51
|
Alhaj Abed J, Ghotbi E, Ye P, Frolov A, Benes J, Jones RS. De novo recruitment of Polycomb-group proteins in Drosophila embryos. Development 2018; 145:dev.165027. [PMID: 30389849 DOI: 10.1242/dev.165027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Polycomb-group (PcG)-mediated transcriptional repression of target genes can be delineated into two phases. First, following initial repression of target genes by gene-specific transcription factors, PcG proteins recognize the repressed state and assume control of the genes' repression. Second, once the silenced state is established, PcG proteins may maintain repression through an indefinite number of cell cycles. Little is understood about how PcG proteins initially recognize the repressed state of target genes and the steps leading to de novo establishment of PcG-mediated repression. We describe a genetic system in which a Drosophila PcG target gene, giant (gt), is ubiquitously repressed during early embryogenesis by a maternally expressed transcription factor, and show the temporal recruitment of components of three PcG protein complexes: PhoRC, PRC1 and PRC2. We show that de novo PcG recruitment follows a temporal hierarchy in which PhoRC stably localizes at the target gene at least 1 h before stable recruitment of PRC2 and concurrent trimethylation of histone H3 at lysine 27 (H3K27me3). The presence of PRC2 and increased levels of H3K27me3 are found to precede stable binding by PRC1.
Collapse
Affiliation(s)
- Jumana Alhaj Abed
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Alexander Frolov
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| |
Collapse
|
52
|
Lai X, Verhage L, Hugouvieux V, Zubieta C. Pioneer Factors in Animals and Plants-Colonizing Chromatin for Gene Regulation. Molecules 2018; 23:E1914. [PMID: 30065231 PMCID: PMC6222629 DOI: 10.3390/molecules23081914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023] Open
Abstract
Unlike most transcription factors (TF), pioneer TFs have a specialized role in binding closed regions of chromatin and initiating the subsequent opening of these regions. Thus, pioneer TFs are key factors in gene regulation with critical roles in developmental transitions, including organ biogenesis, tissue development, and cellular differentiation. These developmental events involve some major reprogramming of gene expression patterns, specifically the opening and closing of distinct chromatin regions. Here, we discuss how pioneer TFs are identified using biochemical and genome-wide techniques. What is known about pioneer TFs from animals and plants is reviewed, with a focus on the strategies used by pioneer factors in different organisms. Finally, the different molecular mechanisms pioneer factors used are discussed, highlighting the roles that tertiary and quaternary structures play in nucleosome-compatible DNA-binding.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Leonie Verhage
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| |
Collapse
|
53
|
Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, Hulselmans G, Potier D, Wouters J, Taskiran II, Paciello G, González-Blas CB, Koldere D, Aibar S, Halder G, Aerts S. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nat Genet 2018; 50:1011-1020. [PMID: 29867222 PMCID: PMC6031307 DOI: 10.1038/s41588-018-0140-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.
Collapse
Affiliation(s)
- Jelle Jacobs
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Mardelle Atkins
- VIB Center for Cancer Biology, Leuven, Belgium
- KU Leuven, Department of Oncology, Leuven, Belgium
| | - Kristofer Davie
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Hana Imrichova
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Lucia Romanelli
- VIB Center for Cancer Biology, Leuven, Belgium
- KU Leuven, Department of Oncology, Leuven, Belgium
| | - Valerie Christiaens
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Delphine Potier
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Jasper Wouters
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | | | - Giulia Paciello
- Politecnico di Torino, Automatics and Informatics, Turin, Italy
| | - Carmen B González-Blas
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Duygu Koldere
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, Leuven, Belgium
- KU Leuven, Department of Oncology, Leuven, Belgium
| | - Stein Aerts
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium.
- KU Leuven, Department of Human Genetics, Leuven, Belgium.
| |
Collapse
|
54
|
Ylla G, Piulachs MD, Belles X. Comparative Transcriptomics in Two Extreme Neopterans Reveals General Trends in the Evolution of Modern Insects. iScience 2018; 4:164-179. [PMID: 30240738 PMCID: PMC6147021 DOI: 10.1016/j.isci.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
The success of neopteran insects, with 1 million species described, is associated with developmental innovations such as holometaboly and the evolution from short to long germband embryogenesis. To unveil the mechanisms underlining these innovations, we compared gene expression during the ontogeny of two extreme neopterans, the cockroach Blattella germanica (polyneopteran, hemimetabolan, and short germband species) and the fly Drosophila melanogaster (endopterygote, holometabolan, and long germband species). Results revealed that genes associated with metamorphosis are predominantly expressed in late nymphal stages in B. germanica and in the early-mid embryo in D. melanogaster. In B. germanica the maternal to zygotic transition (MZT) concentrates early in embryogenesis, when juvenile hormone factors are significantly expressed. In D. melanogaster, the MZT extends throughout embryogenesis, during which time juvenile hormone factors appear to be unimportant. These differences possibly reflect broad trends in the evolution of development within neopterans, related to the germband type and the metamorphosis mode. Transcriptomes of cockroaches and flies show key differences along development Cockroaches and flies express metamorphosis factors with distinct timings in ontogeny Cockroaches methylate DNA in early embryogenesis, whereas flies do not MZT is limited to the early embryo in cockroaches, but it extends until hatching in flies
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
55
|
Haines JE, Eisen MB. Patterns of chromatin accessibility along the anterior-posterior axis in the early Drosophila embryo. PLoS Genet 2018; 14:e1007367. [PMID: 29727464 PMCID: PMC5955596 DOI: 10.1371/journal.pgen.1007367] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/16/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
As the Drosophila embryo transitions from the use of maternal RNAs to zygotic transcription, domains of open chromatin, with relatively low nucleosome density and specific histone marks, are established at promoters and enhancers involved in patterned embryonic transcription. However it remains unclear how regions of activity are established during early embryogenesis, and if they are the product of spatially restricted or ubiquitous processes. To shed light on this question, we probed chromatin accessibility across the anterior-posterior axis (A-P) of early Drosophila melanogaster embryos by applying a transposon based assay for chromatin accessibility (ATAC-seq) to anterior and posterior halves of hand-dissected, cellular blastoderm embryos. We find that genome-wide chromatin accessibility is highly similar between the two halves, with regions that manifest significant accessibility in one half of the embryo almost always accessible in the other half, even for promoters that are active in exclusively one half of the embryo. These data support previous studies that show that chromatin accessibility is not a direct result of activity, and point to a role for ubiquitous factors or processes in establishing chromatin accessibility at promoters in the early embryo. However, in concordance with similar works, we find that at enhancers active exclusively in one half of the embryo, we observe a significant skew towards greater accessibility in the region of their activity, highlighting the role of patterning factors such as Bicoid in this process.
Collapse
Affiliation(s)
- Jenna E. Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States of America
| |
Collapse
|
56
|
Nunes da Fonseca R, Venancio TM. Maternal or zygotic: Unveiling the secrets of the Pancrustacea transcription factor zelda. PLoS Genet 2018; 14:e1007201. [PMID: 29494591 PMCID: PMC5832190 DOI: 10.1371/journal.pgen.1007201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Brazil
- * E-mail: (RNdF); (TMV)
| | - Thiago M. Venancio
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
- * E-mail: (RNdF); (TMV)
| |
Collapse
|
57
|
Abstract
The activation of the zygotic genome and onset of transcription in blastula embryos is linked to changes in cell behavior and remodeling of the cell cycle and constitutes a transition from exclusive maternal to zygotic control of development. This step in development is referred to as mid-blastula transition and has served as a paradigm for the link between developmental program and cell behavior and morphology. Here, we discuss the mechanism and functional relationships between the zygotic genome activation and cell cycle control during mid-blastula transition with a focus on Drosophila embryos.
Collapse
Affiliation(s)
- Boyang Liu
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig-Weg11, Göttingen 37077, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig-Weg11, Göttingen 37077, Germany.
| |
Collapse
|
58
|
Abstract
We developed a predictive, stable, and interpretable tool: the iterative random forest algorithm (iRF). iRF discovers high-order interactions among biomolecules with the same order of computational cost as random forests. We demonstrate the efficacy of iRF by finding known and promising interactions among biomolecules, of up to fifth and sixth order, in two data examples in transcriptional regulation and alternative splicing. Genomics has revolutionized biology, enabling the interrogation of whole transcriptomes, genome-wide binding sites for proteins, and many other molecular processes. However, individual genomic assays measure elements that interact in vivo as components of larger molecular machines. Understanding how these high-order interactions drive gene expression presents a substantial statistical challenge. Building on random forests (RFs) and random intersection trees (RITs) and through extensive, biologically inspired simulations, we developed the iterative random forest algorithm (iRF). iRF trains a feature-weighted ensemble of decision trees to detect stable, high-order interactions with the same order of computational cost as the RF. We demonstrate the utility of iRF for high-order interaction discovery in two prediction problems: enhancer activity in the early Drosophila embryo and alternative splicing of primary transcripts in human-derived cell lines. In Drosophila, among the 20 pairwise transcription factor interactions iRF identifies as stable (returned in more than half of bootstrap replicates), 80% have been previously reported as physical interactions. Moreover, third-order interactions, e.g., between Zelda (Zld), Giant (Gt), and Twist (Twi), suggest high-order relationships that are candidates for follow-up experiments. In human-derived cells, iRF rediscovered a central role of H3K36me3 in chromatin-mediated splicing regulation and identified interesting fifth- and sixth-order interactions, indicative of multivalent nucleosomes with specific roles in splicing regulation. By decoupling the order of interactions from the computational cost of identification, iRF opens additional avenues of inquiry into the molecular mechanisms underlying genome biology.
Collapse
|
59
|
Bentovim L, Harden TT, DePace AH. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 2017; 144:3855-3866. [PMID: 29089359 PMCID: PMC5702068 DOI: 10.1242/dev.146563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During development, genes are transcribed at specific times, locations and levels. In recent years, the emergence of quantitative tools has significantly advanced our ability to measure transcription with high spatiotemporal resolution in vivo. Here, we highlight recent studies that have used these tools to characterize transcription during development, and discuss the mechanisms that contribute to the precision and accuracy of the timing, location and level of transcription. We attempt to disentangle the discrepancies in how physicists and biologists use the term ‘precision' to facilitate interactions using a common language. We also highlight selected examples in which the coupling of mathematical modeling with experimental approaches has provided important mechanistic insights, and call for a more expansive use of mathematical modeling to exploit the wealth of quantitative data and advance our understanding of animal transcription. Summary: This Review highlights how high-resolution quantitative tools and theoretical models have formed our current view of the mechanisms determining precision and accuracy in the timing, location and level of transcription in the Drosophila embryo.
Collapse
Affiliation(s)
- Lital Bentovim
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
60
|
Mir M, Reimer A, Haines JE, Li XY, Stadler M, Garcia H, Eisen MB, Darzacq X. Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev 2017; 31:1784-1794. [PMID: 28982761 PMCID: PMC5666676 DOI: 10.1101/gad.305078.117] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022]
Abstract
Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient "hubs" of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors.
Collapse
Affiliation(s)
- Mustafa Mir
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Jenna E Haines
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Xiao-Yong Li
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Michael Stadler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Hernan Garcia
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California, 94720, USA
- Department of Integrative Biology, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
61
|
Crocker J, Stern DL. Functional regulatory evolution outside of the minimal even-skipped stripe 2 enhancer. Development 2017; 144:3095-3101. [PMID: 28760812 DOI: 10.1242/dev.149427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Transcriptional enhancers are regions of DNA that drive precise patterns of gene expression. Although many studies have elucidated how individual enhancers can evolve, most of this work has focused on what are called 'minimal' enhancers, the smallest DNA regions that drive expression that approximates an aspect of native gene expression. Here, we explore how the Drosophila erecta even-skipped (eve) locus has evolved by testing its activity in the divergent D. melanogaster genome. We found, as has been reported previously, that the D. erecta eve stripe 2 enhancer (eveS2) fails to drive appreciable expression in D. melanogaster However, we found that a large transgene carrying the entire D. erecta eve locus drives normal eve expression, including in stripe 2. We performed a functional dissection of the region upstream of the D. erecta eveS2 region and found multiple Zelda motifs that are required for normal expression. Our results illustrate how sequences outside of minimal enhancer regions can evolve functionally through mechanisms other than changes in transcription factor-binding sites that drive patterning.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
62
|
Ribeiro L, Tobias-Santos V, Santos D, Antunes F, Feltran G, de Souza Menezes J, Aravind L, Venancio TM, Nunes da Fonseca R. Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. PLoS Genet 2017; 13:e1006868. [PMID: 28671979 PMCID: PMC5515446 DOI: 10.1371/journal.pgen.1006868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory networks (GRNs) evolve as a result of the coevolutionary processes acting on transcription factors (TFs) and the cis-regulatory modules they bind. The zinc-finger TF zelda (zld) is essential for the maternal-to-zygotic transition (MZT) in Drosophila melanogaster, where it directly binds over thousand cis-regulatory modules to regulate chromatin accessibility. D. melanogaster displays a long germ type of embryonic development, where all segments are simultaneously generated along the whole egg. However, it remains unclear if zld is also involved in the MZT of short-germ insects (including those from basal lineages) or in other biological processes. Here we show that zld is an innovation of the Pancrustacea lineage, being absent in more distant arthropods (e.g. chelicerates) and other organisms. To better understand zld´s ancestral function, we thoroughly investigated its roles in a short-germ beetle, Tribolium castaneum, using molecular biology and computational approaches. Our results demonstrate roles for zld not only during the MZT, but also in posterior segmentation and patterning of imaginal disc derived structures. Further, we also demonstrate that zld is critical for posterior segmentation in the hemipteran Rhodnius prolixus, indicating this function predates the origin of holometabolous insects and was subsequently lost in long-germ insects. Our results unveil new roles of zld in different biological contexts and suggest that changes in expression of zld (and probably other major TFs) are critical in the evolution of insect GRNs. Pioneer transcription factors (TFs) are considered the first regulators of chromatin accessibility in fruit flies and vertebrates, modulating the expression of a large number of target genes. In fruit flies, zelda resembles a pioneer TF, being essential during early embryogenesis. However, the evolutionary origins and ancestral functions of zelda remain largely unknown. Through a number of gene silencing, microscopy and evolutionary analysis, the present work shows that zelda is an innovation of the Pancrustacea lineage, governing not only the MZT in the short-germ insect Tribolium castaneum, but also posterior segmentation and post-embryonic patterning of imaginal disc derived structures such as wings, legs and antennae. Further, zelda regulation of posterior segmentation predates the origin of insects with complete metamorphosis (holometabolous), as supported by gene silencing experiments in the kissing bug Rhodnius prolixus. We hypothesize that the emergence of zelda contributed to the evolution of gene regulatory networks and new morphological structures of insects.
Collapse
Affiliation(s)
- Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Daniele Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Felipe Antunes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Geórgia Feltran
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Jackson de Souza Menezes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
- * E-mail: (TMV); (RNdF)
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
- * E-mail: (TMV); (RNdF)
| |
Collapse
|
63
|
Joseph SR, Pálfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A, Vastenhouw NL. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 2017; 6. [PMID: 28425915 PMCID: PMC5451213 DOI: 10.7554/elife.23326] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI:http://dx.doi.org/10.7554/eLife.23326.001 The DNA in a fertilized egg contains all the information required to form an animal’s body. In order for the animal to develop properly, particular genes encoded in the DNA are only active at specific times. The DNA is wrapped around proteins called histones, which allows the DNA to be tightly packed inside the cell. However, histones can block other proteins called transcription factors from binding to the DNA to activate the genes. Young embryos initially develop with all of their genes switched off, relying on the nutrients and other molecules provided by their mother. After some time, the embryo starts to switch on its own genes to take control of its own development, but it was not clear how this happens. Joseph et al. investigated how genes are activated in zebrafish embryos, which are often used as models to study how animals develop. The experiments show that competition between histones and transcription factors for binding to DNA controls when genes are switched on. In young fish embryos, there are so many histones present that transcription factors have no opportunity to bind to DNA. Over time, however, the numbers of histones decrease, allowing transcription factors to bind to DNA and switch on genes. Histones and transcription factors regulate the activity of genes throughout the life of the animal. Therefore, competition between these two types of protein may also control gene activity in other situations. A better understanding of how gene activity is controlled could allow researchers to more easily grow different types of cell in the laboratory or to reprogram specific cells in the body. As such, these new findings may aid the development of therapies to regenerate organs or tissues that have been damaged by injury or disease. DOI:http://dx.doi.org/10.7554/eLife.23326.002
Collapse
Affiliation(s)
- Shai R Joseph
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Máté Pálfy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lennart Hilbert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jens Karschau
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Vasily Zaburdaev
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
64
|
Missirlis F, Nahmad M. We also CanFly! The 2nd MexFly drosophila research conference. Fly (Austin) 2017; 11:148-152. [PMID: 27960619 DOI: 10.1080/19336934.2016.1271517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The 2nd Mexican Drosophila Research Conference (MexFly) took place on June 30th and July 1st, 2016 in Mexico City, at the Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav). Principal investigators, postdocs, students, and technicians from Drosophila labs across Mexico attended. The guest speaker was Chris Rushlow from New York University, who presented work on Zelda, a key transcriptional activator of the early zygotic genome. Here we provide a brief report of the meeting, which sketches the present landscape of Drosophila research in Mexico. We also provide a brief historical note on one of the pioneers of the field in this country, Victor Salceda, personally trained by Theodosius Dobzhansky. Salceda presented at the meeting an update of his collaborative project with Dobzhansky on the distribution of Drosophila pseudoobscura chromosomal inversions, initiated over forty years ago.
Collapse
Affiliation(s)
- Fanis Missirlis
- a Department of Physiology , Biophysics and Neuroscience, CINVESTAV , Mexico City
| | - Marcos Nahmad
- a Department of Physiology , Biophysics and Neuroscience, CINVESTAV , Mexico City
| |
Collapse
|
65
|
King HW, Klose RJ. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 2017; 6:22631. [PMID: 28287392 PMCID: PMC5400504 DOI: 10.7554/elife.22631] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks throughout development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet it remains unclear how different pioneer factors achieve this. Here, we discover that the pluripotency-associated pioneer factor OCT4 binds chromatin to shape accessibility, transcription factor co-binding, and regulatory element function in mouse embryonic stem cells. Chromatin accessibility at OCT4-bound sites requires the chromatin remodeller BRG1, which is recruited to these sites by OCT4 to support additional transcription factor binding and expression of the pluripotency-associated transcriptome. Furthermore, the requirement for BRG1 in shaping OCT4 binding reflects how these target sites are used during cellular reprogramming and early mouse development. Together this reveals a distinct requirement for a chromatin remodeller in promoting the activity of the pioneer factor OCT4 and regulating the pluripotency network. DOI:http://dx.doi.org/10.7554/eLife.22631.001 All cells in your body contain the same genetic information in the form of genes encoded within DNA. Yet, cells use this information in different ways so that the activities of individual genes within that DNA can vary from cell to cell. This allows identical cells to become different to each other and to adapt to changing circumstances. A group of proteins called transcription factors control the activity of certain genes by binding to specific sites on DNA. However, this isn’t a straightforward process because DNA in human and other animal cells is usually associated with structures called nucleosomes that can block access to the DNA. Pioneer transcription factors, such as OCT4, are a specific group of transcription factors that can attach to DNA in spite of the nucleosomes, but it’s not clear how this is possible. Once pioneer transcription factors attach to DNA they can help other transcription factors to bind alongside them. King et al. studied OCT4 in stem cells from mouse embryos to investigate how it is able to act as a pioneer transcription factor and control gene activity. The experiments show that several other transcription factors lose the ability to bind to DNA when OCT4 is absent. This leads to widespread changes in gene activity in the cells, which seems to be due to other transcription factors being unable to get past the nucleosomes to attach to the DNA. Further experiments showed that OCT4 needs a protein called BRG1 in order to act as a pioneer transcription factor. BRG1 is an enzyme that is able to move and remove (remodel) nucleosomes attached to DNA, suggesting that normal transcription factor binding requires this activity. The next challenge is to investigate whether BRG1, or similar enzymes, are also needed by other pioneer transcription factors that are required for normal gene activity and cell identity. This will be important because many enzymes that remodel nucleosomes are disrupted in human diseases like cancer where cells lose their normal identity. DOI:http://dx.doi.org/10.7554/eLife.22631.002
Collapse
Affiliation(s)
- Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
66
|
Abstract
The leap from simple unicellularity to complex multicellularity remains one of life's major enigmas. The origins of metazoan developmental gene regulatory mechanisms are sought by analyzing gene regulation in extant eumetazoans, sponges, and unicellular organisms. The main hypothesis of this manuscript is that, developmental enhancers evolved from unicellular inducible promoters that diversified the expression of regulatory genes during metazoan evolution. Promoters and enhancers are functionally similar; both can regulate the transcription of distal promoters and both direct local transcription. Additionally, enhancers have experimentally characterized structural features that reveal their origin from inducible promoters. The distal co-operative regulation among promoters identified in unicellular opisthokonts possibly represents the precursor of distal regulation of promoters by enhancers. During metazoan evolution, constitutive-type promoters of regulatory genes would have acquired novel receptivity to distal regulatory inputs from promoters of inducible genes that eventually specialized as enhancers. The novel regulatory interactions would have caused constitutively expressed genes controlling differential gene expression in unicellular organisms to become themselves differentially expressed. The consequence of the novel regulatory interactions was that regulatory pathways of unicellular organisms became interlaced and ultimately evolved into the intricate developmental gene regulatory networks (GRNs) of extant metazoans.
Collapse
Affiliation(s)
- César Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| |
Collapse
|
67
|
Shin DH, Hong JW. Transcriptional activity of the short gastrulation primary enhancer in the ventral midline requires its early activity in the presumptive neurogenic ectoderm. BMB Rep 2017; 49:572-577. [PMID: 27616358 PMCID: PMC5227300 DOI: 10.5483/bmbrep.2016.49.10.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
The short gastrulation (sog) shadow enhancer directs early and late sog expression in the neurogenic ectoderm and the ventral midline of the developing Drosophila embryo, respectively. Here, evidence is presented that the sog primary enhancer also has both activities, with the late enhancer activity dependent on the early activity. Computational analyses showed that the sog primary enhancer contains five Dorsal (Dl)-, four Zelda (Zld)-, three Bicoid (Bcd)-, and no Single-minded (Sim)-binding sites. In contrast to many ventral midline enhancers, the primary enhancer can direct lacZ expression in the ventral midline as well as in the neurogenic ectoderm without a canonical Simbinding site. Intriguingly, the impaired transcriptional synergy between Dl and either Zld or Bcd led to aberrant and abolished lacZ expression in the neurogenic ectoderm and in the ventral midline, respectively. These findings suggest that the two enhancer activities of the sog primary enhancer are functionally consolidated and geographically inseparable. [BMB Reports 2016; 49(10): 572-577]
Collapse
Affiliation(s)
- Dong-Hyeon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
68
|
Reiter F, Wienerroither S, Stark A. Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev 2017; 43:73-81. [PMID: 28110180 DOI: 10.1016/j.gde.2016.12.007] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Differential gene expression gives rise to the many cell types of complex organisms. Enhancers regulate transcription by binding transcription factors (TFs), which in turn recruit cofactors to activate RNA Polymerase II at core promoters. Transcriptional regulation is typically mediated by distinct combinations of TFs, enabling a relatively small number of TFs to generate a large diversity of cell types. However, how TFs achieve combinatorial enhancer control and how enhancers, enhancer-bound TFs, and the cofactors they recruit regulate RNA Polymerase II activity is not entirely clear. Here, we review how TF synergy is mediated at the level of DNA binding and after binding, the role of cofactors and the post-translational modifications they catalyze, and discuss different models of enhancer-core-promoter communication.
Collapse
Affiliation(s)
- Franziska Reiter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Sebastian Wienerroither
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
69
|
Crocker J, Tsai A, Stern DL. A Fully Synthetic Transcriptional Platform for a Multicellular Eukaryote. Cell Rep 2017; 18:287-296. [DOI: 10.1016/j.celrep.2016.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 12/07/2016] [Indexed: 01/12/2023] Open
|
70
|
Koenecke N, Johnston J, He Q, Meier S, Zeitlinger J. Drosophila poised enhancers are generated during tissue patterning with the help of repression. Genome Res 2016; 27:64-74. [PMID: 27979994 PMCID: PMC5204345 DOI: 10.1101/gr.209486.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Abstract
Histone modifications are frequently used as markers for enhancer states, but how to interpret enhancer states in the context of embryonic development is not clear. The poised enhancer signature, involving H3K4me1 and low levels of H3K27ac, has been reported to mark inactive enhancers that are poised for future activation. However, future activation is not always observed, and alternative reasons for the widespread occurrence of this enhancer signature have not been investigated. By analyzing enhancers during dorsal-ventral (DV) axis formation in the Drosophila embryo, we find that the poised enhancer signature is specifically generated during patterning in the tissue where the enhancers are not induced, including at enhancers that are known to be repressed by a transcriptional repressor. These results suggest that, rather than serving exclusively as an intermediate step before future activation, the poised enhancer state may be a mark for spatial regulation during tissue patterning. We discuss the possibility that the poised enhancer state is more generally the result of repression by transcriptional repressors.
Collapse
Affiliation(s)
- Nina Koenecke
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jeff Johnston
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Qiye He
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Samuel Meier
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,University of Kansas Medical Center, Department of Pathology, Kansas City, Kansas 66160, USA
| |
Collapse
|
71
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
72
|
Shin DH, Hong JW. Midline enhancer activity of the short gastrulation shadow enhancer is characterized by three unusual features for cis-regulatory DNA. BMB Rep 2016; 48:589-94. [PMID: 26277983 PMCID: PMC4911187 DOI: 10.5483/bmbrep.2015.48.10.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 01/10/2023] Open
Abstract
The shadow enhancer of the short gastrulation
(sog) gene directs its sequential expression in the
neurogenic ectoderm and the ventral midline of the developing
Drosophila embryo. Here, we characterize three unusual
features of the shadow enhancer midline activity. First, the minimal regions for
the two different enhancer activities exhibit high overlap within the shadow
enhancer, meaning that one developmental enhancer possesses dual enhancer
activities. Second, the midline enhancer activity relies on five Single-minded
(Sim)-binding sites, two of which have not been found in any Sim target
enhancers. Finally, two linked Dorsal (Dl)- and Zelda (Zld)-binding sites,
critical for the neurogenic ectoderm enhancer activity, are also required for
the midline enhancer activity. These results suggest that early activation by Dl
and Zld may facilitate late activation via the noncanonical sites occupied by
Sim. We discuss a model for Zld as a pioneer factor and speculate its role in
midline enhancer activity. [BMB Reports 2015; 48(10): 589-594]
Collapse
Affiliation(s)
- Dong-Hyeon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
73
|
Swift J, Coruzzi GM. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:75-83. [PMID: 27546191 DOI: 10.1016/j.bbagrm.2016.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Dynamic reprogramming of transcriptional networks enables cells to adapt to a changing environment. Thus, it is crucial not only to understand what gene targets are regulated by a transcription factor (TF) but also when. This review explores the way TFs function with respect to time, paying particular attention to discoveries made in plants - where coordinated, genome-wide responses to environmental change is crucial to the survival of these sessile organisms. We investigate the molecular mechanisms that mediate transient TF-DNA binding, and assess how these rapid and dynamic interactions translate to long-term temporal regulation of genomes. We also discuss how current molecular techniques can catch, and sometimes miss, transient TF-target interactions that underlie dynamic cellular responses. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Joseph Swift
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
74
|
Rahimi N, Averbukh I, Haskel-Ittah M, Degani N, Schejter ED, Barkai N, Shilo BZ. A WntD-Dependent Integral Feedback Loop Attenuates Variability in Drosophila Toll Signaling. Dev Cell 2016; 36:401-14. [PMID: 26906736 DOI: 10.1016/j.devcel.2016.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/22/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
Patterning by morphogen gradients relies on the capacity to generate reproducible distribution profiles. Morphogen spread depends on kinetic parameters, including diffusion and degradation rates, which vary between embryos, raising the question of how variability is controlled. We examined this in the context of Toll-dependent dorsoventral (DV) patterning of the Drosophila embryo. We find that low embryo-to-embryo variability in DV patterning relies on wntD, a Toll-target gene expressed initially at the posterior pole. WntD protein is secreted and disperses in the extracellular milieu, associates with its receptor Frizzled4, and inhibits the Toll pathway by blocking the Toll extracellular domain. Mathematical modeling predicts that WntD accumulates until the Toll gradient narrows to its desired spread, and we support this feedback experimentally. This circuit exemplifies a broadly applicable induction-contraction mechanism, which reduces patterning variability through a restricted morphogen-dependent expression of a secreted diffusible inhibitor.
Collapse
Affiliation(s)
- Neta Rahimi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Averbukh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Haskel-Ittah
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neta Degani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
75
|
Initiation of diverse epigenetic states during nuclear programming of the Drosophila body plan. Proc Natl Acad Sci U S A 2016; 113:8735-40. [PMID: 27439862 DOI: 10.1073/pnas.1516450113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetic patterns of histone modifications contribute to the maintenance of tissue-specific gene expression. Here, we show that such modifications also accompany the specification of cell identities by the NF-κB transcription factor Dorsal in the precellular Drosophila embryo. We provide evidence that the maternal pioneer factor, Zelda, is responsible for establishing poised RNA polymerase at Dorsal target genes before Dorsal-mediated zygotic activation. At the onset of cell specification, Dorsal recruits the CBP/p300 coactivator to the regulatory regions of defined target genes in the presumptive neuroectoderm, resulting in their histone acetylation and transcriptional activation. These genes are inactive in the mesoderm due to transcriptional quenching by the Snail repressor, which precludes recruitment of CBP and prevents histone acetylation. By contrast, inactivation of the same enhancers in the dorsal ectoderm is associated with Polycomb-repressed H3K27me3 chromatin. Thus, the Dorsal morphogen gradient produces three distinct histone signatures including two modes of transcriptional repression, active repression (hypoacetylation), and inactivity (H3K27me3). Whereas histone hypoacetylation is associated with a poised polymerase, H3K27me3 displaces polymerase from chromatin. Our results link different modes of RNA polymerase regulation to separate epigenetic patterns and demonstrate that developmental determinants orchestrate differential chromatin states, providing new insights into the link between epigenetics and developmental patterning.
Collapse
|
76
|
Deignan L, Pinheiro MT, Sutcliffe C, Saunders A, Wilcockson SG, Zeef LAH, Donaldson IJ, Ashe HL. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo. PLoS Genet 2016; 12:e1006164. [PMID: 27379389 PMCID: PMC4933369 DOI: 10.1371/journal.pgen.1006164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. Embryogenesis involves the patterning of many different cell fates by a limited number of types of signals. One way that these signals promote a particular cell fate is through the induction of a complex, yet highly reproducible, gene expression programme that instructs changes in the cell. For example, there is a conserved role for BMP signals in specifying cell fates during dorsal-ventral axis patterning. Here, we have used genomics approaches to identify the gene expression programme implemented in response to BMP signaling during axis patterning in the Drosophila embryo. Part of the gene network downstream of BMP signaling includes members of the EGF signaling pathway, with our data highlighting reciprocal interactions between these two pathways. We have also determined genome-wide binding of BMP-responsive transcription factors to gain new insights into how the BMP gene network is activated. Our data reveal roles for specific transcription factors and insulator binding proteins, with the latter traditionally associated with the separation of transcriptional domains. Overall, our data will provide a platform for exploiting the tractability of the Drosophila embryo to determine which features of the network are critical drivers of BMP-induced cell fate changes during embryogenesis.
Collapse
Affiliation(s)
- Lisa Deignan
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Marco T. Pinheiro
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Catherine Sutcliffe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Scott G. Wilcockson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo A. H. Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian J. Donaldson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hilary L. Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
77
|
Kaaij LJT, Mokry M, Zhou M, Musheev M, Geeven G, Melquiond ASJ, de Jesus Domingues AM, de Laat W, Niehrs C, Smith AD, Ketting RF. Enhancers reside in a unique epigenetic environment during early zebrafish development. Genome Biol 2016; 17:146. [PMID: 27381023 PMCID: PMC4934011 DOI: 10.1186/s13059-016-1013-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Enhancers, not promoters, are the most dynamic in their DNA methylation status throughout development and differentiation. Generally speaking, enhancers that are primed to or actually drive gene expression are characterized by relatively low levels of DNA methylation (hypo-methylation), while inactive enhancers display hyper-methylation of the underlying DNA. The direct functional significance of the DNA methylation state of enhancers is, however, unclear for most loci. RESULTS In contrast to conventional epigenetic interactions at enhancers, we find that DNA methylation status and enhancer activity during early zebrafish development display very unusual correlation characteristics: hypo-methylation is a unique feature of primed enhancers whereas active enhancers are generally hyper-methylated. The hypo-methylated enhancers that we identify (hypo-enhancers) are enriched close to important transcription factors that act later in development. Interestingly, hypo-enhancers are de-methylated shortly before the midblastula transition and reside in a unique epigenetic environment. Finally, we demonstrate that hypo-enhancers do become active at later developmental stages and that they are physically associated with the transcriptional start site of target genes, irrespective of target gene activity. CONCLUSIONS We demonstrate that early development in zebrafish embodies a time window characterized by non-canonical DNA methylation-enhancer relationships, including global DNA hypo-methylation of inactive enhancers and DNA hyper-methylation of active enhancers.
Collapse
Affiliation(s)
- Lucas J T Kaaij
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Meng Zhou
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael Musheev
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | - Geert Geeven
- Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Adrien S J Melquiond
- Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | - Wouter de Laat
- Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.,Division of Molecular Embryology, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Andrew D Smith
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - René F Ketting
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
78
|
Wragg J, Müller F. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. ADVANCES IN GENETICS 2016; 95:161-94. [PMID: 27503357 DOI: 10.1016/bs.adgen.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryo development commences with the fusion of two terminally differentiated haploid gametes into the totipotent fertilized egg, which through a series of major cellular and molecular transitions generate a pluripotent cell mass. The activation of the zygotic genome occurs during the so-called maternal to zygotic transition and prepares the embryo for zygotic takeover from maternal factors, in the control of the development of cellular lineages during differentiation. Recent advances in next generation sequencing technologies have allowed the dissection of the genomic and epigenomic processes mediating this transition. These processes include reorganization of the chromatin structure to a transcriptionally permissive state, changes in composition and function of structural and regulatory DNA-binding proteins, and changeover of the transcriptome as it is overhauled from that deposited by the mother in the oocyte to a zygotically transcribed complement. Zygotic genome activation in zebrafish occurs 10 cell cycles after fertilization and provides an ideal experimental platform for elucidating the temporal sequence and dynamics of establishment of a transcriptionally active chromatin state and helps in identifying the determinants of transcription activation at polymerase II transcribed gene promoters. The relatively large number of pluripotent cells generated by the fast cell divisions before zygotic transcription provides sufficient biomass for next generation sequencing technology approaches to establish the temporal dynamics of events and suggest causative relationship between them. However, genomic and genetic technologies need to be improved further to capture the earliest events in development, where cell number is a limiting factor. These technologies need to be complemented with precise, inducible genetic interference studies using the latest genome editing tools to reveal the function of candidate determinants and to confirm the predictions made by classic embryological tools and genome-wide assays. In this review we summarize recent advances in the characterization of epigenetic regulation, transcription control, and gene promoter function during zygotic genome activation and how they fit with old models for the mechanisms of the maternal to zygotic transition. This review will focus on the zebrafish embryo but draw comparisons with other vertebrate model systems and refer to invertebrate models where informative.
Collapse
Affiliation(s)
- J Wragg
- University of Birmingham, Birmingham, United Kingdom
| | - F Müller
- University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
79
|
Levario TJ, Lim B, Shvartsman SY, Lu H. Microfluidics for High-Throughput Quantitative Studies of Early Development. Annu Rev Biomed Eng 2016; 18:285-309. [PMID: 26928208 DOI: 10.1146/annurev-bioeng-100515-013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo.
Collapse
Affiliation(s)
- Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
80
|
Onichtchouk D, Driever W. Zygotic Genome Activators, Developmental Timing, and Pluripotency. Curr Top Dev Biol 2016; 116:273-97. [PMID: 26970624 DOI: 10.1016/bs.ctdb.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transcription factors Pou5f1, Sox2, and Nanog are central regulators of pluripotency in mammalian ES and iPS cells. In vertebrate embryos, Pou5f1/3, SoxB1, and Nanog control zygotic genome activation and participate in lineage decisions. We review the current knowledge of the roles of these genes in developing vertebrate embryos from fish to mammals and suggest a model for pluripotency gene regulatory network functions in early development.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| | - Wolfgang Driever
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
81
|
Ferraro T, Esposito E, Mancini L, Ng S, Lucas T, Coppey M, Dostatni N, Walczak AM, Levine M, Lagha M. Transcriptional Memory in the Drosophila Embryo. Curr Biol 2016; 26:212-218. [PMID: 26748851 PMCID: PMC4970865 DOI: 10.1016/j.cub.2015.11.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 02/04/2023]
Abstract
Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.
Collapse
Affiliation(s)
- Teresa Ferraro
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France
| | - Emilia Esposito
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Laure Mancini
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sam Ng
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tanguy Lucas
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Aleksandra M Walczak
- CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France
| | - Michael Levine
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Mounia Lagha
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; IGMM, CNRS, UMR 5535, Montpellier 34293, France.
| |
Collapse
|
82
|
Samee MAH, Lim B, Samper N, Lu H, Rushlow CA, Jiménez G, Shvartsman SY, Sinha S. A Systematic Ensemble Approach to Thermodynamic Modeling of Gene Expression from Sequence Data. Cell Syst 2015; 1:396-407. [PMID: 27136354 DOI: 10.1016/j.cels.2015.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022]
Abstract
To understand the relationship between an enhancer DNA sequence and quantitative gene expression, thermodynamics-driven mathematical models of transcription are often employed. These "sequence-to-expression" models can describe an incomplete or even incorrect set of regulatory relationships if the parameter space is not searched systematically. Here, we focus on an enhancer of the Drosophila gene ind and demonstrate how a systematic search of parameter space can reveal a more comprehensive picture of a gene's regulatory mechanisms, resolve outstanding ambiguities, and suggest testable hypotheses. We describe an approach that generates an ensemble of ind models; all of these models are technically acceptable solutions to the sequence-to-expression problem in light of wild-type data, and some represent mechanistically distinct hypotheses about the regulation of ind. This ensemble can be restricted to biologically plausible models using requirements gleaned from in vivo perturbation experiments. Biologically plausible models make unique predictions about how specific ind enhancer sequences affect ind expression; we validate these predictions in vivo through site mutagenesis in transgenic Drosophila embryos.
Collapse
Affiliation(s)
- Md Abul Hassan Samee
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Núria Samper
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08208, Spain
| | - Hang Lu
- School of Chemical and Biomolecular Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Gerardo Jiménez
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08208, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
83
|
Abstract
The Drosophila blastoderm and the vertebrate neural tube are archetypal examples of morphogen-patterned tissues that create precise spatial patterns of different cell types. In both tissues, pattern formation is dependent on molecular gradients that emanate from opposite poles. Despite distinct evolutionary origins and differences in time scales, cell biology and molecular players, both tissues exhibit striking similarities in the regulatory systems that establish gene expression patterns that foreshadow the arrangement of cell types. First, signaling gradients establish initial conditions that polarize the tissue, but there is no strict correspondence between specific morphogen thresholds and boundary positions. Second, gradients initiate transcriptional networks that integrate broadly distributed activators and localized repressors to generate patterns of gene expression. Third, the correct positioning of boundaries depends on the temporal and spatial dynamics of the transcriptional networks. These similarities reveal design principles that are likely to be broadly applicable to morphogen-patterned tissues.
Collapse
Affiliation(s)
- James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Stephen Small
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
84
|
Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res 2015; 25:1703-14. [PMID: 26335633 PMCID: PMC4617966 DOI: 10.1101/gr.192542.115] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.
Collapse
|
85
|
Schulz KN, Bondra ER, Moshe A, Villalta JE, Lieb JD, Kaplan T, McKay DJ, Harrison MM. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res 2015; 25:1715-26. [PMID: 26335634 PMCID: PMC4617967 DOI: 10.1101/gr.192682.115] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/20/2015] [Indexed: 01/24/2023]
Abstract
The transition from a specified germ cell to a population of pluripotent cells occurs rapidly following fertilization. During this developmental transition, the zygotic genome is largely transcriptionally quiescent and undergoes significant chromatin remodeling. In Drosophila, the DNA-binding protein Zelda (also known as Vielfaltig) is required for this transition and for transcriptional activation of the zygotic genome. Open chromatin is associated with Zelda-bound loci, as well as more generally with regions of active transcription. Nonetheless, the extent to which Zelda influences chromatin accessibility across the genome is largely unknown. Here we used formaldehyde-assisted isolation of regulatory elements to determine the role of Zelda in regulating regions of open chromatin in the early embryo. We demonstrate that Zelda is essential for hundreds of regions of open chromatin. This Zelda-mediated chromatin accessibility facilitates transcription-factor recruitment and early gene expression. Thus, Zelda possesses some key characteristics of a pioneer factor. Unexpectedly, chromatin at a large subset of Zelda-bound regions remains open even in the absence of Zelda. The GAGA factor-binding motif and embryonic GAGA factor binding are specifically enriched in these regions. We propose that both Zelda and GAGA factor function to specify sites of open chromatin and together facilitate the remodeling of the early embryonic genome.
Collapse
Affiliation(s)
- Katharine N Schulz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Eliana R Bondra
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Arbel Moshe
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jacqueline E Villalta
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel J McKay
- Departments of Biology and Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
86
|
Shin DH, Hong JW. The shadow enhancer of short gastrulation also directs its expression in the ventral midline of the Drosophila embryo. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
87
|
Laver JD, Marsolais AJ, Smibert CA, Lipshitz HD. Regulation and Function of Maternal Gene Products During the Maternal-to-Zygotic Transition in Drosophila. Curr Top Dev Biol 2015; 113:43-84. [PMID: 26358870 DOI: 10.1016/bs.ctdb.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila late-stage oocytes and early embryos are transcriptionally silent. Thus, control of gene expression during these developmental periods is posttranscriptional and posttranslational. Global changes in the transcriptome and proteome occur during oocyte maturation, after egg activation and fertilization, and upon zygotic genome activation. We review the scale, content, and dynamics of these global changes; the factors that regulate these changes; and the mechanisms by which they are accomplished. We highlight the intimate relationship between the clearance of maternal gene products and the activation of the embryo's own genome, and discuss the fact that each of these complementary components of the maternal-to-zygotic transition can be subdivided into several phases that serve different biological roles and are regulated by distinct factors.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
88
|
Boija A, Mannervik M. A time of change: Dynamics of chromatin and transcriptional regulation during nuclear programming in earlyDrosophiladevelopment. Mol Reprod Dev 2015; 82:735-46. [DOI: 10.1002/mrd.22517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ann Boija
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
89
|
Varala K, Li Y, Marshall-Colón A, Para A, Coruzzi GM. "Hit-and-Run" leaves its mark: catalyst transcription factors and chromatin modification. Bioessays 2015; 37:851-6. [PMID: 26108710 PMCID: PMC4548861 DOI: 10.1002/bies.201400205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome‐wide evidence for a “Hit‐and‐Run” model of transcription. In this model, a master TF “hits” a target promoter to initiate a rapid response to a signal. As the “hit” is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the “run”, the master TF “hits” other targets to propagate the response genome‐wide. As such, a TF may act as a “catalyst” to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long‐term adaptive behavior in the whole organism. This “Hit‐and‐Run” model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF‐regulated and TF‐bound genes, implicating transient TF‐target binding. Here, we explore this “Hit‐and‐Run” model to suggest molecular mechanisms and its biological relevance.
Collapse
Affiliation(s)
- Kranthi Varala
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Ying Li
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
90
|
Laver JD, Li X, Ray D, Cook KB, Hahn NA, Nabeel-Shah S, Kekis M, Luo H, Marsolais AJ, Fung KY, Hughes TR, Westwood JT, Sidhu SS, Morris Q, Lipshitz HD, Smibert CA. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biol 2015; 16:94. [PMID: 25962635 PMCID: PMC4460960 DOI: 10.1186/s13059-015-0659-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. Results Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. Conclusions Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Xiao Li
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Debashish Ray
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Kate B Cook
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Noah A Hahn
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Mariana Kekis
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Alexander J Marsolais
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Karen Yy Fung
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - J Timothy Westwood
- Department of Biology, University of Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada. .,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada. .,Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, M5S 2E4, Canada.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
91
|
O’Connell MD, Reeves GT. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient. PLoS Comput Biol 2015; 11:e1004159. [PMID: 25879657 PMCID: PMC4400154 DOI: 10.1371/journal.pcbi.1004159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.
Collapse
Affiliation(s)
- Michael D. O’Connell
- North Carolina State University Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina, United States of America
| | - Gregory T. Reeves
- North Carolina State University Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
92
|
Dubrulle J, Jordan BM, Akhmetova L, Farrell JA, Kim SH, Solnica-Krezel L, Schier AF. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. eLife 2015; 4. [PMID: 25869585 PMCID: PMC4395910 DOI: 10.7554/elife.05042] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI:http://dx.doi.org/10.7554/eLife.05042.001 How a cell can tell where it is in a developing embryo has fascinated scientists for decades. The pioneering computer scientist and mathematical biologist Alan Turing was the first person to coin the term ‘morphogen’ to describe a protein that provides information about locations in the body. A morphogen is released from a group of cells (called the ‘source’) and as it moves away its activity (called the ‘signal’) declines gradually. Cells sense this signal gradient and use it to detect their position with respect to the source. Nodal is an important morphogen and is required to establish the correct identity of cells in the embryo; for example, it helps determine which cells should become a brain or heart or gut cell and so on. The zebrafish is a widely used model to study animal development, in part because its embryos are transparent; this allows cells and proteins to be easily observed under a microscope. When Nodal acts on cells, another protein called Smad2 becomes activated, moves into the cell's nucleus, and then binds to specific genes. This triggers the expression of these genes, which are first copied into mRNA molecules via a process known as transcription and are then translated into proteins. The protein products of these targeted genes control cell identity and movement. Several models have been proposed to explain how different concentrations of Nodal switch on the expression of different target genes; that is to say, to explain how a cell interprets the Nodal gradient. Dubrulle et al. have now measured factors that underlie how this gradient is interpreted. Individual cells in zebrafish embryos were tracked under a microscope, and Smad2 activation and gene expression were assessed. Dubrulle et al. found that, in contradiction to previous models, the amount of Nodal present on its own was insufficient to predict the target gene response. Instead, their analysis suggests that the size of each target gene's response depends on its rate of transcription and how quickly it is first expressed in response to Nodal. These findings of Dubrulle et al. suggest that timing and transcription rate are important in determining the appropriate response to Nodal. Further work will be now needed to find out whether similar mechanisms regulate other processes that rely on the activity of morphogens. DOI:http://dx.doi.org/10.7554/eLife.05042.002
Collapse
Affiliation(s)
- Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Benjamin M Jordan
- Department of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, United States
| | - Laila Akhmetova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Seok-Hyung Kim
- Division of Medicine, Medical University of South Carolina, Charleston, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
93
|
Abstract
Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. This review by Iwafuchi-Doi and Zaret focuses on the most recent studies of pioneer factors in cell programming and reprogramming, how pioneer factors have special chromatin-binding properties, and facilitators and impediments to chromatin binding. A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in “closed” chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.
Collapse
Affiliation(s)
- Makiko Iwafuchi-Doi
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
94
|
Harrison MM, Eisen MB. Transcriptional Activation of the Zygotic Genome in Drosophila. Curr Top Dev Biol 2015; 113:85-112. [DOI: 10.1016/bs.ctdb.2015.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
95
|
Hamm DC, Bondra ER, Harrison MM. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain. J Biol Chem 2014; 290:3508-18. [PMID: 25538246 DOI: 10.1074/jbc.m114.602292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome.
Collapse
Affiliation(s)
- Danielle C Hamm
- From the Department of Biomolecular Chemistry, University of Wisconsin Madison, Wisconsin 53706
| | - Eliana R Bondra
- From the Department of Biomolecular Chemistry, University of Wisconsin Madison, Wisconsin 53706
| | - Melissa M Harrison
- From the Department of Biomolecular Chemistry, University of Wisconsin Madison, Wisconsin 53706
| |
Collapse
|
96
|
Li XY, Harrison MM, Villalta JE, Kaplan T, Eisen MB. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition. eLife 2014; 3. [PMID: 25313869 PMCID: PMC4358338 DOI: 10.7554/elife.03737] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022] Open
Abstract
We describe the genome-wide distributions and temporal dynamics of nucleosomes and post-translational histone modifications throughout the maternal-to-zygotic transition in embryos of Drosophila melanogaster. At mitotic cycle 8, when few zygotic genes are being transcribed, embryonic chromatin is in a relatively simple state: there are few nucleosome free regions, undetectable levels of the histone methylation marks characteristic of mature chromatin, and low levels of histone acetylation at a relatively small number of loci. Histone acetylation increases by cycle 12, but it is not until cycle 14 that nucleosome free regions and domains of histone methylation become widespread. Early histone acetylation is strongly associated with regions that we have previously shown to be bound in early embryos by the maternally deposited transcription factor Zelda, suggesting that Zelda triggers a cascade of events, including the accumulation of specific histone modifications, that plays a role in the subsequent activation of these sequences.
Collapse
Affiliation(s)
- Xiao-Yong Li
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, United States
| | - Jacqueline E Villalta
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael B Eisen
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States
| |
Collapse
|