51
|
Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line. J Neurosci 2020; 41:47-60. [PMID: 33203744 DOI: 10.1523/jneurosci.1772-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.
Collapse
|
52
|
Förster D, Helmbrecht TO, Mearns DS, Jordan L, Mokayes N, Baier H. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey. eLife 2020; 9:e58596. [PMID: 33044168 PMCID: PMC7550190 DOI: 10.7554/elife.58596] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Retinal axon projections form a map of the visual environment in the tectum. A zebrafish larva typically detects a prey object in its peripheral visual field. As it turns and swims towards the prey, the stimulus enters the central, binocular area, and seemingly expands in size. By volumetric calcium imaging, we show that posterior tectal neurons, which serve to detect prey at a distance, tend to respond to small objects and intrinsically compute their direction of movement. Neurons in anterior tectum, where the prey image is represented shortly before the capture strike, are tuned to larger object sizes and are frequently not direction-selective, indicating that mainly interocular comparisons serve to compute an object's movement at close range. The tectal feature map originates from a linear combination of diverse, functionally specialized, lamina-specific, and topographically ordered retinal ganglion cell synaptic inputs. We conclude that local cell-type composition and connectivity across the tectum are adapted to the processing of location-dependent, behaviorally relevant object features.
Collapse
Affiliation(s)
- Dominique Förster
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU BioCenterMartinsriedGermany
| | - Duncan S Mearns
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU BioCenterMartinsriedGermany
| | - Linda Jordan
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Nouwar Mokayes
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| |
Collapse
|
53
|
Oldfield CS, Grossrubatscher I, Chávez M, Hoagland A, Huth AR, Carroll EC, Prendergast A, Qu T, Gallant JL, Wyart C, Isacoff EY. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. eLife 2020; 9:e56619. [PMID: 32985972 PMCID: PMC7561350 DOI: 10.7554/elife.56619] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/26/2020] [Indexed: 01/16/2023] Open
Abstract
Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and habenula. Consequently, disruption of habenular neurons reduces capture performance in prey-experienced fish. Together, our results suggest that experience of prey strengthens prey-associated visual drive to the forebrain, and that this lowers the threshold for prey-associated visual activity to trigger activity in motor areas, thereby improving capture performance.
Collapse
Affiliation(s)
- Claire S Oldfield
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Irene Grossrubatscher
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | | | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Alex R Huth
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Andrew Prendergast
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Tony Qu
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Jack L Gallant
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Claire Wyart
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Bioscience Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
54
|
Avitan L, Pujic Z, Mölter J, McCullough M, Zhu S, Sun B, Myhre AE, Goodhill GJ. Behavioral Signatures of a Developing Neural Code. Curr Biol 2020; 30:3352-3363.e5. [DOI: 10.1016/j.cub.2020.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
|
55
|
Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat Biotechnol 2020; 39:74-83. [PMID: 32778840 DOI: 10.1038/s41587-020-0628-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
A detailed understanding of the function of neural networks and how they are supported by a dynamic vascular system requires fast three-dimensional imaging in thick tissues. Here we present confocal light field microscopy, a method that enables fast volumetric imaging in the brain at depths of hundreds of micrometers. It uses a generalized confocal detection scheme that selectively collects fluorescent signals from the in-focus volume and provides optical sectioning capability to improve imaging resolution and sensitivity in thick tissues. We demonstrate recording of whole-brain calcium transients in freely swimming zebrafish larvae and observe behaviorally correlated activities in single neurons during prey capture. Furthermore, in the mouse brain, we detect neural activities at depths of up to 370 μm and track blood cells at 70 Hz over a volume of diameter 800 μm × thickness 150 μm and depth of up to 600 μm.
Collapse
|
56
|
Lagogiannis K, Diana G, Meyer MP. Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae. eLife 2020; 9:55119. [PMID: 32773042 PMCID: PMC7561354 DOI: 10.7554/elife.55119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Goal-directed behaviors may be poorly coordinated in young animals but, with age and experience, behavior progressively adapts to efficiently exploit the animal’s ecological niche. How experience impinges on the developing neural circuits of behavior is an open question. We have conducted a detailed study of the effects of experience on the ontogeny of hunting behavior in larval zebrafish. We report that larvae with prior experience of live prey consume considerably more prey than naive larvae. This is mainly due to increased capture success and a modest increase in hunt rate. We demonstrate that the initial turn to prey and the final capture manoeuvre of the hunting sequence were jointly modified by experience and that modification of these components predicted capture success. Our findings establish an ethologically relevant paradigm in zebrafish for studying how the brain is shaped by experience to drive the ontogeny of efficient behavior.
Collapse
Affiliation(s)
- Konstantinos Lagogiannis
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Martin P Meyer
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
57
|
Zhou M, Bear J, Roberts PA, Janiak FK, Semmelhack J, Yoshimatsu T, Baden T. Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information across Visual Space. Curr Biol 2020; 30:2927-2942.e7. [PMID: 32531283 PMCID: PMC7416113 DOI: 10.1016/j.cub.2020.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
In vertebrate vision, the tetrachromatic larval zebrafish permits non-invasive monitoring and manipulating of neural activity across the nervous system in vivo during ongoing behavior. However, despite a perhaps unparalleled understanding of links between zebrafish brain circuits and visual behaviors, comparatively little is known about what their eyes send to the brain via retinal ganglion cells (RGCs). Major gaps in knowledge include any information on spectral coding and information on potentially critical variations in RGC properties across the retinal surface corresponding with asymmetries in the statistics of natural visual space and behavioral demands. Here, we use in vivo two-photon imaging during hyperspectral visual stimulation as well as photolabeling of RGCs to provide a functional and anatomical census of RGCs in larval zebrafish. We find that RGCs' functional and structural properties differ across the eye and include a notable population of UV-responsive On-sustained RGCs that are only found in the acute zone, likely to support visual prey capture of UV-bright zooplankton. Next, approximately half of RGCs display diverse forms of color opponency, including many that are driven by a pervasive and slow blue-Off system-far in excess of what would be required to satisfy traditional models of color vision. In addition, most information on spectral contrast was intermixed with temporal information. Taken together, our results suggest that zebrafish RGCs send a diverse and highly regionalized time-color code to the brain.
Collapse
Affiliation(s)
- Mingyi Zhou
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK
| | - John Bear
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK; Hong Kong University of Science and Technology, Hong Kong
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK
| | - Filip K Janiak
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK
| | | | | | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN19QG, UK; Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
58
|
Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T. Fovea-like Photoreceptor Specializations Underlie Single UV Cone Driven Prey-Capture Behavior in Zebrafish. Neuron 2020; 107:320-337.e6. [PMID: 32473094 PMCID: PMC7383236 DOI: 10.1016/j.neuron.2020.04.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023]
Abstract
In the eye, the function of same-type photoreceptors must be regionally adjusted to process a highly asymmetrical natural visual world. Here, we show that UV cones in the larval zebrafish area temporalis are specifically tuned for UV-bright prey capture in their upper frontal visual field, which may use the signal from a single cone at a time. For this, UV-photon detection probability is regionally boosted more than 10-fold. Next, in vivo two-photon imaging, transcriptomics, and computational modeling reveal that these cones use an elevated baseline of synaptic calcium to facilitate the encoding of bright objects, which in turn results from expressional tuning of phototransduction genes. Moreover, the light-driven synaptic calcium signal is regionally slowed by interactions with horizontal cells and later accentuated at the level of glutamate release driving retinal networks. These regional differences tally with variations between peripheral and foveal cones in primates and hint at a common mechanistic origin.
Collapse
Affiliation(s)
| | - Cornelius Schröder
- Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| | - Noora E Nevala
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Philipp Berens
- Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen 72076, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
59
|
Okuda KS, Hogan BM. Endothelial Cell Dynamics in Vascular Development: Insights From Live-Imaging in Zebrafish. Front Physiol 2020; 11:842. [PMID: 32792978 PMCID: PMC7387577 DOI: 10.3389/fphys.2020.00842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 01/16/2023] Open
Abstract
The formation of the vertebrate vasculature involves the acquisition of endothelial cell identities, sprouting, migration, remodeling and maturation of functional vessel networks. To understand the cellular and molecular processes that drive vascular development, live-imaging of dynamic cellular events in the zebrafish embryo have proven highly informative. This review focusses on recent advances, new tools and new insights from imaging studies in vascular cell biology using zebrafish as a model system.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
60
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
61
|
Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101617] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
62
|
Zempo B, Yamamoto Y, Williams T, Ono F. Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle. SCIENCE ADVANCES 2020; 6:eaax8382. [PMID: 32284992 PMCID: PMC7141830 DOI: 10.1126/sciadv.aax8382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/09/2020] [Indexed: 05/09/2023]
Abstract
For decades, numerous studies have proposed that fast muscles contribute to quick movement, while slow muscles underlie locomotion requiring endurance. By generating mutant zebrafish whose fast muscles are synaptically silenced, we examined the contribution of fast muscles in both larval and adult zebrafish. In the larval stage, mutants lacked the characteristic startle response to tactile stimuli: bending of the trunk (C-bend) followed by robust forward propulsion. Unexpectedly, adult mutants with silenced fast muscles showed robust C-bends and forward propulsion upon stimulation. Retrograde labeling revealed that motor neurons genetically programmed to form synapses on fast muscles are instead rerouted and innervate slow muscles, which led to partial conversion of slow and intermediate muscles to fast muscles. Thus, extended silencing of fast muscle synapses changed motor neuron innervation and caused muscle cell type conversion, revealing an unexpected mechanism of locomotory adaptation.
Collapse
Affiliation(s)
- Buntaro Zempo
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Yasuhiro Yamamoto
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Tory Williams
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892, USA
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892, USA
- Corresponding author.
| |
Collapse
|
63
|
Ireland S, Ramnarayanan S, Fu M, Zhang X, Zhang J, Li J, Emebo D, Wang Y. Cytosolic Ca 2+ Modulates Golgi Structure Through PKCα-Mediated GRASP55 Phosphorylation. iScience 2020; 23:100952. [PMID: 32179476 PMCID: PMC7078314 DOI: 10.1016/j.isci.2020.100952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well documented that the ER responds to cellular stresses through the unfolded protein response (UPR), but it is unknown how the Golgi responds to similar stresses. In this study, we treated HeLa cells with ER stress inducers, thapsigargin (TG), tunicamycin (Tm), and dithiothreitol (DTT), and found that only TG treatment resulted in Golgi fragmentation. TG induced Golgi fragmentation at a low dose and short time when UPR was undetectable, indicating that Golgi fragmentation occurs independently of ER stress. Further experiments demonstrated that TG induces Golgi fragmentation through elevating intracellular Ca2+ and protein kinase Cα (PKCα) activity, which phosphorylates the Golgi stacking protein GRASP55. Significantly, activation of PKCα with other activating or inflammatory agents, including phorbol 12-myristate 13-acetate and histamine, modulates Golgi structure in a similar fashion. Hence, our study revealed a novel mechanism through which increased cytosolic Ca2+ modulates Golgi structure and function. Thapsigargin (TG) treatment leads to Golgi fragmentation independent of ER stress TG induces Golgi fragmentation through elevated cytosolic Ca2+ TG-induced cytosolic Ca2+ spikes activate PKCα that phosphorylates GRASP55 Histamine modulates the Golgi structure and function by a similar mechanism
Collapse
Affiliation(s)
- Stephen Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Saiprasad Ramnarayanan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Mingzhou Fu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Dabel Emebo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
64
|
ELKS/Voltage-Dependent Ca 2+ Channel-β Subunit Module Regulates Polarized Ca 2+ Influx in Pancreatic β Cells. Cell Rep 2020; 26:1213-1226.e7. [PMID: 30699350 DOI: 10.1016/j.celrep.2018.12.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic β cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in β cells to regulate Ca2+ influx for insulin secretion. β cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of β cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the β cell plasma membrane, which were markedly decreased in ELKS-KO β cells. Mechanistically, ELKS directly interacted with the VDCC-β subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the β cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.
Collapse
|
65
|
A Novel Fluorescent Reporter System Identifies Laminin-511/521 as Potent Regulators of Cardiomyocyte Maturation. Sci Rep 2020; 10:4249. [PMID: 32144297 PMCID: PMC7060274 DOI: 10.1038/s41598-020-61163-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) hold great promise for disease modeling and drug discovery. However, PSC-CMs exhibit immature phenotypes in culture, and the lack of maturity limits their broad applications. While physical and functional analyses are generally used to determine the status of cardiomyocyte maturation, they could be time-consuming and often present challenges in comparing maturation-enhancing strategies. Therefore, there is a demand for a method to assess cardiomyocyte maturation rapidly and reproducibly. In this study, we found that Myomesin-2 (Myom2), encoding M-protein, is upregulated postnatally, and based on this, we targeted TagRFP to the Myom2 locus in mouse embryonic stem cells. Myom2-RFP+ PSC-CMs exhibited more mature phenotypes than RFP- cells in morphology, function and transcriptionally, conductive to sarcomere shortening assays. Using this system, we screened extracellular matrices (ECMs) and identified laminin-511/521 as potent enhancers of cardiomyocyte maturation. Together, we developed and characterized a novel fluorescent reporter system for the assessment of cardiomyocyte maturation and identified potent maturation-enhancing ECMs through this simple and rapid assay. This system is expected to facilitate use of PSC-CMs in a variety of scientific and medical investigations.
Collapse
|
66
|
A virtual reality system to analyze neural activity and behavior in adult zebrafish. Nat Methods 2020; 17:343-351. [PMID: 32123394 PMCID: PMC7100911 DOI: 10.1038/s41592-020-0759-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
Virtual realities are powerful tools to analyze and manipulate interactions between animals and their environment and to enable measurements of neuronal activity during behavior. In many species, however, optical access to the brain and/or the behavioral repertoire are limited. We developed a high-resolution virtual reality for head-restrained adult zebrafish, which exhibit cognitive behaviors not shown by larvae. We noninvasively measured activity throughout the dorsal telencephalon by multiphoton calcium imaging. Fish in the virtual reality showed regular swimming patterns and were attracted to animations of conspecifics. Manipulations of visuo-motor feedback revealed neurons that responded selectively to the mismatch between the expected and the actual visual consequences of motor output. Such error signals were prominent in multiple telencephalic areas, consistent with models of predictive processing. A virtual reality system for adult zebrafish therefore provides opportunities to analyze neuronal processing mechanisms underlying higher brain functions including decision making, associative learning, and social interactions.
Collapse
|
67
|
Truong TV, Holland DB, Madaan S, Andreev A, Keomanee-Dizon K, Troll JV, Koo DES, McFall-Ngai MJ, Fraser SE. High-contrast, synchronous volumetric imaging with selective volume illumination microscopy. Commun Biol 2020; 3:74. [PMID: 32060411 PMCID: PMC7021898 DOI: 10.1038/s42003-020-0787-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Light-field fluorescence microscopy uniquely provides fast, synchronous volumetric imaging by capturing an extended volume in one snapshot, but often suffers from low contrast due to the background signal generated by its wide-field illumination strategy. We implemented light-field-based selective volume illumination microscopy (SVIM), where illumination is confined to only the volume of interest, removing the background generated from the extraneous sample volume, and dramatically enhancing the image contrast. We demonstrate the capabilities of SVIM by capturing cellular-resolution 3D movies of flowing bacteria in seawater as they colonize their squid symbiotic partner, as well as of the beating heart and brain-wide neural activity in larval zebrafish. These applications demonstrate the breadth of imaging applications that we envision SVIM will enable, in capturing tissue-scale 3D dynamic biological systems at single-cell resolution, fast volumetric rates, and high contrast to reveal the underlying biology.
Collapse
Affiliation(s)
- Thai V Truong
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA.
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Daniel B Holland
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sara Madaan
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrey Andreev
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kevin Keomanee-Dizon
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Josh V Troll
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel E S Koo
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Margaret J McFall-Ngai
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA.
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
68
|
Tian W, Czopka T, López-Schier H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol 2020; 3:49. [PMID: 32001778 PMCID: PMC6992705 DOI: 10.1038/s42003-020-0776-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protecting the nervous system from chronic effects of physical and chemical stress is a pressing clinical challenge. The obligate pro-degenerative protein Sarm1 is essential for Wallerian axon degeneration. Thus, blocking Sarm1 function is emerging as a promising neuroprotective strategy with therapeutic relevance. Yet, the conditions that will most benefit from inhibiting Sarm1 remain undefined. Here we combine genome engineering, pharmacology and high-resolution intravital videmicroscopy in zebrafish to show that genetic elimination of Sarm1 increases Schwann-cell resistance to toxicity by diverse chemotherapeutic agents after axonal injury. Synthetic degradation of Sarm1-deficient axons reversed this effect, suggesting that glioprotection is a non-autonomous effect of delayed axon degeneration. Moreover, loss of Sarm1 does not affect macrophage recruitment to nerve-wound microenvironment, injury resolution, or neural-circuit repair. These findings anticipate that interventions aimed at inhibiting Sarm1 can counter heightened glial vulnerability to chemical stressors and may be an effective strategy to reduce chronic consequences of neurotrauma.
Collapse
Affiliation(s)
- Weili Tian
- Sensory Biology & Organogenesis, Helmholtz Zentrum Munich, Munich, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
69
|
Ma M, Kler S, Pan YA. Structural Neural Connectivity Analysis in Zebrafish With Restricted Anterograde Transneuronal Viral Labeling and Quantitative Brain Mapping. Front Neural Circuits 2020; 13:85. [PMID: 32038180 PMCID: PMC6989443 DOI: 10.3389/fncir.2019.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
The unique combination of small size, translucency, and powerful genetic tools makes larval zebrafish a uniquely useful vertebrate system to investigate normal and pathological brain structure and function. While functional connectivity can now be assessed by optical imaging (via fluorescent calcium or voltage reporters) at the whole-brain scale, it remains challenging to systematically determine structural connections and identify connectivity changes during development or disease. To address this, we developed Tracer with Restricted Anterograde Spread (TRAS), a novel vesicular stomatitis virus (VSV)-based neural circuit labeling approach. TRAS makes use of replication-incompetent VSV (VSVΔG) and a helper virus (lentivirus) to enable anterograde transneuronal spread between efferent axons and their direct postsynaptic targets but restricts further spread to downstream areas. We integrated TRAS with the Z-Brain zebrafish 3D atlas for quantitative connectivity analysis and identified targets of the retinal and habenular efferent projections, in patterns consistent with previous reports. We compared retinofugal connectivity patterns between wild-type and down syndrome cell adhesion molecule-like 1 (dscaml1) mutant zebrafish and revealed differences in topographical distribution. These results demonstrate the utility of TRAS for quantitative structural connectivity analysis that would be valuable for detecting novel efferent targets and mapping connectivity changes underlying neurological or behavioral deficits.
Collapse
Affiliation(s)
- Manxiu Ma
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Stanislav Kler
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Y Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
70
|
Johnson RE, Linderman S, Panier T, Wee CL, Song E, Herrera KJ, Miller A, Engert F. Probabilistic Models of Larval Zebrafish Behavior Reveal Structure on Many Scales. Curr Biol 2020; 30:70-82.e4. [PMID: 31866367 PMCID: PMC6958995 DOI: 10.1016/j.cub.2019.11.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Nervous systems have evolved to combine environmental information with internal state to select and generate adaptive behavioral sequences. To better understand these computations and their implementation in neural circuits, natural behavior must be carefully measured and quantified. Here, we collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic environment and develop models of their action selection across exploration and hunting. Zebrafish larvae swim in punctuated bouts separated by longer periods of rest called interbout intervals. We take advantage of this structure by categorizing bouts into discrete types and representing their behavior as labeled sequences of bout types emitted over time. We then construct probabilistic models-specifically, marked renewal processes-to evaluate how bout types and interbout intervals are selected by the fish as a function of its internal hunger state, behavioral history, and the locations and properties of nearby prey. Finally, we evaluate the models by their predictive likelihood and their ability to generate realistic trajectories of virtual fish swimming through simulated environments. Our simulations capture multiple timescales of structure in larval zebrafish behavior and expose many ways in which hunger state influences their action selection to promote food seeking during hunger and safety during satiety.
Collapse
Affiliation(s)
- Robert Evan Johnson
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard University, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Scott Linderman
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Thomas Panier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, 4 Place Jussieu, 75005 Paris, France
| | - Caroline Lei Wee
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard University, 220 Longwood Avenue, Boston, MA 02115, USA; Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, 138673 Singapore, Singapore
| | - Erin Song
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kristian Joseph Herrera
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Andrew Miller
- Data Science Institute, Columbia University, 550 W 120th Street, New York City, NY 10027, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
71
|
Cheresiz SV, Volgin AD, Kokorina Evsyukova A, Bashirzade AAO, Demin KA, de Abreu MS, Amstislavskaya TG, Kalueff AV. Understanding neurobehavioral genetics of zebrafish. J Neurogenet 2020; 34:203-215. [PMID: 31902276 DOI: 10.1080/01677063.2019.1698565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to its fully sequenced genome, high genetic homology to humans, external fertilization, fast development, transparency of embryos, low cost and active reproduction, the zebrafish (Danio rerio) has become a novel promising model organism in biomedicine. Zebrafish are a useful tool in genetic and neuroscience research, including linking various genetic mutations to brain mechanisms using forward and reverse genetics. These approaches have produced novel models of rare genetic CNS disorders and common brain illnesses, such as addiction, aggression, anxiety and depression. Genetically modified zebrafish also foster neuroanatomical studies, manipulating neural circuits and linking them to different behaviors. Here, we discuss recent advances in neurogenetics of zebrafish, and evaluate their unique strengths, inherent limitations and the rapidly growing potential for elucidating the conserved roles of genes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sergey V Cheresiz
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra Kokorina Evsyukova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alim A O Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| |
Collapse
|
72
|
Deconstructing Hunting Behavior Reveals a Tightly Coupled Stimulus-Response Loop. Curr Biol 2020; 30:54-69.e9. [DOI: 10.1016/j.cub.2019.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
|
73
|
Bolton AD, Haesemeyer M, Jordi J, Schaechtle U, Saad FA, Mansinghka VK, Tenenbaum JB, Engert F. Elements of a stochastic 3D prediction engine in larval zebrafish prey capture. eLife 2019; 8:e51975. [PMID: 31769753 PMCID: PMC6930116 DOI: 10.7554/elife.51975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
The computational principles underlying predictive capabilities in animals are poorly understood. Here, we wondered whether predictive models mediating prey capture could be reduced to a simple set of sensorimotor rules performed by a primitive organism. For this task, we chose the larval zebrafish, a tractable vertebrate that pursues and captures swimming microbes. Using a novel naturalistic 3D setup, we show that the zebrafish combines position and velocity perception to construct a future positional estimate of its prey, indicating an ability to project trajectories forward in time. Importantly, the stochasticity in the fish's sensorimotor transformations provides a considerable advantage over equivalent noise-free strategies. This surprising result coalesces with recent findings that illustrate the benefits of biological stochasticity to adaptive behavior. In sum, our study reveals that zebrafish are equipped with a recursive prey capture algorithm, built up from simple stochastic rules, that embodies an implicit predictive model of the world.
Collapse
Affiliation(s)
- Andrew D Bolton
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| | | | - Josua Jordi
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| | - Ulrich Schaechtle
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Feras A Saad
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Vikash K Mansinghka
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Joshua B Tenenbaum
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Florian Engert
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| |
Collapse
|
74
|
DeMarco E, Xu N, Baier H, Robles E. Neuron types in the zebrafish optic tectum labeled by an id2b transgene. J Comp Neurol 2019; 528:1173-1188. [PMID: 31725916 DOI: 10.1002/cne.24815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/30/2023]
Abstract
The larval zebrafish optic tectum has emerged as a prominent model for understanding how neural circuits control visually guided behaviors. Further advances in this area will require tools to monitor and manipulate tectal neurons with cell type specificity. Here, we characterize the morphology and neurotransmitter phenotype of tectal neurons labeled by an id2b:gal4 transgene. Whole-brain imaging of stable transgenic id2b:gal4 larvae revealed labeling in a subset of neurons in optic tectum, cerebellum, and hindbrain. Genetic mosaic labeling of single neurons within the id2b:gal4 expression pattern enabled us to characterize three tectal neuron types with distinct morphologies and connectivities. The first is a neuron type previously identified in the optic tectum of other teleost fish: the tectal pyramidal neuron (PyrN). PyrNs are local interneurons that form two stratified dendritic arbors and one stratified axonal arbor in the tectal neuropil. The second tectal neuron type labeled by the id2b:gal4 transgene is a projection neuron that forms a stratified dendritic arbor in the tectal neuropil and an axon that exits tectum to form a topographic projection to torus longitudinalis (TL). A third neuron type labeled is a projection neuron with a nonstratified dendritic arbor and a descending axonal projection to tegmentum. These findings establish the id2b:gal4 transgenic as a useful tool for future studies aimed at elucidating the functional role of tectum, TL, and tegmentum in visually guided behaviors.
Collapse
Affiliation(s)
- Elisabeth DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Nina Xu
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Herwig Baier
- Max Planck Institute for Neurobiology, Martinsried, Germany
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| |
Collapse
|
75
|
Montanari T, Boschi F, Colitti M. Comparison of the Effects of Browning-Inducing Capsaicin on Two Murine Adipocyte Models. Front Physiol 2019; 10:1380. [PMID: 31749714 PMCID: PMC6848400 DOI: 10.3389/fphys.2019.01380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The increasing prevalence of obesity and its associated comorbidities has gained attention in developing effective treatments and strategies that promote energy expenditure and the conversion of fat from a white to a brite phenotype. Capsaicin, bioactive component of chili peppers and a transient receptor potential channel vanilloid 1 (TRPV1) agonist, has been known to stimulate the process of thermogenesis. In this study, the effects of capsaicin were assessed on two murine cellular models by quantifying the dynamic of lipid droplets (LDs) and the expression of genes involved in adipocyte browning. Present findings demonstrated that treatment with norepinephrine or capsaicin combined with norepinephrine on 3T3-L1 cells and X9 cells significantly promoted the reduction of LDs area surface and size. The transcription of browning related genes such as uncoupling protein 1 (Ucp1), T-box transcription factor 1 (Tbx1), PR domain containing 16 (Prdm16), peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) and cell death-inducing DNA fragmentation factor A-like effector A (Cidea) was up-regulated by chronic capsaicin treatment on differentiated 3T3-L1 cells. Instead, X9 cells were significantly responsive only to the treatment with norepinephrine, used as positive control.
Collapse
Affiliation(s)
- Tommaso Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Monica Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
76
|
Loomis C, Peuß R, Jaggard JB, Wang Y, McKinney SA, Raftopoulos SC, Raftopoulos A, Whu D, Green M, McGaugh SE, Rohner N, Keene AC, Duboue ER. An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish. Front Neuroanat 2019; 13:88. [PMID: 31636546 PMCID: PMC6788135 DOI: 10.3389/fnana.2019.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
A shift in environmental conditions impacts the evolution of complex developmental and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model for examining the evolution of development, physiology, and behavior because multiple cavefish populations can be compared to an extant, ancestral-like surface population of the same species. Many behaviors have diverged in cave populations of A. mexicanus, and previous studies have shown that cavefish have a loss of sleep, reduced stress, an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly little is known about the changes in neuroanatomy that underlie these behavioral phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and three independent cavefish populations. Volumetric reconstruction of serial-sectioned brains confirms convergent evolution on reduced optic tectum volume in all cavefish populations tested. In addition, we quantified volumes of specific neuroanatomical loci within several brain regions that have previously been implicated in behavioral regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal an enlargement of the hypothalamus in all cavefish populations relative to surface fish, as well as subnuclei-specific differences within the thalamus and prethalamus. Taken together, these analyses support the notion that changes in environmental conditions are accompanied by neuroanatomical changes in brain structures associated with behavior. This atlas provides a resource for comparative neuroanatomy of additional brain regions and the opportunity to associate brain anatomy with evolved changes in behavior.
Collapse
Affiliation(s)
- Cody Loomis
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - James B. Jaggard
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Stephan C. Raftopoulos
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Austin Raftopoulos
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Daniel Whu
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew Green
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Suzanne E. McGaugh
- Department of Ecology, University of Minnesota, St. Paul, MN, United States
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS, United States
| | - Alex C. Keene
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Erik R. Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
77
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
78
|
Abstract
Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.
Collapse
|
79
|
Oh J, Lee C, Kaang BK. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:237-249. [PMID: 31297008 PMCID: PMC6609268 DOI: 10.4196/kjpp.2019.23.4.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Collapse
Affiliation(s)
- Jihae Oh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chiwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
80
|
Blandford SN, Hooper ML, Yabana T, Chauhan BC, Baldridge WH, Farrell SRM. Retinal Characterization of the Thy1-GCaMP3 Transgenic Mouse Line After Optic Nerve Transection. Invest Ophthalmol Vis Sci 2019; 60:183-191. [PMID: 30640971 DOI: 10.1167/iovs.18-25861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose GCaMP3 is a genetically encoded calcium indicator for monitoring intracellular calcium dynamics. We characterized the expression pattern and functional properties of GCaMP3 in the Thy1-GCaMP3 transgenic mouse retina. Methods To determine the specificity of GCaMP3 expression, Thy1-GCaMP3 (B6; CBA-Tg(Thy1-GCaMP3)6Gfng/J) retinas were processed for immunohistochemistry with anti-green fluorescent protein (anti-GFP, to enhance GCaMP3 fluorescence), anti-RBPMS (retinal ganglion cell [RGC]-specific marker), and antibodies against amacrine cell markers (ChAT, GABA, GAD67, syntaxin). Calcium imaging was used to characterize functional responses of GCaMP3-expressing (GCaMP+) cells by recording calcium transients evoked by superfusion of kainic acid (KA; 10, 50, or 100 μM). In a subset of animals, optic nerve transection (ONT) was performed 3, 5, or 7 days prior to calcium imaging. Results GFP immunoreactivity colocalized with RBPMS but not amacrine cell markers in both ONT and non-ONT (control) groups. Calcium transients evoked by KA were reduced after ONT (50 μM KA; ΔF/F0 [SD]; control: 1.00 [0.67], day 3: 0.50 [0.35], day 5: 0.31 [0.28], day 7: 0.35 [0.36]; P < 0.05 versus control). There was also a decrease in the number of GCaMP3+ cells after ONT (cells/mm2 [SD]; control: 2198 [453], day 3: 2224 [643], day 5: 1383 [375], day 7: 913 [178]; P < 0.05). Furthermore, the proportion of GCaMP3+ cells that responded to KA decreased after ONT (50 μM KA, 97%, 54%, 47%, and 58%; control, 3, 5, and 7 days, respectively). Conclusions Following ONT, functional RGC responses are lost prior to the loss of RGC somata, suggesting that anatomical markers of RGCs may underestimate the extent of RGC dysfunction.
Collapse
Affiliation(s)
- Stephanie N Blandford
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michele L Hooper
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Takeshi Yabana
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Tohoku University Graduate School of Medicine, Department of Ophthalmology, Sendai, Japan
| | - Balwantray C Chauhan
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - William H Baldridge
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spring R M Farrell
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
81
|
Li P, Geng X, Jiang H, Caccavano A, Vicini S, Wu JY. Measuring Sharp Waves and Oscillatory Population Activity With the Genetically Encoded Calcium Indicator GCaMP6f. Front Cell Neurosci 2019; 13:274. [PMID: 31275115 PMCID: PMC6593119 DOI: 10.3389/fncel.2019.00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
GCaMP6f is among the most widely used genetically encoded calcium indicators for monitoring neuronal activity. Applications are at both the cellular and population levels. Here, we explore two important and under-explored issues. First, we have tested if GCaMP6f is sensitive enough for the detection of population activity with sparse firing, similar to the sensitivity of the local field potential (LFP). Second, we have tested if GCaMP6f is fast enough for the detection of fast network oscillations critical for the encoding and consolidation of memory. We have focused this study on the activity of the hippocampal network including sharp waves (SWs), carbachol-induced theta oscillations, and interictal-like spikes. We compare simultaneous LFP and optical GCaMP6f fluorescent recordings in Thy1-GCaMP6f mouse hippocampal slices. We observe that SWs produce a clear population GCaMP6f signal above noise with an average magnitude of 0.3% ΔF/F. This population signal is highly correlated with the LFP, albeit with a delay of 40.3 ms (SD 10.8 ms). The population GCaMP6f signal follows the LFP evoked by 20 Hz stimulation with high fidelity, while electrically evoked oscillations up to 40 Hz were detectable with reduced amplitude. GCaMP6f and LFP signals showed a large amplitude discrepancy. The amplitude of GCaMP6f fluorescence increased by a factor of 28.9 (SD 13.5) between spontaneous SWs and carbachol-induced theta bursts, while the LFP amplitude increased by a factor of 2.4 (SD 1.0). Our results suggest that GCaMP6f is a useful tool for applications commonly considered beyond the scope of genetically encoded calcium indicators. In particular, population GCaMP6f signals are sensitive enough for detecting synchronous network events with sparse firing and sub-threshold activity, as well as asynchronous events with only a nominal LFP. In addition, population GCaMP6f signals are fast enough for monitoring theta and beta oscillations (<25 Hz). Faster calcium indicators (e.g., GCaMP7) will further improve the frequency response for the detection of gamma band oscillations. The advantage of population optical over LFP recordings are that they are non-contact and free from stimulation artifacts. These features may be particularly useful for high-throughput recordings and applications sensitive to stimulus artifact, such as monitoring responses during continuous stimulation.
Collapse
Affiliation(s)
- Pinggan Li
- Department of Pediatric Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Xinling Geng
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huiyi Jiang
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Adam Caccavano
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Jian-young Wu
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
82
|
Network Properties Revealed during Multi-Scale Calcium Imaging of Seizure Activity in Zebrafish. eNeuro 2019; 6:eN-NWR-0041-19. [PMID: 30895220 PMCID: PMC6424556 DOI: 10.1523/eneuro.0041-19.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/02/2022] Open
Abstract
Seizures are characterized by hypersynchronization of neuronal networks. Understanding these networks could provide a critical window for therapeutic control of recurrent seizure activity, i.e., epilepsy. However, imaging seizure networks has largely been limited to microcircuits in vitro or small “windows” in vivo. Here, we combine fast confocal imaging of genetically encoded calcium indicator (GCaMP)-expressing larval zebrafish with local field potential (LFP) recordings to study epileptiform events at whole-brain and single-neuron levels in vivo. Using an acute seizure model (pentylenetetrazole, PTZ), we reliably observed recurrent electrographic ictal-like events associated with generalized activation of all major brain regions and uncovered a well-preserved anterior-to-posterior seizure propagation pattern. We also examined brain-wide network synchronization and spatiotemporal patterns of neuronal activity in the optic tectum microcircuit. Brain-wide and single-neuronal level analysis of PTZ-exposed and 4-aminopyridine (4-AP)-exposed zebrafish revealed distinct network dynamics associated with seizure and non-seizure hyperexcitable states, respectively. Neuronal ensembles, comprised of coactive neurons, were also uncovered during interictal-like periods. Taken together, these results demonstrate that macro- and micro-network calcium motifs in zebrafish may provide a greater understanding of epilepsy.
Collapse
|
83
|
Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019; 74:47-63. [PMID: 30470589 PMCID: PMC7575247 DOI: 10.1016/j.alcohol.2018.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol and drug use can dysregulate neural circuit function to produce a wide range of neuropsychiatric disorders, including addiction. To understand the neural circuit computations that mediate behavior, and how substances of abuse may transform them, we must first be able to observe the activity of circuits. While many techniques have been utilized to measure activity in specific brain regions, these regions are made up of heterogeneous sub-populations, and assessing activity from neuronal populations of interest has been an ongoing challenge. To fully understand how neural circuits mediate addiction-related behavior, we must be able to reveal the cellular granularity within brain regions and circuits by overlaying functional information with the genetic and anatomical identity of the cells involved. The development of genetically encoded calcium indicators, which can be targeted to populations of interest, allows for in vivo visualization of calcium dynamics, a proxy for neuronal activity, thus providing an avenue for real-time assessment of activity in genetically and anatomically defined populations during behavior. Here, we highlight recent advances in calcium imaging technology, compare the current technology with other state-of-the-art approaches for in vivo monitoring of neural activity, and discuss the strengths, limitations, and practical concerns for observing neural circuit activity in preclinical addiction models.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The Salk Institute for Biological Sciences, 10010 N Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
84
|
Wang W, Kim CK, Ting AY. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol 2019; 15:101-110. [PMID: 30659298 DOI: 10.1038/s41589-018-0207-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
Abstract
To understand how the brain relates to behavior, it is essential to record neural activity in awake, behaving animals. To achieve this goal, a large variety of genetically encoded sensors have been developed to monitor and record the series of events following neuronal firing, including action potentials, intracellular calcium rise, neurotransmitter release and immediate early gene expression. In this Review, we discuss the existing genetically encoded tools for detecting and integrating neuronal activity in animals and highlight the remaining challenges and future opportunities for molecular biologists.
Collapse
Affiliation(s)
- Wenjing Wang
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Christina K Kim
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
85
|
Jiao ZF, Shang CF, Wang YF, Yang Z, Yang C, Li FN, Xie JZ, Pan JW, Fu L, Du JL. All-optical imaging and manipulation of whole-brain neuronal activities in behaving larval zebrafish. BIOMEDICAL OPTICS EXPRESS 2018; 9:6154-6169. [PMID: 31065420 PMCID: PMC6491009 DOI: 10.1364/boe.9.006154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
All-optical interrogation of population neuron activity is a promising approach to deciphering the neural circuit mechanisms supporting brain functions. However, this interrogation is currently limited to local brain areas. Here, we incorporate patterned photo-stimulation into light-sheet microscopy, allowing simultaneous targeted optogenetic manipulation and brain-wide monitoring of the neuronal activities of head-restrained behaving larval zebrafish. Using this system, we photo-stimulate arbitrarily selected neurons (regions as small as ~10-20 neurons in 3D) in zebrafish larvae with pan-neuronal expression of a spectrally separated calcium indicator, GCaMP6f, and an activity actuator, ChrimsonR, and observe downstream neural circuit activation and behavior generation. This approach allows us to dissect the causal role of neural circuits in brain functions and behavior generation.
Collapse
Affiliation(s)
- Zhen-Fei Jiao
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- These authors contributed equally to this work
| | - Chun-Feng Shang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- These authors contributed equally to this work
| | - Yu-Fan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- These authors contributed equally to this work
| | - Zhe Yang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chen Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Fu-Ning Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jin-Ze Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jing-Wei Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
86
|
Yin C, Li X, Du J. Optic tectal superficial interneurons detect motion in larval zebrafish. Protein Cell 2018; 10:238-248. [PMID: 30421356 PMCID: PMC6418075 DOI: 10.1007/s13238-018-0587-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Detection of moving objects is an essential skill for animals to hunt prey, recognize conspecifics and avoid predators. The zebrafish, as a vertebrate model, primarily uses its elaborate visual system to distinguish moving objects against background scenes. The optic tectum (OT) receives and integrates inputs from various types of retinal ganglion cells (RGCs), including direction-selective (DS) RGCs and size-selective RGCs, and is required for both prey capture and predator avoidance. However, it remains largely unknown how motion information is processed within the OT. Here we performed in vivo whole-cell recording and calcium imaging to investigate the role of superficial interneurons (SINs), a specific type of optic tectal neurons, in motion detection of larval zebrafish. SINs mainly receive excitatory synaptic inputs, exhibit transient ON- or OFF-type of responses evoked by light flashes, and possess a large receptive field (RF). One fifth of SINs are DS and classified into two subsets with separate preferred directions. Furthermore, SINs show size-dependent responses to moving dots. They are efficiently activated by moving objects but not static ones, capable of showing sustained responses to moving objects and having less visual adaptation than periventricular neurons (PVNs), the principal tectal cells. Behaviorally, ablation of SINs impairs prey capture, which requires local motion detection, but not global looming-evoked escape. Finally, starvation enhances the gain of SINs' motion responses while maintaining their size tuning and DS. These results indicate that SINs serve as a motion detector for sensing and localizing sized moving objects in the visual field.
Collapse
Affiliation(s)
- Chen Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoquan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
87
|
Treichel AJ, Hines JH. Development of an Embryonic Zebrafish Oligodendrocyte-Neuron Mixed Coculture System. Zebrafish 2018; 15:586-596. [PMID: 30300571 DOI: 10.1089/zeb.2018.1625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During vertebrate neural development, oligodendrocytes insulate nerve axons with myelin sheaths. Zebrafish (Danio rerio) has emerged as a useful model organism for studying oligodendrocyte development. However, the absence of an in vitro culture system necessitates in vivo manipulations and analyses, which, in some instances, limits the questions that can be addressed. To fill this gap we developed a mixed coculture system for embryonic zebrafish neurons and oligodendrocyte-lineage cells. Cultures harvested from embryos ≥30 hours postfertilization (hpf) yielded oligodendrocyte progenitor cells (OPCs) positive for olig2 and sox10 transgenic reporters. Cultured OPCs exhibited dynamic, exploratory membrane processes, and cell morphologies resembled those established in vivo. Cells harvested from advanced stage embryos possessed more arborized processes than those from early stage embryos. Advanced stage (>60 hpf) embryo culture produced differentiated, mbp+ oligodendrocytes. Genetically tractable neuron subtypes extended neurites when harvested from embryos ≥19 hpf. Coculture produced juxtaposed oligodendrocytes and neurons, demonstrating the practical usefulness of this technique for future studies examining axon-oligodendrocyte interactions under defined conditions. We expect that zebrafish oligodendrocyte culture will complement existing in vivo strengths and may facilitate future studies elucidating the mechanisms of oligodendrocyte specification, proliferation, differentiation, motility, and axon-oligodendrocyte interactions that shape adult myelination patterns.
Collapse
Affiliation(s)
| | - Jacob H Hines
- Department of Biology, Winona State University , Winona, Minnesota
| |
Collapse
|
88
|
Lloyd E, Olive C, Stahl BA, Jaggard JB, Amaral P, Duboué ER, Keene AC. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Dev Biol 2018; 441:328-337. [PMID: 29772227 PMCID: PMC6450390 DOI: 10.1016/j.ydbio.2018.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Feeding strategies are dependent on multi-modal sensory processing, that integrates visual, chemosensory, and mechanoreceptive cues. In many fish species, local environments and food availability dramatically influence the evolution of sensory and morphological traits that underlie feeding. The Mexican cavefish, Astyanax mexicanus, have developed robust changes in sensory-dependent behaviors, but the impact on prey detection and feeding behavior is not known. In the absence of eyes, cavefish have evolved enhanced sensitivity of the lateral line, comprised of mechanosensory organs that sense water flow and detect prey. Here, we identify evolved differences in prey capture behavior of larval cavefish that are dependent on lateral line sensitivity. Under lighted conditions, cavefish strike Artemia prey at a wider angle than surface fish; however, this difference is diminished under dark conditions. In addition, the strike distance is greater in cavefish than surface fish, revealing an ability to capture, and likely detect, prey at greater distances. Experimental ablation of the lateral line disrupts prey capture in cavefish under both light and dark conditions, while it only impacts surface fish under dark conditions. Together, these findings identify an evolutionary shift towards a dependence on the lateral line for prey capture in cavefish, providing a model for investigating how loss of visual cues impacts multi-modal sensory behaviors.
Collapse
Affiliation(s)
- Evan Lloyd
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Courtney Olive
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - James B Jaggard
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Paloma Amaral
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
89
|
A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci Rep 2018; 8:13366. [PMID: 30190522 PMCID: PMC6127137 DOI: 10.1038/s41598-018-31476-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023] Open
Abstract
The CRISPR/Cas9 system can be introduced into zebrafish as transgenes. Namely, expression of single-guide RNA (sgRNA) and controlled expression of Cas9 in transgenic zebrafish enables the study of gene functions in specific cell types. This transgenic CRISPR/Cas9 approach would be more useful if multiple sgRNAs could be expressed simultaneously since we could knock-out a gene more efficiently or disrupt multiple genes simultaneously. Here we describe a novel system to express multiple sgRNAs efficiently in zebrafish, that relies on the endogenous tRNA processing machinery. We cloned nine endogenous zebrafish tRNA genes, fused them to sgRNAs, and demonstrated that an active sgRNA can be produced from a precursor transcript containing either of these tRNAs. To show a proof of principle, we constructed transgenic fish expressing Cas9 under the control of the ubiquitin promoter and a single transcript containing three distinct sgRNAs, that targeted the slc45a2 (albino) gene, fused to tRNAs under the control of the U6 promoter. We found that the Tg(ubb:SpCas9,u6c:3xslc45a2-sgRNA) harbored mutations in all of the target sites in the albino gene and showed nearly complete albino phenotypes, which were amenable to imaging experiments. Thus, the tRNA-based multiplex sgRNA expression system should facilitate gene knock-out studies in transgenic zebrafish.
Collapse
|
90
|
Fernandes Y, Rampersad M, Eberhart JK. Social behavioral phenotyping of the zebrafish casper mutant following embryonic alcohol exposure. Behav Brain Res 2018; 356:46-50. [PMID: 30107225 DOI: 10.1016/j.bbr.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The term Fetal Alcohol Spectrum Disorder (FASD) describes all the deleterious consequences of prenatal alcohol exposure. Impaired social behavior is a common symptom of FASD. The zebrafish has emerged as a powerful model organism with which to examine the effects of embryonic alcohol exposure on social behavior due to an innate strong behavior, called shoaling. The relative transparency of the embryo also makes zebrafish powerful for cellular analyses, such as characterizing neural circuitry. However, as zebrafish develop, pigmentation begins to obscure the brain and other tissues. Due to mutations disrupting pigmentation, the casper zebrafish strain remains relatively transparent throughout adulthood, potentially permitting researchers to image neural circuits in vivo, via epifluorescence, confocal and light sheet microscopy. Currently, however the behavioral profile of casper zebrafish post embryonic alcohol exposure has not been completed. We report that exposure to 1% alcohol from either 6 to 24, or 24 to 26 h postfertilization reduces the social behavior of adult casper zebrafish. Our findings set the stage for the use of this important zebrafish resource in studies of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- University of Texas at Austin, 2401 Speedway, Patterson Hall Room 522, Austin, TX 78712, United States of America.
| | - Mindy Rampersad
- University of Texas at Austin, 2401 Speedway, Patterson Hall Room 522, Austin, TX 78712, United States of America.
| | - Johann K Eberhart
- University of Texas at Austin, 2401 Speedway, Patterson Hall Room 522, Austin, TX 78712, United States of America.
| |
Collapse
|
91
|
Abstract
Sleep is nearly ubiquitous throughout the animal kingdom, yet little is known about how ecological factors or perturbations to the environment shape the duration and timing of sleep. In diverse animal taxa, poor sleep negatively impacts development, cognitive abilities and longevity. In addition to mammals, sleep has been characterized in genetic model organisms, ranging from the nematode worm to zebrafish, and, more recently, in emergent models with simplified nervous systems such as Aplysia and jellyfish. In addition, evolutionary models ranging from fruit flies to cavefish have leveraged natural genetic variation to investigate the relationship between ecology and sleep. Here, we describe the contributions of classical and emergent genetic model systems to investigate mechanisms underlying sleep regulation. These studies highlight fundamental interactions between sleep and sensory processing, as well as a remarkable plasticity of sleep in response to environmental changes. Understanding how sleep varies throughout the animal kingdom will provide critical insight into fundamental functions and conserved genetic mechanisms underlying sleep regulation. Furthermore, identification of naturally occurring genetic variation regulating sleep may provide novel drug targets and approaches to treat sleep-related diseases.
Collapse
Affiliation(s)
- Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
92
|
Shibai A, Arimoto T, Yoshinaga T, Tsuchizawa Y, Khureltulga D, Brown ZP, Kakizuka T, Hosoda K. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish. Sci Rep 2018; 8:8589. [PMID: 29872061 PMCID: PMC5988670 DOI: 10.1038/s41598-018-26186-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/08/2018] [Indexed: 01/30/2023] Open
Abstract
Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.
Collapse
Affiliation(s)
- Atsushi Shibai
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan.
| | - Tsunehiro Arimoto
- Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka, 560-8531, Japan
| | - Tsukasa Yoshinaga
- Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka, 560-8531, Japan
| | - Yuta Tsuchizawa
- Graduate School of Frontier Bioscience, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Dashdavaa Khureltulga
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan
| | - Zuben P Brown
- Graduate School of Frontier Bioscience, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Taishi Kakizuka
- Graduate School of Frontier Bioscience, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Kazufumi Hosoda
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan.
- Institute for Academic Initiatives, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
93
|
Muto A, Kawakami K. Ablation of a Neuronal Population Using a Two-photon Laser and Its Assessment Using Calcium Imaging and Behavioral Recording in Zebrafish Larvae. J Vis Exp 2018. [PMID: 29912192 DOI: 10.3791/57485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To identify the role of a subpopulation of neurons in behavior, it is essential to test the consequences of blocking its activity in living animals. Laser ablation of neurons is an effective method for this purpose when neurons are selectively labeled with fluorescent probes. In the present study, protocols for laser ablating a subpopulation of neurons using a two-photon microscope and testing of its functional and behavioral consequences are described. In this study, prey capture behavior in zebrafish larvae is used as a study model. The pretecto-hypothalamic circuit is known to underlie this visually-driven prey catching behavior. Zebrafish pretectum were laser-ablated, and neuronal activity in the inferior lobe of the hypothalamus (ILH; the target of the pretectal projection) was examined. Prey capture behavior after pretectal ablation was also tested.
Collapse
Affiliation(s)
- Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies);
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
94
|
Giarmarco MM, Cleghorn WM, Hurley JB, Brockerhoff SE. Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments. J Vis Exp 2018. [PMID: 29806828 DOI: 10.3791/56977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca2+, and energy homeostasis.
Collapse
Affiliation(s)
| | | | - James B Hurley
- Department of Biochemistry, University of Washington; Department of Ophthalmology, University of Washington
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington; Department of Ophthalmology, University of Washington;
| |
Collapse
|
95
|
Krauzlis RJ, Bogadhi AR, Herman JP, Bollimunta A. Selective attention without a neocortex. Cortex 2018; 102:161-175. [PMID: 28958417 PMCID: PMC5832524 DOI: 10.1016/j.cortex.2017.08.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Abstract
Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA.
| | | | - James P Herman
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| |
Collapse
|
96
|
Integrative whole-brain neuroscience in larval zebrafish. Curr Opin Neurobiol 2018; 50:136-145. [PMID: 29486425 DOI: 10.1016/j.conb.2018.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 11/22/2022]
Abstract
Due to their small size and transparency, zebrafish larvae are amenable to a range of fluorescence microscopy techniques. With the development of sensitive genetically encoded calcium indicators, this has extended to the whole-brain imaging of neural activity with cellular resolution. This technique has been used to study brain-wide population dynamics accompanying sensory processing and sensorimotor transformations, and has spurred the development of innovative closed-loop behavioral paradigms in which stimulus-response relationships can be studied. More recently, microscopes have been developed that allow whole-brain calcium imaging in freely swimming and behaving larvae. In this review, we highlight the technologies underlying whole-brain functional imaging in zebrafish, provide examples of the sensory and motor processes that have been studied with this technique, and discuss the need to merge data from whole-brain functional imaging studies with neurochemical and anatomical information to develop holistic models of functional neural circuits.
Collapse
|
97
|
Imaging Neuronal Activity in the Optic Tectum of Late Stage Larval Zebrafish. J Dev Biol 2018; 6:jdb6010006. [PMID: 29615555 PMCID: PMC5875565 DOI: 10.3390/jdb6010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/03/2022] Open
Abstract
The zebrafish is an established model to study the development and function of visual neuronal circuits in vivo, largely due to their optical accessibility at embryonic and larval stages. In the past decade multiple experimental paradigms have been developed to study visually-driven behaviours, particularly those regulated by the optic tectum, the main visual centre in lower vertebrates. With few exceptions these techniques are limited to young larvae (7–9 days post-fertilisation, dpf). However, many forms of visually-driven behaviour, such as shoaling, emerge at later developmental stages. Consequently, there is a need for an experimental paradigm to image the visual system in zebrafish larvae beyond 9 dpf. Here, we show that using NBT:GCaMP3 line allows for imaging neuronal activity in the optic tectum in late stage larvae until at least 21 dpf. Utilising this line, we have characterised the receptive field properties of tectal neurons of the 2–3 weeks old fish in the cell bodies and the neuropil. The NBT:GCaMP3 line provides a complementary approach and additional opportunities to study neuronal activity in late stage zebrafish larvae.
Collapse
|
98
|
Zada D, Blitz E, Appelbaum L. Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol Cell Endocrinol 2017; 459:53-58. [PMID: 28274736 DOI: 10.1016/j.mce.2017.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Thyroid hormones (THs) regulate a variety of fundamental physiological processes, including the development and maintenance of the brain. For decades, it was thought that THs enter the cells by passive diffusion. However, it is now clear that TH transport across the cell membrane requires specific transporter proteins that facilitate the uptake and efflux of THs. Several thyroid hormone transmembrane transporters (THTTs) have been identified, including monocarboxylate transporter 8 (MCT8), MCT10, and organic anion transporting polypeptide 1C1 (OATP1C1). The critical role of THTTs in regulating metabolism and brain function is demonstrated in the Allan-Herndon-Dudley syndrome (AHDS), an X-linked psychomotor retardation associated with mutations in the MCT8/SLC16A2 gene. In addition to traditional research on humans, cell-lines, and rodents, the zebrafish has recently emerged as an attractive model to study THTTs and neuroendocrinological-related disorders. In this review, we describe the unique contribution of zebrafish studies to the understanding of the functional role of THTTs in live animals, and how this transparent vertebrate model can be used for translational studies on TH-related disorders.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
99
|
Bhalla US. Dendrites, deep learning, and sequences in the hippocampus. Hippocampus 2017; 29:239-251. [PMID: 29024221 DOI: 10.1002/hipo.22806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022]
Abstract
The hippocampus places us both in time and space. It does so over remarkably large spans: milliseconds to years, and centimeters to kilometers. This works for sensory representations, for memory, and for behavioral context. How does it fit in such wide ranges of time and space scales, and keep order among the many dimensions of stimulus context? A key organizing principle for a wide sweep of scales and stimulus dimensions is that of order in time, or sequences. Sequences of neuronal activity are ubiquitous in sensory processing, in motor control, in planning actions, and in memory. Against this strong evidence for the phenomenon, there are currently more models than definite experiments about how the brain generates ordered activity. The flip side of sequence generation is discrimination. Discrimination of sequences has been extensively studied at the behavioral, systems, and modeling level, but again physiological mechanisms are fewer. It is against this backdrop that I discuss two recent developments in neural sequence computation, that at face value share little beyond the label "neural." These are dendritic sequence discrimination, and deep learning. One derives from channel physiology and molecular signaling, the other from applied neural network theory - apparently extreme ends of the spectrum of neural circuit detail. I suggest that each of these topics has deep lessons about the possible mechanisms, scales, and capabilities of hippocampal sequence computation.
Collapse
Affiliation(s)
- Upinder S Bhalla
- Neurobiology, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, Karnataka, India
| |
Collapse
|
100
|
Symvoulidis P, Lauri A, Stefanoiu A, Cappetta M, Schneider S, Jia H, Stelzl A, Koch M, Perez CC, Myklatun A, Renninger S, Chmyrov A, Lasser T, Wurst W, Ntziachristos V, Westmeyer GG. NeuBtracker—imaging neurobehavioral dynamics in freely behaving fish. Nat Methods 2017; 14:1079-1082. [DOI: 10.1038/nmeth.4459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/28/2017] [Indexed: 11/09/2022]
|