51
|
Emanuele S, Lauricella M, Carlisi D, Vassallo B, D'Anneo A, Di Fazio P, Vento R, Tesoriere G. SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 2007; 12:1327-1338. [PMID: 17351739 DOI: 10.1007/s10495-007-0063-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylase (HDAC) inhibitors represent a promising group of anticancer agents. This paper shows that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) stimulated at 5-10 microM apoptosis in human hepatoma HepG2 and Huh6 cells, but was ineffective in primary human hepatocytes (PHH). In HepG2 cells SAHA induced the extrinsic apoptotic pathway, increasing the expression of both FasL and FasL receptor and causing the activation of caspase-8. Moreover, SAHA enhanced the level of Bim proteins, stimulated alternative splicing of the Bcl-X transcript with the expression of the proapoptotic Bcl-Xs isoform, induced degradation of Bid into the apoptotic factor t-Bid and dephosphorylation and inactivation of the anti-apoptotic factor Akt. Consequently, SAHA caused loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, activation of caspase-3 and degradation of PARP. Interestingly, a combination of suboptimal doses of SAHA (1 microM) and bortezomib (5-10 nM), a potent inhibitor of 26S proteasome, synergistically induced apoptosis in both HepG2 and Huh6 cells, but was ineffective in PHH. Combined treatment increased with synergistic effects the expression levels of c-Jun, phospho-c-Jun and FasL and the production of Bcl-Xs. These effects were accompanied by activation of Bid, caspase-8 and 3. In conclusion, SAHA stimulated apoptosis in hepatoma cells and exerted a synergistic apoptotic effect when combined with bortezomib. In contrast, these treatments were quite ineffective in inducing apoptosis in PHH. Thus, our results suggest the potential application of the SAHA/bortezomib combination in clinical trials for liver cancer.
Collapse
Affiliation(s)
- S Emanuele
- Dipartimento di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Wren JD, Wu Y, Guo SW. A system-wide analysis of differentially expressed genes in ectopic and eutopic endometrium. Hum Reprod 2007; 22:2093-102. [PMID: 17562676 DOI: 10.1093/humrep/dem129] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Decades of research suggest that endometriosis is a complex disorder, with varying severity, onset and progression. Many genes have been associated with endometriosis through a number of studies and now microarray analyses have added to the list of perturbed or differentially regulated genes. Thus, it is difficult to see 'the big picture' without first integrating these multiple, heterogeneous sources of high-quality information for analysis. METHODS The goal of this study was to infer correlative and/or causal trends by combining empirical microarray analysis with a historical knowledge base of genetic relationships in endometriosis via a program called IRIDESCENT. RESULTS Importantly, we found a number of genes, which may have a central role in endometriosis, despite the fact that few or no past studies have reported these associations. CONCLUSIONS Several genes listed as non-responders on the microarray were found to be regulated post-transcriptionally, illustrating the importance of integrating multiple data sources.
Collapse
Affiliation(s)
- Jonathan D Wren
- Arthritis and Immunology Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104-5005, USA.
| | | | | |
Collapse
|
53
|
Furchert SE, Lanvers-Kaminsky C, Juürgens H, Jung M, Loidl A, Frühwald MC. Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 2007; 120:1787-94. [PMID: 17230517 DOI: 10.1002/ijc.22401] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The origin of malignant embryonal tumors is incompletely understood and certain risk groups remain difficult to treat. The epigenetic structure of DNA and its lesions play a role in the origin of these neoplasms. Manipulation of the epigenome may offer novel treatment options. The authors evaluated the cytotoxicity of histone deacetylase inhibitors (HDI) [MS-275, SAHA, TSA, M344, M360, D85, SW55, SW187 and valproic acid (VPA)] on 13 embryonal tumor cell lines [4 medulloblastomas, 5 neuroblastomas, 2 atypical teratoid/rhabdoid tumors (AT/RT), and 2 malignant rhabdoid tumors of the kidney (RTK)] in MTT assay. In addition, HDI effects on hyperacetylation, reexpression of growth regulatory genes and apoptosis were characterized by Western analysis, RT-PCR and annexin-V staining. All HDI inhibited cell proliferation in a time- and dose-dependent manner. VPA was least cytotoxic with GI50 values after 72 hr ranging from 53.6 to 332.9 microM, while TSA was most efficient with GI50 values after 72 hr ranging from 0.01 to 8.8 microM. M344 and M360 were also highly effective. Western blot revealed hyperacetylation of histone H4 after HDI treatment. Reactivation of several genes including the proapoptotic CASP8 was identified by RT-PCR. Annexin-V staining demonstrated a dose and time dependent induction of apoptosis. HDI inhibited the growth of medulloblastoma, neuroblastoma and rhabdoid tumors in vitro. Treatment with HDI induced the reactivation of growth regulatory genes and consequently apoptosis. Our results warrant further studies and may help in the design of new protocols geared at the treatment of high risk embryonal tumors.
Collapse
Affiliation(s)
- Sarah E Furchert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
Histone deacetylase (HDAC) inhibitors have potential for cancer therapy. An HDAC inhibitor based on a cyclic peptide mimic of known structure, linked by an aliphatic chain to a hydroxamic acid, was designed and synthesized. The chimeric compound showed potent competitive inhibition of nuclear HDACs, with an IC50 value of 46 nM and a Ki value of 13.7 nM. The designed inhibitor showed 4-fold selectivity for HDAC1 (57 nM) over HDAC8 (231 nM).
Collapse
Affiliation(s)
- Tao Liu
- Virginia Tech, Department of Chemistry MC 0212, Blacksburg, Virginia 24061-0212, USA
| | | | | |
Collapse
|
55
|
Abstract
Histone acetylation and histone deacetylation play key roles in the epigenetic regulation. Thus, inhibition of deacetylation controlled by histone deacetylases may result in chromatin remodeling, upregulation of key tumor repressor genes, differentiation or apoptosis. Therefore many naturally occurring and synthetic histone deacetylase inhibitors have been shown to display potent anticancer activities in preclinical studies. The exact mechanism by which histone deacetylases exert their effect, however, is still obscure; in any case it is more complicated than originally understood. Although several representatives of this novel class of therapeutic agents are currently at early stages of clinical development, rational design leading to highly selective histone deacetylase inhibitors against histone deacetylase isoforms will not only probably offer more potent anticancer drugs, but also critical insights into their mechanism of action.
Collapse
Affiliation(s)
- Claude Monneret
- Department of Medicinal Chemistry, Institut Curie, Paris, France.
| |
Collapse
|
56
|
Somech R, Gal-Yam EN, Shaklai S, Geller O, Amariglio N, Rechavi G, Simon AJ. Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann Hematol 2007; 86:393-401. [PMID: 17364180 DOI: 10.1007/s00277-007-0275-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Extensive research in recent years has broadened the functions of nuclear envelope proteins beyond simply stabilizing the nucleus architecture. Particularly, integral nuclear membrane proteins, such as the alternative spliced isoforms of lamina-associated polypeptide 2 (LAP2), have been shown to be important for the initiation of replication and repression of transcription. The latter is regulated by epigenetic changes, induced by the binding of LAP2beta to histone deacetylase-3 (HDAC3), resulting in histone H4 deacetylation. Involvement of nuclear envelope proteins in pathological proliferative conditions, mainly those involving abnormal recruitment and activation of HDACs, is still unknown. In this paper, we show that various nuclear envelope proteins are highly expressed in normal and malignant activated lymphocytes. Specifically, rapidly replicating cells of various hematological malignancies highly express LAP2beta, while slowly proliferating malignant cells of chronic malignant hematological diseases do not. Taking together the elevated expression of LAP2beta in highly proliferative malignant cells with its known ability to modify histones through binding with HDAC3 raises the possibility of its role in hematological malignancies involving aberrant activity of HDAC3. Based on our presented results, we believe that the LAP2-HDAC regulatory pathway should be studied as a new target for rational therapy.
Collapse
Affiliation(s)
- Raz Somech
- Sheba Cancer Research Center, Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The nuclear envelope (NE) is composed of inner and outer nuclear membranes (INM and ONM, respectively), nuclear pore complexes and an underlying mesh like supportive structure--the lamina. It has long been known that heterochromatin clusters at the nuclear periphery adjacent to the nuclear lamina, hinting that proteins of the lamina may participate in regulation of gene expression. Recent studies on the molecular mechanisms involved show that proteins of the nuclear envelope participate in regulation of transcription on several levels, from direct binding to transcription factors to induction of epigenetic histone modifications. Three INM proteins; lamin B receptor, lamina-associated polypeptide 2beta and emerin, were shown to bind chromatin modifiers and/or transcriptional repressors inducing, at least in one case, histone deacetylation. Emerin and another INM protein, MAN1, have been linked to down-regulation of specific signaling pathways, the retino blastoma 1/E2F MyoD and transforming growth factor beta/bone morphogenic protein, respectively. Therefore, cumulative data suggests that proteins of the nuclear lamina regulate transcription by recruiting chromatin modifiers and transcription factors to the nuclear periphery. In this minireview we describe the recent literature concerning mechanisms of gene repression by proteins of the NE and suggest the hypothesis that the epigenetic "histone code", dictating transcriptional repression, is "written" in part, at the NE by its proteins. Finally, as aberrant gene expression is one of the mechanisms speculated to underlie the newly discovered group of genetic diseases termed nuclear envelopathies/laminopathies, elucidating the repressive role of NE proteins is a major challenge to both researchers and clinicians.
Collapse
Affiliation(s)
- Sigal Shaklai
- Sheba Cancer Research Center and the Institute of Hematology, The Chaim Sheba Medical Center, Tel Hashomer and the Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
58
|
Duvic M, Zhang C. Clinical and laboratory experience of vorinostat (suberoylanilide hydroxamic acid) in the treatment of cutaneous T-cell lymphoma. Br J Cancer 2006. [PMCID: PMC2360772 DOI: 10.1038/sj.bjc.6603465] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The most common cutaneous T-cell lymphomas (CTCLs) – mycosis fungoides (MF) and Sézary Syndrome – are characterised by the presence of clonally expanded, skin-homing helper-memory T cells exhibiting abnormal apoptotic control mechanisms. Epigenetic modulation of genes that induce apoptosis and differentiation of malignant T cells may therefore represent an attractive new strategy for targeted therapy for T-cell lymphomas. In vitro studies show that vorinostat (suberoylanilide hydroxamic acid or SAHA), an oral inhibitor of class I and II histone deacetylases, induces selective apoptosis of malignant CTCL cell lines and peripheral blood lymphocytes from CTCL patients at clinically achievable doses. In a Phase IIa clinical trial, vorinostat therapy achieved a meaningful partial response (>50% reduction in disease burden) in eight out of 33 (24%) patients with heavily pretreated, advanced refractory CTCL. The most common major toxicities of oral vorinostat therapy were fatigue and gastrointestinal symptoms (diarrhoea, altered taste, nausea, and dehydration from not eating). Thrombocytopenia was dose limiting in patients receiving oral vorinostat at the higher dose induction levels of 300 mg twice daily for 14 days. These studies suggest that vorinostat represents a promising new agent in the treatment of CTCL patients. Additional studies are underway to define the exact mechanism (s) of by which vorinostat induces selective apoptosis in CTCL cells and to further evaluate the antitumour efficacy of vorinostat in a Phase IIb study in CTCL patients.
Collapse
|
59
|
Zhong S, Fields CR, Su N, Pan YX, Robertson KD. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 2006; 26:2621-34. [PMID: 17043644 DOI: 10.1038/sj.onc.1210041] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States due, in large part, to the lack of early detection methods. Lung cancer arises from a complex series of genetic and epigenetic changes leading to uncontrolled cell growth and metastasis. Unlike genetic changes, epigenetic changes, such as DNA methylation and histone acetylation, are reversible with currently available pharmaceuticals and are early events in lung tumorigenesis detectable by non-invasive methods. In order to better understand how epigenetic changes contribute to lung cancer, and to identify new disease biomarkers, we combined pharmacologic inhibition of DNA methylation and histone deacetylation in non-small cell lung cancer (NSCLC) cell lines, with genome-wide expression profiling. Of the more than 200 genes upregulated by these treatments, three of these, neuronatin, metallothionein 3 and cystatin E/M, were frequently hypermethylated and transcriptionally downregulated in NSCLC cell lines and tumors. Interestingly, four other genes, cylindromatosis, CD9, activating transcription factor 3 and oxytocin receptor, were dominantly regulated by histone deacetylation and were also frequently downregulated in lung tumors. The majority of these genes also suppressed NSCLC growth in culture when ectopically expressed. This study therefore reveals new putative NSCLC growth regulatory genes and epigenetic disease biomarkers that may enhance early detection strategies and serve as therapeutic targets.
Collapse
MESH Headings
- Acetylation
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Biomarkers, Tumor
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Chromatin Immunoprecipitation
- Colony-Forming Units Assay
- DNA Methylation/drug effects
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Oligonucleotide Array Sequence Analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Zhong
- Department of Biochemistry & Molecular Biology, UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology and Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
60
|
Charrier C, Bertrand P, Gesson JP, Roche J. Synthesis of rigid trichostatin A analogs as HDAC inhibitors. Bioorg Med Chem Lett 2006; 16:5339-44. [PMID: 16904890 DOI: 10.1016/j.bmcl.2006.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 11/26/2022]
Abstract
New inhibitors of histone deacetylase (HDAC) have been synthesized and evaluated for their activity toward non small lung cancer cell line H661. Their design is based on indanone (or tetralone) systems leading to trichostatin A (TSA) analogs with limited conformational mobility. Molecular modelization at the AM1 level revealed that the conformations of indane-based analogs and TSA bound to HDAC like protein are similar. The synthesis of these new analogs was achieved by alkylation of an appropriate indanone (or tetralone) to introduce the side chain bearing a terminal ester group, the latter being a precursor of hydroxamic acid and aminobenzamide derivatives. Hydroxamic acids with the TSA side chain were found to be the most active compounds and the presence of the dimethylamino group on the phenyl ring turned out to be essential to achieve low micromolar activities against H661 cancer cells.
Collapse
Affiliation(s)
- Cédric Charrier
- Laboratoire Synthèse et Réactivité des Substances Naturelles, UMR 6514, Université de Poitiers et CNRS, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | | | | | | |
Collapse
|
61
|
Prokocimer M, Margalit A, Gruenbaum Y. The nuclear lamina and its proposed roles in tumorigenesis: Projection on the hematologic malignancies and future targeted therapy. J Struct Biol 2006; 155:351-60. [PMID: 16697219 DOI: 10.1016/j.jsb.2006.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 02/13/2006] [Indexed: 01/10/2023]
Abstract
The nuclear lamina, a network of lamin filaments and lamin-associated proteins, is located between the inner nuclear membrane and the peripheral chromatin. The nuclear lamina is involved in numerous nuclear functions including maintaining nuclear shape, determining nuclear positioning, organizing chromatin and regulating the cell cycle, DNA replication, transcription, cell differentiation, apoptosis, and aging. Alterations in the composition of nuclear lamins and their associated proteins are currently emerging as an additional event involved in malignant transformation, tumor propagation and progression, thus identifying potential novel targets for future anti-cancer therapy. Here, we review the current knowledge on lamin expression patterns in cells of hematologic malignancies and give an overview on the roles of the nuclear lamina proteins in heterochromatin organization, apoptosis, and aging with special emphasis on the relevance in cancer development.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
62
|
Tong M, Ding Y, Tai HH. Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells. Biochem Pharmacol 2006; 72:701-9. [PMID: 16844092 DOI: 10.1016/j.bcp.2006.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/01/2006] [Accepted: 06/07/2006] [Indexed: 12/27/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been actively exploited as potential anticancer agents. To identify gene targets of HDAC inhibitors, we found that HDAC inhibitors such as sodium butyrate, scriptaid, apicidin and oxamflatin induced the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a potential cyclooxygenase-2 (COX-2) antagonist and tumor suppressor, in a time and concentration dependent manner in A549 and H1435 lung adenocarcinoma cells. Detailed analyses indicated that HDAC inhibitors activated the 15-PGDH promoter-luciferase reporter construct in transfected A549 cells. A representative HDAC inhibitor, scriptaid, and its negative structural analog control, nullscript, were further evaluated at the chromatin level. Scriptaid but not nullscript induced a significant accumulation of acetylated histones H3 and H4 which were associated with the 15-PGDH promoter as determined by chromatin immunoprecipitation assay. Transforming growth factor-beta1 (TGF-beta1) also induced the expression of 15-PGDH in a time and concentration dependent manner in A549 and H1435 cells. Induction of 15-PGDH expression by TGF-beta1 was synergistically stimulated by the addition of Wnt3A which was inactive by itself. However, combination of TGF-beta and an HDAC inhibitor, scriptaid, only resulted in an additive effect. Together, our results indicate that 15-PGDH is one of the target genes that HDAC inhibitors and TGF-beta may induce to exhibit tumor suppressive effects.
Collapse
Affiliation(s)
- Min Tong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | | | |
Collapse
|
63
|
Xiong Y, Dowdy SC, Eberhardt NL, Podratz KC, Jiang SW. hMLH1 promoter methylation and silencing in primary endometrial cancers are associated with specific alterations in MBDs occupancy and histone modifications. Gynecol Oncol 2006; 103:321-8. [PMID: 16701802 PMCID: PMC3273419 DOI: 10.1016/j.ygyno.2006.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/15/2006] [Accepted: 03/28/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the relationship between hMLH1 promoter methylation and changes in chromatin composition. To study how the occupancy of methyl CpG binding domain proteins (MBDs) and histone acetylation/methylation in hMLH1 promoter may participate in hMLH1 silencing. METHODS 64 endometrial cancer samples were screened for hMLH1 mRNA expression. hMLH1 promoter methylation status was confirmed by methylation-specific PCR in cancers with high and low levels of hMLH1 expression. Chromatin immunoprecipitation was performed to compare the MBD occupancy and histone modifications between the methylated/silenced and unmethylated/active hMLH1 genes in multiple primary endometrial cancers. RESULTS We demonstrated that MeCP2, MBD1 and MBD2, but not MBD3 and MBD4, specifically bind to methylated hMLH1 promoters. Hyperacetylated histones H3 and H4 were found to be associated with the unmethylated and transcriptionally active hMLH1 promoters. While H3 lysine-4 methylation was present in unmethylated hMLH1 promoters, H3 lysine-9 methylation was found exclusively in methylated promoters. Western blot analysis showed that similar global levels of MBDs and histones were present in the two cancer groups with high and low hMLH1 expression. CONCLUSIONS A distinct combination of MBDs and histone modification is associated with the silencing of the hMLH1 gene. The changes in hMLH1 chromatin composition are closely related to methylation status of hMLH1 promoters. These changes are not accounted by the global expression levels of MBDs and histones in endometrial cancers.
Collapse
Affiliation(s)
- Yuning Xiong
- Department of Obstetrics and Gynecology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Sean C. Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
- Department of Obstetrics and Gynecology, Mayo Comprehensive Cancer Center, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Norman L. Eberhardt
- Department of Internal Medicine, Division of Endocrinology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Karl C. Podratz
- Department of Obstetrics and Gynecology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
- Department of Obstetrics and Gynecology, Mayo Comprehensive Cancer Center, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Shi-Wen Jiang
- Department of Obstetrics and Gynecology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
- Department of Obstetrics and Gynecology, Mayo Comprehensive Cancer Center, Mayo Clinic and Foundation, Rochester, MN 55905, USA
- Corresponding author. Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA. Fax: +1 507 255 4828. (S.-W. Jiang)
| |
Collapse
|
64
|
Martirosyan A, Leonard S, Shi X, Griffith B, Gannett P, Strobl J. Actions of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells. J Pharmacol Exp Ther 2006; 317:546-52. [PMID: 16497787 DOI: 10.1124/jpet.105.096891] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NSC3852 (5-nitroso-8-quinolinol) has cell differentiation and antiproliferative activity in human breast cancer cells in tissue culture and antitumor activity in mice bearing P388 and L1210 leukemic cells. We investigated the mechanism of NSC3852 action in MCF-7 human breast cancer cells using electron spin resonance (ESR). Reactive oxygen species (ROS) were detected in MCF-7 cell suspensions incubated with NSC3852 using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Formation of the DMPO-OH adduct was quenched by the addition of superoxide dismutase but not by catalase, and we concluded that superoxide was generated in the NSC3852-treated cells. The flavoprotein inhibitor diphenylene iodonium suppressed ROS production, providing evidence for the involvement of a flavin-dependent enzyme system in the ROS response to NSC3852. A biologically significant oxidative response to NSC3852 occurred in MCF-7 cells. An early marker of oxidative stress was a decrease in the [glutathione]/[glutathione disulfide] ratio 1 h after NSC3852 addition. Oxidative DNA damage, marked by the presence of 8-oxoguanine, and DNA-strand breakage occurred in cells exposed to NSC3852 for 24 h. Apoptosis peaked 48 h after exposure to NSC3852. Pretreatment with the glutathione precursor N-acetyl-l-cysteine (NAC) prevented DNA-strand breakage and apoptosis. Pretreatment with NAC also reversed NSC3852 decreases in E2F1, Myc, and phosphorylated retinoblastoma protein, indicative of redox-sensitive pathway(s) in MCF-7 cells during G(1) phase of the cell cycle. We conclude that ROS formation is involved in the apoptotic and cell differentiation responses to NSC3852 in MCF-7 cells.
Collapse
Affiliation(s)
- Anna Martirosyan
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
65
|
Kobayashi Y, Ohtsuki M, Murakami T, Kobayashi T, Sutheesophon K, Kitayama H, Kano Y, Kusano E, Nakagawa H, Furukawa Y. Histone deacetylase inhibitor FK228 suppresses the Ras-MAP kinase signaling pathway by upregulating Rap1 and induces apoptosis in malignant melanoma. Oncogene 2006; 25:512-24. [PMID: 16186804 DOI: 10.1038/sj.onc.1209072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are expected to be effective for refractory cancer because their mechanism of action differs from that of conventional antineoplastic agents. In this study, we examined the effect of the HDAC inhibitor FK228 on malignant melanoma, as well as its molecular mechanisms. FK228 was highly effective against melanoma compared with other commonly used drugs. By comparing the gene expression profiles of melanoma cells and normal melanocytes, we defined a subset of genes specifically upregulated in melanoma cells by FK228, which included Rap1, a small GTP-binding protein of the Ras family. The expression of Rap1 mRNA and protein increased in FK228-treated melanoma cells in both a dose- and a time-dependent manner. A decrease in the phosphorylation of c-Raf, MEK1/2, and ERK1/2 was accompanied by an increase in Rap1 expression in both FK228-treated and Rap1-overexpressing cells. Inhibition of Rap1 upregulation by small interfering RNA (siRNA) abrogated the induction of apoptosis and suppression of ERK1/2 phosphorylation in FK228-treated melanoma cells. These results indicate that the cytotoxic effects of FK228 are mediated via the upregulation of Rap1. Furthermore, we found that Rap1 was overexpressed and formed a complex with B-Raf in melanoma cell lines with a V599E mutation of B-Raf. The siRNA-mediated abrogation of Rap1 overexpression increased the viability of these cells, suggesting that Rap1 is also an endogenous regulator of Ras-MAP kinase signaling in melanomas.
Collapse
Affiliation(s)
- Y Kobayashi
- Division of Stem Cell Regulation, Jichi Medical School, Yakushiji, Minamikawachi-machi, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zhang C, Richon V, Ni X, Talpur R, Duvic M. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 2006; 125:1045-52. [PMID: 16297208 DOI: 10.1111/j.0022-202x.2005.23925.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA), an orally administered inhibitor of histone deacetylases, is currently in phase II clinical trials for cutaneous T cell lymphomas (CTCL), but the mechanism of SAHA action is unknown. In this study, we investigated the anti-tumor effects of SAHA in CTCL cell lines and freshly isolated peripheral blood lymphocytes (PBL) from CTCL patients with high percentage of circulating malignant T cells. Three cell lines (MJ, Hut78, and HH) and PBL from 11 patients and three healthy donors were treated with SAHA (1, 2.5, and 5 microM) for 24 and/or 48 h. Apoptosis was determined by flow cytometry analysis of sub-G1 hypodiploid nuclei and/or annexin V binding populations. Acetylated histones and apoptosis-associated proteins were detected by Western blotting. SAHA at 1-5 microM for 24 and 48 h induced apoptosis in a concentration- and time-dependent manner in three cell lines: MJ (0%-7% and 1%-32%), Hut78 (4%-36% and 5%-54%), and HH (4%-67% and 8%-81%). SAHA at 1-5 muM for 48 h also induced more apoptosis of patients' PBL than healthy donors' (15%-32%versus 6%-13%, p < 0.05). SAHA treatment caused an accumulation of acetylated histones (H2B, H3, and H4), an increase of p21(WAF1) and bax proteins, a decrease of Stat6 and phospho-Stat6 proteins, and activation of caspase-3 in CTCL cells. Our data suggest that selective induction of malignant T cell apoptosis and modulation of acetylated histones, p21(WAF1), bax, Stat6, and caspase-3 may underlie the therapeutic action of SAHA in CTCL patients.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Dermatology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
67
|
Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 2005; 20:2254-63. [PMID: 16294278 DOI: 10.1359/jbmr.050813] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/25/2005] [Accepted: 08/04/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED HDIs are potential therapeutic agents for cancer and neurological diseases because of their abilities to alter gene expression, induce growth arrest or apoptosis of tumors cells, and stimulate differentiation. In this report, we show that several HDIs promote osteoblast maturation in vitro and in calvarial organ cultures. INTRODUCTION Histone deacetylase inhibitors (HDIs) are currently in phase I and II clinical trials as anticancer agents. Some HDIs are also commonly prescribed treatments for epilepsy and bipolar disorders. Although administered systemically, the effects of HDIs on osteoblasts and bone formation have not been extensively examined. In this study, we investigated the effect of histone deacetylase inhibition on osteoblast proliferation and differentiation. MATERIALS AND METHODS MC3T3-E1 cells, calvarial-derived primary osteoblasts, and calvarial organ cultures were treated with various commercially available HDIs (trichostatin A [TSA], sodium butyrate [NaB], valproic acid [VPA], or MS-275). The effects of these inhibitors on cell proliferation, viability, cell cycle progression, Runx2 transcriptional activity, alkaline phosphatase production, and matrix mineralization were determined. Expression levels of osteoblast maturation genes, type I collagen, osteopontin, bone sialoprotein, and osteocalcin in response to TSA were measured by quantitative PCR. RESULTS Concentrations of HDIs that caused hyperacetylation of histone H3 induced transient increases in osteoblast proliferation and viability but did not alter cell cycle profiles. These concentrations of HDIs also increased the transcriptional activity of Runx2. TSA accelerated alkaline phosphatase production in MC3T3-E1 cells and calvarial organ cultures. In addition, TSA accelerated matrix mineralization and the expression of osteoblast genes, type I collagen, osteopontin, bone sialoprotein, and osteocalcin in MC3T3-E1 cells. CONCLUSIONS These studies show that histone deacetylase activity regulates osteoblast differentiation and bone formation at least in part by enhancing Runx2-dependent transcriptional activation. Therefore, HDIs are a potentially new class of bone anabolic agents that may be useful in the treatment of diseases that are associated with bone loss such as osteoporosis and cancer.
Collapse
Affiliation(s)
- Tania M Schroeder
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
68
|
Altucci L, Clarke N, Nebbioso A, Scognamiglio A, Gronemeyer H. Acute myeloid leukemia: therapeutic impact of epigenetic drugs. Int J Biochem Cell Biol 2005; 37:1752-62. [PMID: 15964234 DOI: 10.1016/j.biocel.2005.04.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/20/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Acute myeloid leukemia (AML) is not a single disease but a group of malignancies in which the clonal expansion of various types of hematopoietic precursor cells in the bone marrow leads to perturbation of the delicate balance between self-renewal and differentiation that is characteristic of normal hematopoiesis. An increasing number of genetic aberrations, such as chromosomal translocations that alter the function of transcription regulatory factors, has been identified as the cause of AML and shown to act by deregulating gene programming at both the genetic and epigenetic level. While the genetic aberrations occurring in acute myeloid leukemia are fairly well understood, we have only recently become aware of the epigenetic deregulation associated with leukemia, in particular with myeloid leukemias. The deposition of epigenetic "marks" on chromatin - post-translational modifications of nucleosomal proteins and methylation of particular DNA sequences - is accomplished by enzymes, which are often embedded in multi-subunit "machineries" that have acquired aberrant functionalities during leukemogenesis. These enzymes are targets for so-called "epi-drugs". Indeed, recent results indicate that epi-drugs may constitute an entirely novel type of anti-cancer drugs with unanticipated potential. Proof-of-principle comes from studies with histone deacetylase inhibitors, promising novel anti-cancer drugs. In this review we focus on the epigenetic mechanisms associated with acute myeloid leukemogenesis and discuss the therapeutic potential of epigenetic modulators such as histone deacetylase and DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Lucia Altucci
- Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli (S.U.N.), Naples, Italy.
| | | | | | | | | |
Collapse
|
69
|
Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ, Rechavi G, Gal-Yam EN. The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci 2005; 118:4017-25. [PMID: 16129885 DOI: 10.1242/jcs.02521] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear-envelope proteins have been implicated in diverse and fundamental cell functions, among them transcriptional regulation. Gene expression at the territory of the nuclear periphery is known to be repressed by epigenetic modifications such as histone deacetylation and methylation. However, the mechanism by which nuclear-envelope proteins are involved in such modifications is still obscure. We have previously shown that LAP2β, an integral nuclear-envelope protein that contains the chromatin-binding LEM domain, was able to repress the transcriptional activity of the E2F5-DP3 heterodimer. Here, we show that LAP2β's repressive activity is more general, encompassing various E2F members as well as other transcription factors such as p53 and NF-κB. We further show that LAP2β interacts at the nuclear envelope with HDAC3, a class-I histone deacetylase, and that TSA (an HDAC inhibitor) abrogates LAP2β's repressive activity. Finally, we show that LAP2β is capable of inducing histone-H4 deacetylation. Our data provide evidence for the existence of a previously unknown repressive complex, composed of an integral nuclear membrane protein and a histone modifier, at the nuclear periphery.
Collapse
Affiliation(s)
- Raz Somech
- Sheba Cancer Research Center and Institute of Hematology, The Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | |
Collapse
|
70
|
Gonçalves J, Malta-Vacas J, Louis M, Brault L, Bagrel D, Monteiro C, Brito M. Modulation of translation factor's gene expression by histone deacetylase inhibitors in breast cancer cells. Clin Chem Lab Med 2005; 43:151-6. [PMID: 15843208 DOI: 10.1515/cclm.2005.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.
Collapse
Affiliation(s)
- João Gonçalves
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Histones are small basic proteins that, by complexing wtih DNA, form the nucleosome core. Repetitive units of this nucleosome led to the chromatin in which all the human genome is packaged. Histones can be in one of the two antagonist forms, acetylated or deacetylated, equilibrium regulated by the corresponding enzymes, histone acetylases and histones deacetylases (HDACs). Inhibition of HDACs represents a new strategy in human cancer therapy since these enzymes play a fundamental role in regulating gene expression and chromatin assembly. They are potent inducers of growth arrest, differentiation and apoptosis of tumor cells. A wide variety of HDACs of both natural and synthetic origin has been reported. Except depsispeptide FK228, natural HDACs (trichostatin (TSA), depudecin, trapoxins, apicidins) as well as sodium butyrate, phenylbutyrate and suberoyl anilide hydroxamic acid (SAHA), while effective in vivo, are inefficient due to instability and low retention. Subsequently, synthetic analogs isolated from screening libraries (oxamflatin, scriptaid) were discovered as havind a common structure with TSA and SAHA: an hydroxamic acid zinc-binding group linked via a spacer (5 or 6 CH2) to a hydrophobic group. Design of a second generation of HDACs was based upon these data affording potent HDACs such as LAQ824 and PDX101 currently under phase I clinical trials. Simultaneously, synthetic benzamide-containing HDACs were reported and two of them, MS-275 and CI-994, have reached phase II and I clinical trials, respectively.
Collapse
Affiliation(s)
- Claude Monneret
- Laboratoire de pharmacochimie, unité mixte 176 CNRS/IC, Institut Curie, section de recherche 26, rue d'Ulm, 75248 Paris cedex 05, France.
| |
Collapse
|
72
|
Angibaud P, Arts J, Van Emelen K, Poncelet V, Pilatte I, Roux B, Van Brandt S, Verdonck M, De Winter H, Ten Holte P, Marien A, Floren W, Janssens B, Van Dun J, Aerts A, Van Gompel J, Gaurrand S, Queguiner L, Argoullon JM, Van Hijfte L, Freyne E, Janicot M. Discovery of pyrimidyl-5-hydroxamic acids as new potent histone deacetylase inhibitors. Eur J Med Chem 2005; 40:597-606. [PMID: 15922843 DOI: 10.1016/j.ejmech.2005.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 11/26/2022]
Abstract
A series of pyrimidyl-5-hydroxamic acids was prepared for evaluation as inhibitors of histone deacetylase (HDAC). Amino-2-pyrimidinyl can be used as a linker to provide HDAC inhibitors of good enzymatic potency.
Collapse
Affiliation(s)
- Patrick Angibaud
- Johnson&Johnson Pharmaceutical Research&Development (J&JPRD), Medicinal Chemistry Department, campus de Maigremont BP615, 27106 Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Harimoto N, Taketomi A, Kitagawa D, Kuroda Y, Itoh S, Gion T, Tanaka S, Shirabe K, Shimada M, Maehara Y. The newly established human hepatocyte cell line: application for the bioartificial liver. J Hepatol 2005; 42:557-564. [PMID: 15763342 DOI: 10.1016/j.jhep.2004.11.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/05/2004] [Accepted: 11/25/2004] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS Human hepatocyte cell lines are reported to lose many of their biochemical functions in a hybrid artificial liver support system (HALSS). Differentiation therapy is useful to up-regulate liver function. METHODS The human hepatoblastoma cell line HepG2 was transfected with HSV/tk gene. Albumin synthesis and ammonia removal activity were evaluated when HepG2/tk was cultured with histone deacetylase inhibitor (FR228) and peroxisome proliferator activated receptor-gamma ligand (pioglitazone). To investigate the function of HepG2/tk in vivo, cell transplantation for 90% hepatectonized rats was conducted. RESULTS We established stable cell lines which expressed HSV/tk and were sensitive to gancyclovir in vitro and in vivo. Both albumin synthesis rate and ammonia removal rate improved for HepG2/tk incubated with FR228 and pioglitazone for 3 days, which induced nuclear transport of p21. Rats with intrasplenic injection of HepG2/tk precultured for 3 days with FR228 and pioglitazone survived significantly longer than the control rats. The ammonia and total bilirubin concentrations were significantly lower in the test group than in the control group. The injection of gancyclovir inhibited the prolonged survival of the rats with precultured HepG2/tk. CONCLUSIONS HepG2/tk is safe as well as enhancing high levels of liver function. It will be a potential cell source for HALLS in the future.
Collapse
Affiliation(s)
- Norifumi Harimoto
- The Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 2005; 22:162-95. [PMID: 15806196 DOI: 10.1039/b402985m] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or in registration (current 31 December 2004) have been reviewed. Natural product derived drugs launched in the United States of America, Europe and Japan since 1998 and new natural product templates discovered since 1990 are discussed.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn #05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|
75
|
Abstract
Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control.
Collapse
Affiliation(s)
- Tim C Roloff
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
76
|
Sigmond J, Peters GJ. Pyrimidine and purine analogues, effects on cell cycle regulation and the role of cell cycle inhibitors to enhance their cytotoxicity. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1997-2022. [PMID: 16438061 DOI: 10.1080/15257770500269556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In anti-cancer treatment, deoxynucleoside analogues are widely used in combination chemotherapy. Improvement can be achieved by rational design of novel combinations with cell cycle inhibitors. These compounds inhibit protein kinases, preventing the cell cycle from continuing when affected by deoxynucleoside analogs. The efficacy is dependent on the site of cell cycle inhibition, whether multiple cyclin-dependent kinases are inhibited and whether the inhibitors should be given before or after the deoxynucleoside analogs. The action of cell cycle inhibition in vivo may be limited by unfavorable pharmacokinetics. Preclinical and clinical studies will be discussed, aiming to design improved future strategies.
Collapse
Affiliation(s)
- Jennifer Sigmond
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
77
|
Stadler JA, Shkumatava A, Norton WHJ, Rau MJ, Geisler R, Fischer S, Neumann CJ. Histone deacetylase 1 is required for cell cycle exit and differentiation in the zebrafish retina. Dev Dyn 2005; 233:883-9. [PMID: 15895391 DOI: 10.1002/dvdy.20427] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation is an important epigenetic mechanism for the control of eukaryotic transcription. The histone deacetylase 1 (HDAC1) gene has been implicated in controlling the transcription of core cell cycle regulators, but the in vivo role of HDACs in cell cycle regulation is still poorly understood. Loss of HDAC1 activity causes underproliferation in several contexts during vertebrate development. In contrast, we show here that HDAC1 has the opposite effect in the zebrafish visual system, where loss of HDAC1 activity leads to failure of cells to exit the cell cycle in the retina and in the optic stalk. The effect of HDAC1 on cell cycle exit is cell-autonomous, and loss of HDAC1 in the retina leads to up-regulation of cyclin D and E transcripts. These results demonstrate that the in vivo role of HDAC1 in regulating cell cycle progression is region-specific, as HDAC1 promotes cell cycle exit in the retina but stimulates proliferation in other cellular contexts.
Collapse
|
78
|
Nichol AM, Warde P, Bristow RG. Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy. Cancer 2005; 104:891-905. [PMID: 16007687 DOI: 10.1002/cncr.21257] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The clinical heterogeneity of intermediate-risk prostate carcinoma presents a challenge to urologic oncology in terms of prognosis and management. There is controversy regarding whether patients with intermediate-risk prostate carcinoma should be treated with dose-escalated external beam radiotherapy (EBRT) (e.g., doses > 74 gray [Gy]), or conventional-dose EBRT (e.g., doses < 74 Gy) combined with androgen deprivation (AD). Data for this review were identified through searches for articles in MEDLINE and in conference proceedings, indexed from 1966 to 2004. Currently, the intermediate-risk prostate carcinoma grouping is defined on the basis of prostate-specific antigen (PSA), tumor classification (T classification), and Gleason score. Emerging evidence suggests that additional prognostic information may be derived from the percentage of positive core needle biopsies at the time of diagnosis and/or from the pretreatment PSA doubling time. Novel prognostic biomarkers include protein expression relating to cell cycle control, cell death, DNA repair, and intracellular signal transduction. Preclinical data support dose escalation or combined AD with radiation as a means to increase prostate carcinoma cell kill. There is Level I evidence that patients with intermediate-risk prostate carcinoma benefit from dose-escalated EBRT or AD plus conventional-dose EBRT. However, clinical evidence is lacking to support the uniform use of AD plus dose-escalated EBRT. Patients in the intermediate-risk group should be entered into well designed, randomized clinical trials of dose-escalated EBRT and AD with sufficient power to address biochemical failure and cause-specific survival endpoints. These studies should be stratified by novel prognostic markers and accompanied by strong translational endpoints to address clinical heterogeneity and to allow for individualized treatment.
Collapse
Affiliation(s)
- Alan M Nichol
- Department of Radiation Oncology, University of Toronto and the Princess Margaret Hospital-University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|