alicia Salvador
- Laboratory of Cognitive Social Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain
| |
Collapse
|
75
|
Bacomics: a comprehensive cross area originating in the studies of various brain-apparatus conversations. Cogn Neurodyn 2020; 14:425-442. [PMID: 32655708 DOI: 10.1007/s11571-020-09577-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
The brain is the most important organ of the human body, and the conversations between the brain and an apparatus can not only reveal a normally functioning or a dysfunctional brain but also can modulate the brain. Here, the apparatus may be a nonbiological instrument, such as a computer, and the consequent brain-computer interface is now a very popular research area with various applications. The apparatus may also be a biological organ or system, such as the gut and muscle, and their efficient conversations with the brain are vital for a healthy life. Are there any common bases that bind these different scenarios? Here, we propose a new comprehensive cross area: Bacomics, which comes from brain-apparatus conversations (BAC) + omics. We take Bacomics to cover at least three situations: (1) The brain is normal, but the conversation channel is disabled, as in amyotrophic lateral sclerosis. The task is to reconstruct or open up new channels to reactivate the brain function. (2) The brain is in disorder, such as in Parkinson's disease, and the work is to utilize existing or open up new channels to intervene, repair and modulate the brain by medications or stimulation. (3) Both the brain and channels are in order, and the goal is to enhance coordinated development between the brain and apparatus. In this paper, we elaborate the connotation of BAC into three aspects according to the information flow: the issue of output to the outside (BAC-1), the issue of input to the brain (BAC-2) and the issue of unity of brain and apparatus (BAC-3). More importantly, there are no less than five principles that may be taken as the cornerstones of Bacomics, such as feedforward and feedback control, brain plasticity, harmony, the unity of opposites and systems principles. Clearly, Bacomics integrates these seemingly disparate domains, but more importantly, opens a much wider door for the research and development of the brain, and the principles further provide the general framework in which to realize or optimize these various conversations.
Collapse
|
76
|
BAHADIR A. Applications of Functional Near-Infrared Spectroscopy (fNIRS)- Based Neurofeedback (NF) Training in Neurophsychiatric Disorders. KONURALP TIP DERGISI 2020. [DOI: 10.18521/ktd.670281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
77
|
Nicholson AA, Ros T, Jetly R, Lanius RA. Regulating posttraumatic stress disorder symptoms with neurofeedback: Regaining control of the mind. JOURNAL OF MILITARY, VETERAN AND FAMILY HEALTH 2020. [DOI: 10.3138/jmvfh.2019-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurofeedback is emerging as a psychophysiological treatment where self-regulation is achieved through online feedback of neural states. Novel personalized medicine approaches are particularly important for the treatment of posttraumatic stress disorder (PTSD), as symptom presentation of the disorder, as well as responses to treatment, are highly heterogeneous. Learning to achieve control of specific neural substrates through neurofeedback has been shown to display therapeutic evidence in patients with a wide variety of psychiatric disorders, including PTSD. This article outlines the neural mechanisms underlying neurofeedback and examines converging evidence for the efficacy of neurofeedback as an adjunctive treatment for PTSD via both electroencephalography (EEG) and real-time functional magnetic resonance imaging (fMRI) modalities. Further, implications for the treatment of PTSD via neurofeedback in the military member and Veteran population is examined.
Collapse
Affiliation(s)
- Andrew A. Nicholson
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Neurology and Imaging of Cognition Lab, University of Geneva, Geneva, Switzerland
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
- Department of Psychology, Western University, London, Ontario
| | - Tomas Ros
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Neurology and Imaging of Cognition Lab, University of Geneva, Geneva, Switzerland
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
- Department of Psychology, Western University, London, Ontario
| | - Rakesh Jetly
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Neurology and Imaging of Cognition Lab, University of Geneva, Geneva, Switzerland
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
- Department of Psychology, Western University, London, Ontario
| | - Ruth A. Lanius
- Department of Psychological Research and Research Methods, University of Vienna, Vienna, Austria
- Neurology and Imaging of Cognition Lab, University of Geneva, Geneva, Switzerland
- Canadian Forces Health Services Group, Department of National Defence, Government of Canada, Ottawa
- Department of Psychology, Western University, London, Ontario
| |
Collapse
|
78
|
Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron 2020; 105:577-587.e5. [DOI: 10.1016/j.neuron.2019.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
|
79
|
De Raedt R. Contributions from neuroscience to the practice of Cognitive Behaviour Therapy: Translational psychological science in service of good practice. Behav Res Ther 2020; 125:103545. [DOI: 10.1016/j.brat.2019.103545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/25/2019] [Accepted: 12/29/2019] [Indexed: 01/12/2023]
|
80
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|
81
|
Bucho T, Caetano G, Vourvopoulos A, Accoto F, Esteves I, I Badia SB, Rosa A, Figueiredo P. Comparison of Visual and Auditory Modalities for Upper-Alpha EEG-Neurofeedback .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5960-5966. [PMID: 31947205 DOI: 10.1109/embc.2019.8856671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electroencephalography (EEG) neurofeedback (NF) training has been shown to produce long-lasting effects on the improvement of cognitive function as well as the normalization of aberrant brain activity in disease. However, the impact of the sensory modality used as the NF reinforcement signal on training effectiveness has not been systematically investigated. In this work, an EEG-based NF-training system was developed targeting the individual upper-alpha (UA) band and using either a visual or an auditory reinforcement signal, so as to compare the effects of the two sensory modalities. Sixteen healthy volunteers were randomly assigned to the Visual or Auditory group, where a radius-varying sphere or a volume-varying sound, respectively, reflected the relative amplitude of UA measured at EEG electrode Cz. Each participant underwent a total of four NF sessions, of approximately 40 min each, on consecutive days. Both groups showed significant increases in UA at Cz within sessions, and also across sessions. Effects subsequent to NF training were also found beyond the target frequency UA and scalp location Cz, namely in the lower-alpha and theta bands and in posterior brain regions, respectively. Only small differences were found on the EEG between the Visual and Auditory groups, suggesting that auditory reinforcement signals may be as effective as the more commonly used visual signals. The use of auditory NF may potentiate training protocols conducted under mobile conditions, which are now possible due to the increasing availability of wireless EEG systems.
Collapse
|
82
|
Efficacy of Neurofeedback Interventions for Cognitive Rehabilitation Following Brain Injury: Systematic Review and Recommendations for Future Research. J Int Neuropsychol Soc 2020; 26:31-46. [PMID: 31983375 DOI: 10.1017/s1355617719001061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Interest in neurofeedback therapies (NFTs) has grown exponentially in recent years, encouraged both by escalating public interest and the financial support of health care funding agencies. Given NFTs' growing prevalence and anecdotally reported success in treating common effects of acquired brain injury (ABI), a systematic review of the efficacy of NFTs for the rehabilitation of ABI-related cognitive impairment is warranted. METHODS Eligible studies included adult samples (18+ years) with ABI, the use of neurofeedback technology for therapeutic purposes (as opposed to assessment), the inclusion of a meaningful control group/condition, and clear cognitive-neuropsychological outcomes. Initial automated search identified n = 86 candidate articles, however, only n = 4 studies met the stated eligibility criteria. RESULTS Results were inconsistent across studies and cognitive domains. Methodological and theoretical limitations precluded robust and coherent conclusions with respect to the cognitive rehabilitative properties of NFTs. We take the results of these systematic analyses as a reflection of the state of the literature at this time. These results offer a constructive platform to further discuss a number of methodological, theoretical, and ethical considerations relating to current and future NFT-ABI research and clinical intervention. CONCLUSIONS Given the limited quantity and quality of the available research, there appears to be insufficient evidence to comment on the efficacy of NFTs within an ABI rehabilitation context at this time. It is imperative that future work increase the level of theoretical and methodological rigour if meaningful advancements are to be made understanding and evaluating NFT-ABI applications.
Collapse
|
83
|
Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. Neuroimage 2019; 202:116107. [DOI: 10.1016/j.neuroimage.2019.116107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
|
84
|
Abstract
Recently, a deep impact of psychosocial effects on the outcomes of neurofeedback training was suggested. Previous findings point out an association between locus of control in dealing with technology and the individual ability to up-regulate the sensorimotor rhythm (12–15 Hz) in the EEG. Since the antecedents of locus of control in dealing with technology differ between males and females, we have investigated the effect of sex of participant and experimenter on the outcomes of neurofeedback training. Mindfulness and SMR baseline power also were assessed as possible confounding variables. Undergraduate psychology students (n = 142) took part in a single session of neurofeedback training conducted by either male or female experimenters. Male participants as well as those female participants instructed by male experimenters were able to upregulate SMR, while female participants trained by female experimenters were not. A strong positive correlation between training outcomes and locus of control in dealing with technology was observed only in the female participants trained by female experimenters. These results are suggestive about the impact of psychosocial factors—particularly gender-related effects—on neurofeedback training outcomes and the urgent need to document it in neurofeedback studies.
Collapse
Affiliation(s)
- Guilherme Wood
- Institute of Psychology, Karl-Franzens-University of Graz, Universitaetsplatz 2, 8010, Graz, Austria. .,BioTechMed, Graz, Austria.
| | - Silvia Erika Kober
- Institute of Psychology, Karl-Franzens-University of Graz, Universitaetsplatz 2, 8010, Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
85
|
Naas A, Rodrigues J, Knirsch JP, Sonderegger A. Neurofeedback training with a low-priced EEG device leads to faster alpha enhancement but shows no effect on cognitive performance: A single-blind, sham-feedback study. PLoS One 2019; 14:e0211668. [PMID: 31483789 PMCID: PMC6726238 DOI: 10.1371/journal.pone.0211668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Findings of recent studies indicate that it is possible to enhance cognitive capacities of healthy individuals by means of individual upper alpha neurofeedback training (NFT). Although these results are promising, most of this research was conducted based on high-priced EEG systems developed for clinical and research purposes. This study addresses the question whether such effects can also be shown with an easy to use and comparably low-priced Emotiv Epoc EEG headset available for the average consumer. In addition, critical voices were raised regarding the control group designs of studies addressing the link between neurofeedback training and cognitive performance. Based on an extensive literature review revealing considerable methodological issues in an important part of the existing research, the present study addressed the question whether individual upper alpha neurofeedback has a positive effect on alpha amplitudes (i.e. increases alpha amplitudes) and short-term memory performance focussing on a methodologically sound, single-blinded, sham controlled design. METHOD Participants (N = 33) took part in four test sessions over four consecutive days of either neurofeedback training (NFT group) or sham feedback (SF group). In the NFT group, five three-minute periods of visual neurofeedback training were administered each day whereas in the SF group (control group), the same amount of sham feedback was presented. Performance on eight digit-span tests as well as participants' affective states were assessed before and after each of the daily training sessions. RESULTS NFT did not show an effect on individual upper alpha and cognitive performance. While performance increased in both groups over the course of time, this effect could not be explained by changes in individual upper alpha. Additional analyses however revealed that participants in the NFT group showed faster and larger increase in alpha compared to the SF group. Surprisingly, exploratory analyses showed a significant correlation between the initial alpha level and the alpha improvement during the course of the study. This finding suggests that participants with high initial alpha levels benefit more from alpha NFT interventions. In the discussion, the appearance of the alpha enhancement in the SF group and possible reasons for the absence of a connection between NFT and short-term memory are addressed.
Collapse
Affiliation(s)
- Adrian Naas
- Department of Psychology, Université de Fribourg, Fribourg/Freiburg, Switzerland
| | - João Rodrigues
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan-Philip Knirsch
- Department of Psychology, Université de Fribourg, Fribourg/Freiburg, Switzerland
| | - Andreas Sonderegger
- Department of Psychology, Université de Fribourg, Fribourg/Freiburg, Switzerland
- École Polytechnique Fédérale de Lausanne and École Cantonale d’Art de Lausanne Laboratoire (EPFL+ECAL Lab), Renens, Switzerland
| |
Collapse
|
86
|
Shultz SJ, Schmitz RJ, Cameron KL, Ford KR, Grooms DR, Lepley LK, Myer GD, Pietrosimone B. Anterior Cruciate Ligament Research Retreat VIII Summary Statement: An Update on Injury Risk Identification and Prevention Across the Anterior Cruciate Ligament Injury Continuum, March 14-16, 2019, Greensboro, NC. J Athl Train 2019; 54:970-984. [PMID: 31461312 PMCID: PMC6795093 DOI: 10.4085/1062-6050-54.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandra J. Shultz
- Applied Neuromechanics Research Laboratory, University of North Carolina at Greensboro
| | - Randy J. Schmitz
- Applied Neuromechanics Research Laboratory, University of North Carolina at Greensboro
| | - Kenneth L. Cameron
- John A. Feagin Jr Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY
| | - Kevin R. Ford
- Human Biomechanics and Physiology Laboratory, Department of Physical Therapy, High Point University, NC
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute and Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens
| | | | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, and Departments of Pediatrics and Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, OH
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| |
Collapse
|
87
|
Paret C, Zaehringer J, Ruf M, Ende G, Schmahl C. The orbitofrontal cortex processes neurofeedback failure signals. Behav Brain Res 2019; 369:111938. [DOI: 10.1016/j.bbr.2019.111938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
|
88
|
Bioulac S, Purper-Ouakil D, Ros T, Blasco-Fontecilla H, Prats M, Mayaud L, Brandeis D. Personalized at-home neurofeedback compared with long-acting methylphenidate in an european non-inferiority randomized trial in children with ADHD. BMC Psychiatry 2019; 19:237. [PMID: 31370811 PMCID: PMC6676623 DOI: 10.1186/s12888-019-2218-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurofeedback (NF) has gained increasing interest among non-pharmacological treatments for Attention Deficit Hyperactivity Disorder (ADHD). NF training aims to enhance self-regulation of brain activities. The goal of the NEWROFEED study is to assess the efficacy of a new personalized NF training device, using two different protocols according to each child's electroencephalographic pattern, and designed for use at home. This study is a non-inferiority trial comparing NF to methylphenidate. METHODS The study is a prospective, multicentre, randomized, reference drug-controlled trial. One hundred seventy-nine children with ADHD, aged 7 to 13 years will be recruited in 13 clinical centres from 5 European countries. Subjects will be randomized to two groups: NF group (Neurofeedback Training Group) and MPH group (Methylphenidate group). Outcome measures include clinicians, parents and teachers' assessments, attention measures and quantitative EEG (qEEG). Patients undergo eight visits over a three-month period: pre-inclusion visit, inclusion visit, 4 "discovery" (NF group) or titration visits (MPH group), an intermediate and a final visit. Patients will be randomized to either the MPH or NF group. Children in the NF group will undergo either an SMR or a Theta/Beta training protocol according to their baselineTheta/Beta Ratio obtained from the qEEG. DISCUSSION This is the first non-inferiority study between a personalized NF device and pharmacological treatment. Innovative aspects of Mensia Koala™ include the personalization of the training protocol according to initial qEEG characteristics (SMR or Theta/Beta training protocols) and an improved accessibility of NF due to the opportunity to train at home with monitoring by the clinician through a dedicated web portal. TRIAL REGISTRATION NCT02778360 . Date registration (retrospectively registered): 5-12-2016. Registered May 19, 2016.
Collapse
Affiliation(s)
- Stéphanie Bioulac
- CHU Pellegrin, Clinique du Sommeil, F-33076, Bordeaux, France. .,Université de Bordeaux, Sommeil, Addiction et Neuropsychiatrie, USR 3413, F-33000, Bordeaux, France. .,CNRS, SANPSY, USR 3413, F-33000, Bordeaux, France.
| | - Diane Purper-Ouakil
- grid.414352.5Unit of Child and Adolescent Psychiatry (MPEA1), CHU Montpellier-Saint Eloi Hospital, Montpellier, France
| | - Tomas Ros
- 0000 0001 2322 4988grid.8591.5Department of Neurosciences, Laboratory for Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| | - Hilario Blasco-Fontecilla
- 0000 0004 1767 8416grid.73221.35Department of Psychiatry, Segovia de Arana Health Research Institute (IDIPHISA)-Puerta de Hierro University Hospital, Avenida Manuel de Falla s/n, Majadahonda, Madrid, Spain ,0000000119578126grid.5515.4Autonoma University, Madrid, Spain
| | - Marie Prats
- grid.476574.3Mensia Technologies, 130, rue de Lourmel, 75015 Paris, France
| | - Louis Mayaud
- grid.476574.3Mensia Technologies, 130, rue de Lourmel, 75015 Paris, France
| | - Daniel Brandeis
- 0000 0004 1937 0650grid.7400.3University of Zurich and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland ,0000 0004 0477 2235grid.413757.3Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
89
|
Affiliation(s)
- Uku Tooming
- Department of Philosophy, University of Tartu, Tartu, Estonia
- Department of Philosophy, Harvard University, Cambridge, MA, USA
| |
Collapse
|
90
|
Thibault RT, Lifshitz M, Raz A. The climate of neurofeedback: scientific rigour and the perils of ideology. Brain 2019; 141:e11. [PMID: 29220482 DOI: 10.1093/brain/awx330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert T Thibault
- Integrated Program in Neuroscience, McGill University, Montreal, H3A 2B4, Canada.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Michael Lifshitz
- Integrated Program in Neuroscience, McGill University, Montreal, H3A 2B4, Canada.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Amir Raz
- Integrated Program in Neuroscience, McGill University, Montreal, H3A 2B4, Canada.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Irvine, CA, 92618, USA.,Departments of Psychiatry, Neurology and Neurosurgery, and Psychology, McGill University, Montreal, H3A 2B4, Canada.,The Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, H3T 1E4, Canada
| |
Collapse
|
91
|
Self-regulation of language areas using real-time functional MRI in stroke patients with expressive aphasia. Brain Imaging Behav 2019; 14:1714-1730. [DOI: 10.1007/s11682-019-00106-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
92
|
Storchak H, Hudak J, Fallgatter AJ, Ehlis AC. Entwicklung eines Neurofeedback-Protokolls zur Reduktion verbal akustischer Halluzinationen. PSYCHOTHERAPEUT 2019. [DOI: 10.1007/s00278-019-0353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
93
|
Shibata K, Lisi G, Cortese A, Watanabe T, Sasaki Y, Kawato M. Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. Neuroimage 2019; 188:539-556. [PMID: 30572110 PMCID: PMC6431555 DOI: 10.1016/j.neuroimage.2018.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022] Open
Abstract
Real-time functional magnetic resonance imaging (fMRI) neurofeedback is an experimental framework in which fMRI signals are presented to participants in a real-time manner to change their behaviors. Changes in behaviors after real-time fMRI neurofeedback are postulated to be caused by neural plasticity driven by the induction of specific targeted activities at the neuronal level (targeted neural plasticity model). However, some research groups argued that behavioral changes in conventional real-time fMRI neurofeedback studies are explained by alternative accounts, including the placebo effect and physiological artifacts. Recently, decoded neurofeedback (DecNef) has been developed as a result of adapting new technological advancements, including implicit neurofeedback and fMRI multivariate analyses. DecNef provides strong evidence for the targeted neural plasticity model while refuting the abovementioned alternative accounts. In this review, we first discuss how DecNef refutes the alternative accounts. Second, we propose a model that shows how targeted neural plasticity occurs at the neuronal level during DecNef training. Finally, we discuss computational and empirical evidence that supports the model. Clarification of the neural mechanisms of DecNef would lead to the development of more advanced fMRI neurofeedback methods that may serve as powerful tools for both basic and clinical research.
Collapse
Affiliation(s)
- Kazuhisa Shibata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan; Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Nagoya, 464-0814, Japan
| | - Giuseppe Lisi
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| | - Aurelio Cortese
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| | - Takeo Watanabe
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan; Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI, 02912, USA
| | - Yuka Sasaki
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan; Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI, 02912, USA
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
| |
Collapse
|
94
|
Rubia K, Criaud M, Wulff M, Alegria A, Brinson H, Barker G, Stahl D, Giampietro V. Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD. Neuroimage 2019; 188:43-58. [PMID: 30513395 PMCID: PMC6414400 DOI: 10.1016/j.neuroimage.2018.11.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is associated with poor self-control, underpinned by inferior fronto-striatal deficits. We showed previously that 18 ADHD adolescents over 11 runs of 8.5 min of real-time functional magnetic resonance neurofeedback of the right inferior frontal cortex (rIFC) progressively increased activation in 2 regions of the rIFC which was associated with clinical symptom improvement. In this study, we used functional connectivity analyses to investigate whether fMRI-Neurofeedback of rIFC resulted in dynamic functional connectivity changes in underlying neural networks. Whole-brain seed-based functional connectivity analyses were conducted using the two clusters showing progressively increased activation in rIFC as seed regions to test for changes in functional connectivity before and after 11 fMRI-Neurofeedback runs. Furthermore, we tested whether the resulting functional connectivity changes were associated with clinical symptom improvements and whether they were specific to fMRI-Neurofeedback of rIFC when compared to a control group who had to self-regulate another region. rIFC showed increased positive functional connectivity after relative to before fMRI-Neurofeedback with dorsal caudate and anterior cingulate and increased negative functional connectivity with regions of the default mode network (DMN) such as posterior cingulate and precuneus. Furthermore, the functional connectivity changes were correlated with clinical improvements and the functional connectivity and correlation findings were specific to the rIFC-Neurofeedback group. The findings show for the first time that fMRI-Neurofeedback of a typically dysfunctional frontal region in ADHD adolescents leads to strengthening within fronto-cingulo-striatal networks and to weakening of functional connectivity with posterior DMN regions and that this may be underlying clinical improvement.
Collapse
Affiliation(s)
- K Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - M Criaud
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - M Wulff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - A Alegria
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - H Brinson
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - G Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - D Stahl
- Department of Biostatistics & Health Informatics, King's College London, UK
| | - V Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
95
|
Sorger B, Scharnowski F, Linden DEJ, Hampson M, Young KD. Control freaks: Towards optimal selection of control conditions for fMRI neurofeedback studies. Neuroimage 2019; 186:256-265. [PMID: 30423429 PMCID: PMC6338498 DOI: 10.1016/j.neuroimage.2018.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
fMRI Neurofeedback research employs many different control conditions. Currently, there is no consensus as to which control condition is best, and the answer depends on what aspects of the neurofeedback-training design one is trying to control for. These aspects can range from determining whether participants can learn to control brain activity via neurofeedback to determining whether there are clinically significant effects of the neurofeedback intervention. Lack of consensus over criteria for control conditions has hampered the design and interpretation of studies employing neurofeedback protocols. This paper presents an overview of the most commonly employed control conditions currently used in neurofeedback studies and discusses their advantages and disadvantages. Control conditions covered include no control, treatment-as-usual, bidirectional-regulation control, feedback of an alternative brain signal, sham feedback, and mental-rehearsal control. We conclude that the selection of the control condition(s) should be determined by the specific research goal of the study and best procedures that effectively control for relevant confounding factors.
Collapse
Affiliation(s)
- Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - David E J Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Psychiatry and the Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Kymberly D Young
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
96
|
Herwig U, Lutz J, Scherpiet S, Scheerer H, Kohlberg J, Opialla S, Preuss A, Steiger V, Sulzer J, Weidt S, Stämpfli P, Rufer M, Seifritz E, Jäncke L, Brühl A. Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage 2019; 184:687-696. [DOI: 10.1016/j.neuroimage.2018.09.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/03/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
|
97
|
Lovato N, Miller CB, Gordon CJ, Grunstein RR, Lack L. The efficacy of biofeedback for the treatment of insomnia: a critical review. Sleep Med 2018; 56:192-200. [PMID: 30846410 DOI: 10.1016/j.sleep.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The popularity of biofeedback as a non-pharmacological treatment option for insomnia has increased in recent times despite inconsistent empirical evidence for its therapeutic efficacy. OBJECTIVE The purpose of the current review was to systematically assess the efficacy of using biofeedback to treat insomnia. METHODS AND RESULTS A search of electronic databases (PubMED, MEDLINE, OvidSP, Ovid EMBASE, PsychInfo, The Cochrane Library including Cochrane Reviews), clinical trials databases and registries (Clinical Trials Database [US], Australian New Zealand Clinical Trials Registry [ANZCTR]) and online journal (eg, SLEEP, Sleep Medicine) identified 92 studies. Of these, 50 publications were descriptive or review papers about use of biofeedback for the treatment of insomnia, while an additional 37 did not meet the detailed inclusion criteria (ie not original research, participants do not meet the diagnostic criteria for insomnia). Six full-text articles met inclusion criteria and were included in this review. Methodological flaws including poor study design (small sample size, lack of control group) limit the validity of the body of work in this field to date and fail adequately to account for other unspecified factors likely to drive the observed changes, such as care and attention of those administering the treatment, as well as the expectations and motivations of the patient. CONCLUSION There is an urgent need for future studies to clarify the role of unspecific placebo effects when reporting biofeedback effects for the treatment of insomnia.
Collapse
Affiliation(s)
- Nicole Lovato
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, Flinders University of South Australia, Australia; CRC for Alertness, Safety and Productivity, Melbourne, VIC, Australia.
| | | | - Christopher J Gordon
- CRC for Alertness, Safety and Productivity, Melbourne, VIC, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, NSW, Australia; Sydney Nursing School, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CRC for Alertness, Safety and Productivity, Melbourne, VIC, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, NSW, Australia; Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Leon Lack
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, Flinders University of South Australia, Australia; School of Psychology, Flinders University of South Australia, Australia
| |
Collapse
|
98
|
Pal P, Theisen DL, Datko M, van Lutterveld R, Roy A, Ruf A, Brewer JA. From research to clinic: A sensor reduction method for high-density EEG neurofeedback systems. Clin Neurophysiol 2018; 130:352-358. [PMID: 30669011 DOI: 10.1016/j.clinph.2018.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/25/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To accurately deliver a source-estimated neurofeedback (NF) signal developed on a 128-sensors EEG system on a reduced 32-sensors EEG system. METHODS A linearly constrained minimum variance beamformer algorithm was used to select the 64 sensors which contributed most highly to the source signal. Monte Carlo-based sampling was then used to randomly generate a large set of reduced 32-sensors montages from the 64 beamformer-selected sensors. The reduced montages were then tested for their ability to reproduce the 128-sensors NF. The high-performing montages were then pooled and analyzed by a k-means clustering machine learning algorithm to produce an optimized reduced 32-sensors montage. RESULTS Nearly 4500 high-performing montages were discovered from the Monte Carlo sampling. After statistically analyzing this pool of high performing montages, a set of refined 32-sensors montages was generated that could reproduce the 128-sensors NF with greater than 80% accuracy for 72% of the test population. CONCLUSION Our Monte Carlo reduction method was used to create reliable reduced-sensors montages which could be used to deliver accurate NF in clinical settings. SIGNIFICANCE A translational pathway is now available by which high-density EEG-based NF measures can be delivered using clinically accessible low-density EEG systems.
Collapse
Affiliation(s)
- Prasanta Pal
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA.
| | - Daniel L Theisen
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA
| | - Michael Datko
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA
| | - Remko van Lutterveld
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA
| | - Alexandra Roy
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA
| | - Andrea Ruf
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA
| | - Judson A Brewer
- Center for Mindfulness, University of Massachusetts Medical School, 222 Maple St., Shrewsbury, MA 01545, USA
| |
Collapse
|
99
|
Keynan JN, Cohen A, Jackont G, Green N, Goldway N, Davidov A, Meir-Hasson Y, Raz G, Intrator N, Fruchter E, Ginat K, Laska E, Cavazza M, Hendler T. Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience. Nat Hum Behav 2018; 3:63-73. [PMID: 30932053 DOI: 10.1038/s41562-018-0484-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/30/2018] [Indexed: 02/02/2023]
Abstract
Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF)1. Particularly for stress management, targeting deeply located limbic areas involved in stress processing2 has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and cost-effectiveness) of the approach, particularly for clinical purposes3. The current study aimed to overcome the limited applicability of rt-fMRI by using an electroencephalography (EEG) model endowed with improved spatial resolution, derived from simultaneous EEG-fMRI, to target amygdala activity (termed amygdala electrical fingerprint (Amyg-EFP))4-6. Healthy individuals (n = 180) undergoing a stressful military training programme were randomly assigned to six Amyg-EFP-NF sessions or one of two controls (control-EEG-NF or NoNF), taking place at the military training base. The results demonstrated specificity of NF learning to the targeted Amyg-EFP signal, which led to reduced alexithymia and faster emotional Stroop, indicating better stress coping following Amyg-EFP-NF relative to controls. Neural target engagement was demonstrated in a follow-up fMRI-NF, showing greater amygdala blood-oxygen-level-dependent downregulation and amygdala-ventromedial prefrontal cortex functional connectivity following Amyg-EFP-NF relative to NoNF. Together, these results demonstrate limbic specificity and efficacy of Amyg-EFP-NF during a stressful period, pointing to a scalable non-pharmacological yet neuroscience-based training to prevent stress-induced psychopathology.
Collapse
Affiliation(s)
- Jackob N Keynan
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,The School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avihay Cohen
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,The School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gilan Jackont
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,The School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nili Green
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,The School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Goldway
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Gal Raz
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,The Steve Tisch School of Film and Television, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathan Intrator
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Eyal Fruchter
- The Mental Health Department, Medical Corps, IDF, Ramat-Gan, Israel
| | - Keren Ginat
- The Mental Health Department, Medical Corps, IDF, Ramat-Gan, Israel
| | - Eugene Laska
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, USA
| | - Marc Cavazza
- School of Engineering and Digital Arts, University of Kent, Canterbury, UK
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel. .,The School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
100
|
Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology 2018; 43:2578-2585. [PMID: 29967368 PMCID: PMC6186421 DOI: 10.1038/s41386-018-0126-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
Functional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS). Forty-three moderately to severely depressed medicated patients were randomly assigned to five sessions augmentation treatment of either NFE or NFS training. At primary outcome (week 12) no significant group mean HDRS difference was found (B = -0.415 [95% CI -4.847 to 4.016], p = 0.848) for the 32 completers (16 per group). However, across groups depressive symptoms decreased by 43%, and 38% of patients remitted. These improvements lasted until follow-up (week 18). Both groups upregulated target regions to a similar extent. Further, clinical improvement was correlated with an increase in self-efficacy scores. However, the interpretation of clinical improvements remains limited due to lack of a sham-control group. We thus surveyed effects reported for accepted augmentation therapies in depression. Data indicated that our findings exceed expected regression to the mean and placebo effects that have been reported for drug trials and other sham-controlled high-technology interventions. Taken together, we suggest that the experience of successful self-regulation during fMRI-NF training may be therapeutic. We conclude that if fMRI-NF is effective for depression, self-regulation training of higher visual areas may provide an effective alternative.
Collapse
|