51
|
Actin protrusions push at apical junctions to maintain E-cadherin adhesion. Proc Natl Acad Sci U S A 2019; 117:432-438. [PMID: 31871203 DOI: 10.1073/pnas.1908654117] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cadherin-mediated cell-cell adhesion is actin-dependent, but the precise role of actin in maintaining cell-cell adhesion is not fully understood. Actin polymerization-dependent protrusive activity is required to push distally separated cells close enough to initiate contact. Whether protrusive activity is required to maintain adhesion in confluent sheets of epithelial cells is not known. By electron microscopy as well as live cell imaging, we have identified a population of protruding actin microspikes that operate continuously near apical junctions of polarized Madin-Darby canine kidney (MDCK) cells. Live imaging shows that microspikes containing E-cadherin extend into gaps between E-cadherin clusters on neighboring cells, while reformation of cadherin clusters across the cell-cell boundary correlates with microspike withdrawal. We identify Arp2/3, EVL, and CRMP-1 as 3 actin assembly factors necessary for microspike formation. Depleting these factors from cells using RNA interference (RNAi) results in myosin II-dependent unzipping of cadherin adhesive bonds. Therefore, actin polymerization-dependent protrusive activity operates continuously at cadherin cell-cell junctions to keep them shut and to prevent myosin II-dependent contractility from tearing cadherin adhesive contacts apart.
Collapse
|
52
|
Terekhova K, Pokutta S, Kee YS, Li J, Tajkhorshid E, Fuller G, Dunn AR, Weis WI. Binding partner- and force-promoted changes in αE-catenin conformation probed by native cysteine labeling. Sci Rep 2019; 9:15375. [PMID: 31653927 PMCID: PMC6814714 DOI: 10.1038/s41598-019-51816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adherens Junctions (AJs) are cell-cell adhesion complexes that sense and propagate mechanical forces by coupling cadherins to the actin cytoskeleton via β-catenin and the F-actin binding protein αE-catenin. When subjected to mechanical force, the cadherin•catenin complex can tightly link to F-actin through αE-catenin, and also recruits the F-actin-binding protein vinculin. In this study, labeling of native cysteines combined with mass spectrometry revealed conformational changes in αE-catenin upon binding to the E-cadherin•β-catenin complex, vinculin and F-actin. A method to apply physiologically meaningful forces in solution revealed force-induced conformational changes in αE-catenin when bound to F-actin. Comparisons of wild-type αE-catenin and a mutant with enhanced vinculin affinity using cysteine labeling and isothermal titration calorimetry provide evidence for allosteric coupling of the N-terminal β-catenin-binding and the middle (M) vinculin-binding domain of αE-catenin. Cysteine labeling also revealed possible crosstalk between the actin-binding domain and the rest of the protein. The data provide insight into how binding partners and mechanical stress can regulate the conformation of full-length αE-catenin, and identify the M domain as a key transmitter of conformational changes.
Collapse
Affiliation(s)
- Ksenia Terekhova
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yee S Kee
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (Y.S.K.); Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 (J.L.), USA
| | - Jing Li
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA.,Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (Y.S.K.); Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 (J.L.), USA
| | - Emad Tajkhorshid
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA
| | - Gerald Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
53
|
Han P, Frith JE, Gomez GA, Yap AS, O'Neill GM, Cooper-White JJ. Five Piconewtons: The Difference between Osteogenic and Adipogenic Fate Choice in Human Mesenchymal Stem Cells. ACS NANO 2019; 13:11129-11143. [PMID: 31580055 DOI: 10.1021/acsnano.9b03914] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ability of mesenchymal stem cells to sense nanoscale variations in extracellular matrix (ECM) compositions in their local microenvironment is crucial to their survival and their fate; however, the underlying molecular mechanisms defining how such fates are temporally modulated remain poorly understood. In this work, we have utilized self-assembled block copolymer surfaces to present nanodomains of an adhesive peptide found in many ECM proteins at different lateral spacings (from 30 to 60 nm) and studied the temporal response (2 h to 14 days) of human mesenchymal stem cells (hMSCs) using a panel of real-time localization and activity biosensors. Our findings revealed that within the first 4 to 24 h postadhesion and spreading, hMSCs on smaller nanodomain spacings recruit more activated FAK and Src proteins to produce larger, longer-lived, and increased numbers of focal adhesions (FAs). The adhesions formed on smaller nanospacings rapidly recruit higher amounts of nonmuscle myosin IIA and vinculin and experience tension forces (by >5 pN/FA) significantly higher than those observed on larger nanodomain spacings. The transmission of higher levels of tension into the cytoskeleton at short times was accompanied by higher Rac1, cytosolic β-catenin, and nuclear localization of YAP/TAZ and RUNX2, which together biased the commitment of hMSCs to an osteogenic fate. This investigation provides mechanistic insights to confirm that smaller lateral spacings of adhesive nanodomains alter hMSC mechanosensing and biases mechanotransduction at short times via differential coupling of FAK/Src/Rac1/myosin IIA/YAP/TAZ signaling pathways to support longer-term changes in stem cell differentiation and state.
Collapse
Affiliation(s)
- Pingping Han
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN) , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
| | - Jessica E Frith
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN) , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
- Materials Science and Engineering , Monash University , Melbourne , VIC 3168 , Australia
| | - Guillermo A Gomez
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
- Centre for Cancer Biology , South Australia Pathology and The University of South Australia , Adelaide , SA 5001 , Australia
| | - Alpha S Yap
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
| | - Geraldine M O'Neill
- Kids Research Institute , Children's Hospital at Westmead , Sydney , NSW 2006 , Australia
- Discipline of Child and Adolescent Health , University of Sydney , Sydney , NSW 2006 , Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN) , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing , Melbourne , Clayton, VIC 3168 , Australia
- School of Chemical Engineering , The University of Queensland , Brisbane , St. Lucia, QLD 4067 , Australia
| |
Collapse
|
54
|
Dasgupta I, McCollum D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem 2019; 294:17693-17706. [PMID: 31594864 DOI: 10.1074/jbc.rev119.007963] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To perceive their three-dimensional environment, cells and tissues must be able to sense and interpret various physical forces like shear, tensile, and compression stress. These forces can be generated both internally and externally in response to physical properties, like substrate stiffness, cell contractility, and forces generated by adjacent cells. Mechanical cues have important roles in cell fate decisions regarding proliferation, survival, and differentiation as well as the processes of tissue regeneration and wound repair. Aberrant remodeling of the extracellular space and/or defects in properly responding to mechanical cues likely contributes to various disease states, such as fibrosis, muscle diseases, and cancer. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical signals, like activation of specific genes and signaling cascades that enable cells to adapt to their physical environment. The signaling pathways involved in mechanical signaling are highly complex, but numerous studies have highlighted a central role for the Hippo pathway and other signaling networks in regulating the YAP and TAZ (YAP/TAZ) proteins to mediate the effects of mechanical stimuli on cellular behavior. How mechanical cues control YAP/TAZ has been poorly understood. However, rapid progress in the last few years is beginning to reveal a surprisingly diverse set of pathways for controlling YAP/TAZ. In this review, we will focus on how mechanical perturbations are sensed through changes in the actin cytoskeleton and mechanosensors at focal adhesions, adherens junctions, and the nuclear envelope to regulate YAP/TAZ.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
55
|
Abstract
Cell-cell junctions are specializations of the plasma membrane responsible for physically integrating cells into tissues. We are now beginning to appreciate the diverse impacts that mechanical forces exert upon the integrity and function of these junctions. Currently, this is best understood for cadherin-based adherens junctions in epithelia and endothelia, where cell-cell adhesion couples the contractile cytoskeletons of cells together to generate tissue-scale tension. Junctional tension participates in morphogenesis and tissue homeostasis. Changes in tension can also be detected by mechanotransduction pathways that allow cells to communicate with each other. In this review, we discuss progress in characterising the forces present at junctions in physiological conditions; the cellular mechanisms that generate intrinsic tension and detect changes in tension; and, finally, we consider how tissue integrity is maintained in the face of junctional stresses.
Collapse
|
56
|
Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Dev Cell 2019; 51:62-77.e5. [PMID: 31495694 DOI: 10.1016/j.devcel.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.
Collapse
|
57
|
Merkel CD, Li Y, Raza Q, Stolz DB, Kwiatkowski AV. Vinculin anchors contractile actin to the cardiomyocyte adherens junction. Mol Biol Cell 2019; 30:2639-2650. [PMID: 31483697 PMCID: PMC6761764 DOI: 10.1091/mbc.e19-04-0216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to allow mechanical integration and tissue organization. The physiological demands of intercellular adhesion require that the AJ be responsive to dynamic changes in force while maintaining mechanical load. These demands are tested in the heart, where cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding ligands to selectively couple actin networks. We employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was required to rescue myofibril integration at nascent contacts. In contrast, loss of vinculin from the AJ disrupted junction morphology and blocked myofibril integration at cell–cell contacts. Our results identify vinculin as a critical link to contractile actomyosin and offer insight to how actin integration at the AJ is regulated to provide stability under mechanical load.
Collapse
Affiliation(s)
- Chelsea D Merkel
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yang Li
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Qanber Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Donna B Stolz
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Adam V Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
58
|
Konishi S, Yano T, Tanaka H, Mizuno T, Kanoh H, Tsukita K, Namba T, Tamura A, Yonemura S, Gotoh S, Matsumoto H, Hirai T, Tsukita S. Vinculin is critical for the robustness of the epithelial cell sheet paracellular barrier for ions. Life Sci Alliance 2019; 2:2/4/e201900414. [PMID: 31399484 PMCID: PMC6689668 DOI: 10.26508/lsa.201900414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Vinculin in the apical junctional complex maintains the paracellular barrier function specifically for ions, but not for large solutes, by buffering mechanical fluctuations. The paracellular barrier function of tight junctions (TJs) in epithelial cell sheets is robustly maintained against mechanical fluctuations, by molecular mechanisms that are poorly understood. Vinculin is an adaptor of a mechanosensory complex at the adherens junction. Here, we generated vinculin KO Eph4 epithelial cells and analyzed their confluent cell-sheet properties. We found that vinculin is dispensable for the basic TJ structural integrity and the paracellular barrier function for larger solutes. However, vinculin is indispensable for the paracellular barrier function for ions. In addition, TJs stochastically showed dynamically distorted patterns in vinculin KO cell sheets. These KO phenotypes were rescued by transfecting full-length vinculin and by relaxing the actomyosin tension with blebbistatin, a myosin II ATPase activity inhibitor. Our findings indicate that vinculin resists mechanical fluctuations to maintain the TJ paracellular barrier function for ions in epithelial cell sheets.
Collapse
Affiliation(s)
- Satoshi Konishi
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroo Tanaka
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Pharmacology, Teikyo University, Tokyo, Japan.,Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan
| | - Tomoaki Mizuno
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hatsuho Kanoh
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kazuto Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshinori Namba
- Graduate School of Arts and Sciences, Tokyo University, Tokyo, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Pharmacology, Teikyo University, Tokyo, Japan.,Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan
| | - Shigenobu Yonemura
- Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima, Japan.,Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan .,Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan
| |
Collapse
|
59
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
60
|
Kiyoshima D, Tatsumi H, Hirata H, Sokabe M. Tensile Loads on Tethered Actin Filaments Induce Accumulation of Cell Adhesion-Associated Proteins in Vitro. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7443-7451. [PMID: 30204447 DOI: 10.1021/acs.langmuir.8b02076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focal adhesions (FAs) and adherens junctions (AJs), which serve as a mechanical interface of cell-matrix and cell-cell interactions, respectively, experience tensile force either originating from the deformation of the surrounding tissues or generated by the actomyosin machinery in the cell. These mechanical inputs cause enlargement of FAs and AJs, while the detailed mechanism for the force-dependent development of FAs and AJs remain unclear. Both FAs and AJs provide sites for tethering of actin filaments and actin polymerization. Here, we develop a cell-free system, in which actin filaments are tethered to glass surfaces, and show that application of tensile force to the tethered filaments in the cell extract induces accumulation of several FA and AJ proteins, associated with further accumulation of actin filaments via de novo actin polymerization. Decline in the tensile force results in a decrease in the amount of the accumulated proteins. These results suggest that the tensile force acting on the tethered actin filaments plays a crucial role in the accumulation of FA and AJ proteins.
Collapse
Affiliation(s)
- Daisuke Kiyoshima
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Department of Rehabilitation , Aichi Medical College , Kiyosu , Aichi 452-0931 , Japan
| | - Hitoshi Tatsumi
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Department of Applied Bioscience, College of Bioscience and Chemistry , Kanazawa Institute of Technology , Hakusan , Ishikawa 924-0838 , Japan
| | - Hiroaki Hirata
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Mechanobiology Laboratory , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
| | - Masahiro Sokabe
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Mechanobiology Laboratory , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
| |
Collapse
|
61
|
Wu SK, Priya R. Spatio-Temporal Regulation of RhoGTPases Signaling by Myosin II. Front Cell Dev Biol 2019; 7:90. [PMID: 31192208 PMCID: PMC6546806 DOI: 10.3389/fcell.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
RhoGTPase activation of non-muscle myosin II regulates cell division, extrusion, adhesion, migration, and tissue morphogenesis. However, the regulation of myosin II and mechanotransduction is not straightforward. Increasingly, the role of myosin II on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin II controls RhoGTPase signaling through multiple mechanisms, namely contractility driven advection, scaffolding, and sequestration of signaling molecules. Here we discuss these mechanisms by which myosin II regulates RhoGTPase signaling in cell adhesion, migration, and tissue morphogenesis.
Collapse
Affiliation(s)
- Selwin K Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
62
|
Rho Flares Repair Local Tight Junction Leaks. Dev Cell 2019; 48:445-459.e5. [PMID: 30773490 DOI: 10.1016/j.devcel.2019.01.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 01/17/2019] [Indexed: 12/29/2022]
Abstract
Tight junctions contribute to epithelial barrier function by selectively regulating the quantity and type of molecules that cross the paracellular barrier. Experimental approaches to evaluate the effectiveness of tight junctions are typically global, tissue-scale measures. Here, we introduce Zinc-based Ultrasensitive Microscopic Barrier Assay (ZnUMBA), which we used in Xenopus laevis embryos to visualize short-lived, local breaches in epithelial barrier function. These breaches, or leaks, occur as cell boundaries elongate, correspond to visible breaks in the tight junction, and are followed by transient localized Rho activation, or Rho flares. We discovered that Rho flares restore barrier function by driving concentration of tight junction proteins through actin polymerization and ROCK-mediated localized contraction of the cell boundary. We conclude that Rho flares constitute a damage control mechanism that reinstates barrier function when tight junctions become locally compromised because of normally occurring changes in cell shape and tissue tension.
Collapse
|
63
|
Arnold TR, Shawky JH, Stephenson RE, Dinshaw KM, Higashi T, Huq F, Davidson LA, Miller AL. Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network. eLife 2019; 8:39065. [PMID: 30702429 PMCID: PMC6424563 DOI: 10.7554/elife.39065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular forces sculpt organisms during development, while misregulation of cellular mechanics can promote disease. Here, we investigate how the actomyosin scaffold protein anillin contributes to epithelial mechanics in Xenopus laevis embryos. Increased mechanosensitive recruitment of vinculin to cell-cell junctions when anillin is overexpressed suggested that anillin promotes junctional tension. However, junctional laser ablation unexpectedly showed that junctions recoil faster when anillin is depleted and slower when anillin is overexpressed. Unifying these findings, we demonstrate that anillin regulates medial-apical actomyosin. Medial-apical laser ablation supports the conclusion that that tensile forces are stored across the apical surface of epithelial cells, and anillin promotes the tensile forces stored in this network. Finally, we show that anillin's effects on cellular mechanics impact tissue-wide mechanics. These results reveal anillin as a key regulator of epithelial mechanics and lay the groundwork for future studies on how anillin may contribute to mechanical events in development and disease.
Collapse
Affiliation(s)
- Torey R Arnold
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Joseph H Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, United States.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Rachel E Stephenson
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Kayla M Dinshaw
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Tomohito Higashi
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Farah Huq
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lance A Davidson
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, United States.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Ann L Miller
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
64
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
65
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
66
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
67
|
Yap AS, Duszyc K, Viasnoff V. Mechanosensing and Mechanotransduction at Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028761. [PMID: 28778874 DOI: 10.1101/cshperspect.a028761] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell adhesion systems are defined by their ability to resist detachment force. Our understanding of the biology of cell-cell adhesions has recently been transformed by the realization that many of the forces that act on those adhesions are generated by the cells that they couple together; and that force at adhesive junctions can be sensed to regulate cell behavior. Here, we consider the mechanisms responsible for applying force to cell-cell junctions and the mechanosensory pathways that detect those forces. We focus on cadherins, as these are the best-studied examples to date, but it is likely that similar principles will apply to other molecular systems that can engage with force-generators within cells and physically couple those cells together.
Collapse
Affiliation(s)
- Alpha S Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Kinga Duszyc
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,CNRS, Singapore 117411
| |
Collapse
|
68
|
Gao X, Acharya BR, Engl WCO, De Mets R, Thiery JP, Yap AS, Viasnoff V. Probing compression versus stretch activated recruitment of cortical actin and apical junction proteins using mechanical stimulations of suspended doublets. APL Bioeng 2018; 2:026111. [PMID: 31069308 PMCID: PMC6481720 DOI: 10.1063/1.5025216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 11/25/2022] Open
Abstract
We report an experimental approach to study the mechanosensitivity of cell-cell contact upon mechanical stimulation in suspended cell-doublets. The doublet is placed astride an hourglass aperture, and a hydrodynamic force is selectively exerted on only one of the cells. The geometry of the device concentrates the mechanical shear over the junction area. Together with mechanical shear, the system also allows confocal quantitative live imaging of the recruitment of junction proteins (e.g., E-cadherin, ZO-1, occludin, and actin). We observed the time sequence over which proteins were recruited to the stretched region of the contact. The compressed side of the contact showed no response. We demonstrated how this mechanism polarizes the stress-induced recruitment of junctional components within one single junction. Finally, we demonstrated that stabilizing the actin cortex dynamics abolishes the mechanosensitive response of the junction. Our experimental design provides an original approach to study the role of mechanical force at a cell-cell contact with unprecedented control over stress application and quantitative optical analysis.
Collapse
Affiliation(s)
- Xumei Gao
- Mechanobiology Institute, Singapore, Level 5, T-Lab Building, 5A Engineering Drive 1, Singapore 117411
| | - Bipul R Acharya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Wilfried Claude Otto Engl
- Mechanobiology Institute, Singapore, Level 5, T-Lab Building, 5A Engineering Drive 1, Singapore 117411
| | - Richard De Mets
- Mechanobiology Institute, Singapore, Level 5, T-Lab Building, 5A Engineering Drive 1, Singapore 117411
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos building, Singapore 138673
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
69
|
Sehgal P, Kong X, Wu J, Sunyer R, Trepat X, Leckband D. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions. J Cell Sci 2018; 131:jcs206656. [PMID: 29487179 PMCID: PMC5897709 DOI: 10.1242/jcs.206656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Poonam Sehgal
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia, Barcelona, Spain 08028
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain 08028
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain 08028
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain 08028
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 08028
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61802, USA
- Department of Chemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
| |
Collapse
|
70
|
Nekrasova O, Harmon RM, Broussard JA, Koetsier JL, Godsel LM, Fitz GN, Gardel ML, Green KJ. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat Commun 2018; 9:1053. [PMID: 29535305 PMCID: PMC5849617 DOI: 10.1038/s41467-018-03414-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
The epidermis is a multi-layered epithelium that serves as a barrier against water loss and environmental insults. Its morphogenesis occurs through a tightly regulated program of biochemical and architectural changes during which basal cells commit to differentiate and move towards the skin's surface. Here, we reveal an unexpected role for the vertebrate cadherin desmoglein 1 (Dsg1) in remodeling the actin cytoskeleton to promote the transit of basal cells into the suprabasal layer through a process of delamination, one mechanism of epidermal stratification. Actin remodeling requires the interaction of Dsg1 with the dynein light chain, Tctex-1 and the actin scaffolding protein, cortactin. We demonstrate that Tctex-1 ensures the correct membrane compartmentalization of Dsg1-containing desmosomes, allowing cortactin/Arp2/3-dependent perijunctional actin polymerization and decreasing tension at E-cadherin junctions to promote keratinocyte delamination. Moreover, Dsg1 is sufficient to enable simple epithelial cells to exit a monolayer to form a second layer, highlighting its morphogenetic potential.
Collapse
Affiliation(s)
- Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, 60637, IL, USA
| | - Joshua A Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Gillian N Fitz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, 60637, IL, USA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA.
| |
Collapse
|
71
|
Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50:42-49. [PMID: 29454273 DOI: 10.1016/j.ceb.2018.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Mechanical signals from the extracellular space are paramount to coordinate tissue morphogenesis and homeostasis. Although there is a wide variety of cellular mechanisms involved in transducing extracellular forces, recent literature emphasizes the central role of two main adhesion complexes in epithelial mechanosensitive processes: focal adhesions and adherens junctions. These biomechanical sensors can decode physical signals such as matrix stiffness or intercellular tension into a wide range of coordinated cellular responses, which can impact cell differentiation, migration, and proliferation. Communication between cells and their microenvironment plays a pivotal role both in physiological and pathological conditions. Here we summarize the most recent findings on the biology of these mechanotransduction pathways in epithelial cells, highlighting the extensive amount of biological processes coordinated by cell-matrix and cell-cell adhesion complexes.
Collapse
|
72
|
Dutta S, Mana-Capelli S, Paramasivam M, Dasgupta I, Cirka H, Billiar K, McCollum D. TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Rep 2018; 19:337-350. [PMID: 29222344 PMCID: PMC5797958 DOI: 10.15252/embr.201744777] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
The transcriptional co-activator YAP controls cell proliferation, survival, and tissue regeneration in response to changes in the mechanical environment. It is not known how mechanical stimuli such as tension are sensed and how the signal is transduced to control YAP activity. Here, we show that the LIM domain protein TRIP6 acts as part of a mechanotransduction pathway at adherens junctions to promote YAP activity by inhibiting the LATS1/2 kinases. Previous studies showed that vinculin at adherens junctions becomes activated by mechanical tension. We show that vinculin inhibits Hippo signaling by recruiting TRIP6 to adherens junctions and stimulating its binding to and inhibition of LATS1/2 in response to tension. TRIP6 competes with MOB1 for binding to LATS1/2 thereby blocking MOB1 from recruiting the LATS1/2 activating kinases MST1/2. Together, these findings reveal a novel pathway that responds to tension at adherens junctions to control Hippo pathway signaling.
Collapse
Affiliation(s)
- Shubham Dutta
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sebastian Mana-Capelli
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Murugan Paramasivam
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ishani Dasgupta
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Heather Cirka
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kris Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Dannel McCollum
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
73
|
Coburn L, Lopez H, Schouwenaar IM, Yap AS, Lobaskin V, Gomez GA. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury. Phys Biol 2018; 15:024001. [PMID: 29091048 DOI: 10.1088/1478-3975/aa976b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.
Collapse
Affiliation(s)
- Luke Coburn
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, United Kingdom. Authors to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
74
|
Liang X, Kiru S, Gomez GA, Yap AS. Regulated recruitment of SRGAP1 modulates RhoA signaling for contractility during epithelial junction maturation. Cytoskeleton (Hoboken) 2017; 75:61-69. [PMID: 29160905 DOI: 10.1002/cm.21420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/06/2022]
Abstract
Adherens junctions in epithelia are contractile structures, where coupling of adhesion to the actomyosin cytoskeleton generates mechanical tension for morphogenesis and homeostasis. In established monolayers, junctional contractility is supported by the interplay between cell signals and scaffolding proteins. However, less is known about how contractile junctions develop, especially during the establishment of epithelial monolayers. Here, we show that junctional tension increases concomitant with accumulation of actomyosin networks as Caco-2 epithelia become confluent. This is associated with development of a zone of RhoA signaling at junctions. Further, we find that the low levels of RhoA signaling and contractility found in subconfluent cultures reflect a mechanism for their active suppression. Specifically, the RhoA antagonist, SRGAP1, is present at subconfluent junctions to a greater extent than in confluent cultures and SRGAP1 RNAi restores RhoA signaling and contractility in subconfluent cultures to levels seen in confluent cells. Overall, these observations suggest that regulated changes in junctional contractility mediated by modulation of RhoA signaling occur as epithelial monolayers mature.
Collapse
Affiliation(s)
- Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Sajini Kiru
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
75
|
Ito S, Okuda S, Abe M, Fujimoto M, Onuki T, Nishimura T, Takeichi M. Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells. Nat Commun 2017; 8:1834. [PMID: 29184140 PMCID: PMC5705652 DOI: 10.1038/s41467-017-01945-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022] Open
Abstract
Normal epithelial cells are stably connected to each other via the apical junctional complex (AJC). AJCs, however, tend to be disrupted during tumor progression, and this process is implicated in cancer dissemination. Here, using colon carcinoma cells that fail to form AJCs, we investigated molecular defects behind this failure through a search for chemical compounds that could restore AJCs, and found that microtubule-polymerization inhibitors (MTIs) were effective. MTIs activated GEF-H1/RhoA signaling, causing actomyosin contraction at the apical cortex. This contraction transmitted force to the cadherin-catenin complex, resulting in a mechanosensitive recruitment of vinculin to cell junctions. This process, in turn, recruited PDZ-RhoGEF to the junctions, leading to the RhoA/ROCK/LIM kinase/cofilin-dependent stabilization of the junctions. RhoGAP depletion mimicked these MTI-mediated processes. Cells that normally organize AJCs did not show such MTI/RhoA sensitivity. Thus, advanced carcinoma cells require elevated RhoA activity for establishing robust junctions, which triggers tension-sensitive reorganization of actin/adhesion regulators.
Collapse
Affiliation(s)
- Shoko Ito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoru Okuda
- Laboratoty for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Masako Abe
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mari Fujimoto
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tetsuo Onuki
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tamako Nishimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
76
|
Higashi T, Miller AL. Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol Biol Cell 2017; 28:2023-2034. [PMID: 28705832 PMCID: PMC5509417 DOI: 10.1091/mbc.e16-10-0697] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023] Open
Abstract
Tricellular contacts are the places where three cells meet. In vertebrate epithelial cells, specialized structures called tricellular tight junctions (tTJs) and tricellular adherens junctions (tAJs) have been identified. tTJs are important for the maintenance of barrier function, and disruption of tTJ proteins contributes to familial deafness. tAJs have recently been attracting the attention of mechanobiologists because these sites are hot spots of epithelial tension. Although the molecular components, regulation, and function of tTJs and tAJs, as well as of invertebrate tricellular junctions, are beginning to be characterized, many questions remain. Here we broadly cover what is known about tricellular junctions, propose a new model for tension transmission at tAJs, and discuss key open questions.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
77
|
Barrick S, Li J, Kong X, Ray A, Tajkhorshid E, Leckband D. Salt bridges gate α-catenin activation at intercellular junctions. Mol Biol Cell 2017; 29:111-122. [PMID: 29142072 PMCID: PMC5909925 DOI: 10.1091/mbc.e17-03-0168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/01/2022] Open
Abstract
Molecular dynamics simulations, equilibrium binding measurements, and fluorescence imaging reveal the influence of a key salt bridge in the mechanical activation of α-catenin at intercellular adhesions. Simulations reveal possible α-catenin conformational changes underlying experimental fluorescence and equilibrium binding data. Cadherin complexes transduce force fluctuations at junctions to activate signals that reinforce stressed intercellular contacts. α-Catenin is an identified force transducer within cadherin complexes that is autoinhibited under low tension. Increased force triggers a conformational change that exposes a cryptic site for the actin-binding protein vinculin. This study tested predictions that salt bridges within the force-sensing core modulate α-catenin activation. Studies with a fluorescence resonance energy transfer (FRET)-based α-catenin conformation sensor demonstrated that each of the salt-bridge mutations R551A and D503N enhances α-catenin activation in live cells, but R551A has a greater impact. Under dynamic force loading at reannealing cell–cell junctions, the R551A mutant bound more vinculin than wild-type α-catenin. In vitro binding measurements quantified the impact of the R551A mutation on the free-energy difference between the active and autoinhibited α-catenin conformers. A 2-μs constant-force, steered molecular dynamics simulation of the core force-sensing region suggested how the salt-bridge mutants alter the α-catenin conformation, and identified a novel load-bearing salt bridge. These results reveal key structural features that determine the force-transduction mechanism and the force sensitivity of this crucial nanomachine.
Collapse
Affiliation(s)
- Samantha Barrick
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Jing Li
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801.,Department of Biochemistry, University of Illinois, Urbana, IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Alokananda Ray
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801.,Department of Biochemistry, University of Illinois, Urbana, IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801
| | - Deborah Leckband
- Department of Chemistry, University of Illinois, Urbana, IL 61801 .,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801.,Department of Biochemistry, University of Illinois, Urbana, IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801.,Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801
| |
Collapse
|
78
|
Cartagena-Rivera AX, Van Itallie CM, Anderson JM, Chadwick RS. Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat Commun 2017; 8:1030. [PMID: 29044161 PMCID: PMC5715111 DOI: 10.1038/s41467-017-01145-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/18/2017] [Indexed: 11/24/2022] Open
Abstract
Maintenance of epithelial tissue integrity requires coordination between cell–cell adherens junctions, tight junctions (TJ), and the perijunctional actomyosin cytoskeleton. Here we addressed the hypothesis that alterations in TJ structure and remodeling of the actomyosin cytoskeleton modify epithelial mechanics. Current methods to measure supracellular mechanical properties disrupt intact monolayers, therefore, we developed a novel method using noncontact acoustic frequency-modulation atomic force microscopy (FM-AFM) and tested it on MDCK polarized monolayers. Our results show that double knockdown (dKD) of ZO-1/ZO-2 elevates the apical epithelial tension and effective viscosity. Interestingly, epithelial tension is more sensitive to inhibition of myosin II ATPase activity than to inhibition of ROCK activity, but viscosity is highly sensitive to both. Additionally, we showed epithelial intercellular pulling forces at tricellular junctions and adhesion forces in dKD cells are elevated with an increase in contractility. In conclusion, FM-AFM enables the physiological and quantitative investigation of mechanics in intact epithelium. Determination of apical tension, fluidity, and intercellular adhesive forces in an epithelial monolayer are currently disruptive. Here the authors present a method using acoustic force microscopy to measure changes in these parameters upon tight junction structural alterations in a MDCK monolayer.
Collapse
Affiliation(s)
- Alexander X Cartagena-Rivera
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James M Anderson
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard S Chadwick
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
79
|
Tyrosine dephosphorylated cortactin downregulates contractility at the epithelial zonula adherens through SRGAP1. Nat Commun 2017; 8:790. [PMID: 28983097 PMCID: PMC5629210 DOI: 10.1038/s41467-017-00797-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
Contractile adherens junctions support cell−cell adhesion, epithelial integrity, and morphogenesis. Much effort has been devoted to understanding how contractility is established; however, less is known about whether contractility can be actively downregulated at junctions nor what function this might serve. We now identify such an inhibitory pathway that is mediated by the cytoskeletal scaffold, cortactin. Mutations of cortactin that prevent its tyrosine phosphorylation downregulate RhoA signaling and compromise the ability of epithelial cells to generate a contractile zonula adherens. This is mediated by the RhoA antagonist, SRGAP1. We further demonstrate that this mechanism is co-opted by hepatocyte growth factor to promote junctional relaxation and motility in epithelial collectives. Together, our findings identify a novel function of cortactin as a regulator of RhoA signaling that can be utilized by morphogenetic regulators for the active downregulation of junctional contractility. Epithelial cell-cell adhesions are contractile junctions, but whether contractility can be down-regulated is not known. Here the authors report how tyrosine dephosphorylation of the cytoskeletal scaffold, cortactin, recruits the RhoA antagonist SRGAP1 to relax adherens junctions in response to HGF.
Collapse
|
80
|
Epithelial Monolayers Coalesce on a Viscoelastic Substrate through Redistribution of Vinculin. Biophys J 2017; 113:1585-1598. [PMID: 28844472 PMCID: PMC5627150 DOI: 10.1016/j.bpj.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/14/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023] Open
Abstract
The mechanical properties of the microenvironment play a large role in influencing cellular behavior. In particular, the tradeoff between substrate viscosity and elasticity on collective cell migration by adherent cells is highly physiologically relevant, but remains poorly understood. To investigate the specific effects of viscous substrates, we plated epithelial monolayers onto polydimethylsiloxane substrata with a range of viscosities and elasticities. We found that on viscoelastic substrates the monolayers underwent rapid and coordinated movement to generate cell-free areas. To understand the molecular mechanism of this coordinated movement, we imaged various structural and signaling proteins at cell-cell and cell-matrix junctions. Through quantitative image analysis of monolayer disruption and subcellular protein redistribution, we show that the mechanosensor protein, vinculin, is necessary and sufficient for this viscous response, during which it is lost from focal adhesions and recruited by the cadherin complex to intercellular junctions. In addition, the viscous response is dependent upon and enhanced by actomyosin contractility. Our results implicate vinculin translocation in a molecular switching mechanism that senses substrate viscoelasticity and associates with actomyosin contractility.
Collapse
|
81
|
Tomatis VM, Josh P, Papadopulos A, Gormal RS, Lanoue V, Martin S, Meunier FA. ENA/VASP proteins regulate exocytosis by mediating myosin VI-dependent recruitment of secretory granules to the cortical actin network. Mol Cell Neurosci 2017; 84:100-111. [PMID: 28784263 DOI: 10.1016/j.mcn.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 10/24/2022] Open
Abstract
In neurosecretory cells, myosin VI associated with secretory granules (SGs) mediates their activity-dependent recruitment to the cortical actin network and is necessary to sustain exocytosis. The mechanism by which myosin VI interacts with SGs is unknown. Using a myosin VI pull-down assay and mass spectrometry we identified Mena, a member of the ENA/VASP family, as a myosin VI binding partner in PC12 cells, and confirmed that Mena colocalized with myosin VI on SGs. Using a knock-sideways approach to inactivate the ENA/VASP family members by mitochondrial relocation, we revealed a concomitant redistribution of myosin VI. This was ensued by a reduction in the association of myosin VI with SGs, a decreased SG mobility and density in proximity to the plasma membrane as well as decreased evoked exocytosis. These data demonstrate that ENA/VASP proteins regulate SG exocytosis through modulating the activity of myosin VI.
Collapse
Affiliation(s)
- Vanesa M Tomatis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Josh
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sally Martin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
82
|
Han MKL, van der Krogt GNM, de Rooij J. Zygotic vinculin is not essential for embryonic development in zebrafish. PLoS One 2017; 12:e0182278. [PMID: 28767718 PMCID: PMC5540497 DOI: 10.1371/journal.pone.0182278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
The formation of multicellular tissues during development is governed by mechanical forces that drive cell shape and tissue architecture. Protein complexes at sites of adhesion to the extracellular matrix (ECM) and cell neighbors, not only transmit these mechanical forces, but also allow cells to respond to changes in force by inducing biochemical feedback pathways. Such force-induced signaling processes are termed mechanotransduction. Vinculin is a central protein in mechanotransduction that in both integrin-mediated cell-ECM and cadherin-mediated cell-cell adhesions mediates force-induced cytoskeletal remodeling and adhesion strengthening. Vinculin was found to be important for the integrity and remodeling of epithelial tissues in cell culture models and could therefore be expected to be of broad importance in epithelial morphogenesis in vivo. Besides a function in mouse heart development, however, the importance of vinculin in morphogenesis of other vertebrate tissues has remained unclear. To investigate this further, we knocked out vinculin functioning in zebrafish, which contain two fully functional isoforms designated as vinculin A and vinculin B that both show high sequence conservation with higher vertebrates. Using TALEN and CRISPR-Cas gene editing technology we generated vinculin-deficient zebrafish. While single vinculin A mutants are viable and able to reproduce, additional loss of zygotic vinculin B was lethal after embryonic stages. Remarkably, vinculin-deficient embryos do not show major developmental defects, apart from mild pericardial edemas. These results lead to the conclusion that vinculin is not of broad importance for the development and morphogenesis of zebrafish tissues.
Collapse
Affiliation(s)
- Mitchell K. L. Han
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard N. M. van der Krogt
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
83
|
Nanoscale mechanobiology of cell adhesions. Semin Cell Dev Biol 2017; 71:53-67. [PMID: 28754443 DOI: 10.1016/j.semcdb.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
Proper physiological functions of cells and tissues depend upon their abilities to sense, transduce, integrate, and generate mechanical and biochemical signals. Although such mechanobiological phenomena are widely observed, the molecular mechanisms driving these outcomes are still not fully understood. Cell adhesions formed by integrins and cadherins receptors are key structures that process diverse sources of signals to elicit complex mechanobiological responses. Since the nanoscale is the length scale at which molecules interact to relay force and information, the understanding of cell adhesions at the nanoscale level is important for grasping the inner logics of cellular decision making. Until recently, the study of the biological nanoscale has been restricted by available molecular and imaging tools. Fortunately, rapid technological advances have increasingly opened up the nanoscale realm to systematic investigations. In this review, we discuss current insights and key open questions regarding the nanoscale structure and function relationship of cell adhesions, focusing on recent progresses in characterizing their composition, spatial organization, and cytomechanical operation.
Collapse
|
84
|
Gloushankova NA, Rubtsova SN, Zhitnyak IY. Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers 2017; 5:e1356900. [PMID: 28783415 DOI: 10.1080/21688370.2017.1356900] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adherens junctions (AJs) are molecular complexes that mediate cell-cell adhesive interactions and play pivotal roles in maintenance of tissue organization in adult organisms and at various stages of development. AJs consist of cadherin adhesion receptors, providing homophilic ligation with cadherins on adjacent cells, and members of the catenin protein family: p120, β- and α-catenin. α-catenin's linkage with the actin cytoskeleton defines the linear or punctate organization of AJs in different cell types. Myosin II-dependent tension drives vinculin recruitment by α-catenin and stabilizes the linkage of the cadherin/catenin complex to F-actin. Neoplastic transformation leads to prominent changes in the organization, regulation and stability of AJs. Epithelial-mesenchymal transition (EMT) whereby epithelial cells lose stable cell-cell adhesion, and reorganize their cytoskeleton to acquire migratory activity, plays the central role in cancer cell invasion and metastasis. Recent data demonstrated that a partial EMT resulting in a hybrid epithelial/mesenchymal phenotype with retention of E-cadherin is essential for cancer cell dissemination. E-cadherin and E-cadherin-based AJs are required for collective invasion and migration, survival in circulation, and metastatic outgrowth.
Collapse
Affiliation(s)
- Natalya A Gloushankova
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Svetlana N Rubtsova
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Irina Y Zhitnyak
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| |
Collapse
|
85
|
Duszyc K, Gomez GA, Schroder K, Sweet MJ, Yap AS. In life there is death: How epithelial tissue barriers are preserved despite the challenge of apoptosis. Tissue Barriers 2017; 5:e1345353. [PMID: 28686526 DOI: 10.1080/21688370.2017.1345353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apoptosis is a ubiquitous mode of programmed cell death that is found in healthy organs and can be stimulated by many toxic stresses. When it occurs in epithelia, apoptosis presents major challenges to tissue integrity. Apoptotic corpses can promote inflammatory and autoimmune responses if they are retained, and the cellular fragmentation that accompanies apoptosis can potentially compromise the epithelial barrier. Here we discuss 2 homeostatic mechanisms that allow epithelia to circumvent these potential risks: clearance of apoptotic corpses by professional and non-professional phagocytes and physical expulsion of apoptotic cells by apical extrusion. Extrusion and phagocytosis may represent complementary responses that preserve epithelial integrity despite the inevitable challenge of apoptosis.
Collapse
Affiliation(s)
- Kinga Duszyc
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Guillermo A Gomez
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Kate Schroder
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia.,b Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Matthew J Sweet
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia.,b Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Alpha S Yap
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| |
Collapse
|
86
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
87
|
Hara Y. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue. Dev Growth Differ 2017; 59:340-350. [DOI: 10.1111/dgd.12356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/02/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Yusuke Hara
- Mechanobiology Institute National University of Singapore T‐Lab 5A Engineering Drive 1, Level 9 Singapore 117411
- Temasek Life Sciences Laboratory National University of Singapore 1 Research Link Singapore 117604 Singapore
| |
Collapse
|
88
|
Abstract
Cadherin adhesion complexes have recently emerged as sensors of tissue tension that regulate key developmental processes. Super-resolution microscopy experiments now unravel the spatial organization of the interface between cadherins and the actin cytoskeleton and reveal how vinculin, a central component in cadherin mechanotransduction, is regulated by mechanical and biochemical signals.
Collapse
|
89
|
Choi W, Acharya BR, Peyret G, Fardin MA, Mège RM, Ladoux B, Yap AS, Fanning AS, Peifer M. Remodeling the zonula adherens in response to tension and the role of afadin in this response. J Cell Biol 2017; 213:243-60. [PMID: 27114502 PMCID: PMC5084271 DOI: 10.1083/jcb.201506115] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
During development, epithelial cells must generate and respond to tension without disrupting epithelial barrier function. The authors use superresolution microscopy in MDCK cells to examine how the zonula adherens (ZA) is remodeled in response to elevated contractility while maintain tissue integrity. They define key roles for zonula occludens family proteins in regulating contractility and for the scaffolding protein afadin in maintaining ZA architecture at tricellular junctions. Morphogenesis requires dynamic coordination between cell–cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell–cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA. We find that ZO knockdown elevates contractility via a Shroom3/Rho-associated, coiled-coil containing protein kinase (ROCK) pathway. Our data suggest that each bicellular border is an independent contractile unit, with actin cables anchored end-on to cadherin complexes at tricellular junctions. Cells respond to elevated contractility by increasing junctional afadin. Although ZO/afadin knockdown did not prevent contractile array assembly, it dramatically altered cell shape and barrier function in response to elevated contractility. We propose that afadin acts as a robust protein scaffold that maintains ZA architecture at tricellular junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bipul R Acharya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia 4072
| | - Grégoire Peyret
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR 7592 and Université Paris Diderot, 75013 Paris, France
| | - Marc-Antoine Fardin
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR 7592 and Université Paris Diderot, 75013 Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR 7592 and Université Paris Diderot, 75013 Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR 7592 and Université Paris Diderot, 75013 Paris, France Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia 4072
| | - Alan S Fanning
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
90
|
Mège RM, Ishiyama N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028738. [PMID: 28096263 DOI: 10.1101/cshperspect.a028738] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cadherin-catenin adhesion complex is the key component of the intercellular adherens junction (AJ) that contributes both to tissue stability and dynamic cell movements in epithelial and nonepithelial tissues. The cadherin adhesion complex bridges neighboring cells and the actin-myosin cytoskeleton, and thereby contributes to mechanical coupling between cells which drives many morphogenetic events and tissue repair. Mechanotransduction at cadherin adhesions enables cells to sense, signal, and respond to physical changes in their environment. Central to this process is the dynamic link of the complex to actin filaments (F-actin), themselves structurally dynamic and subject to tension generated by myosin II motors. We discuss in this review recent breakthroughs in understanding molecular and cellular aspects of the organization of the core cadherin-catenin complex in adherens junctions, its association to F-actin, its mechanosensitive regulation, and dynamics.
Collapse
Affiliation(s)
- René Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, TMDT 4-902, Toronto, Ontario, Canada
| |
Collapse
|
91
|
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017; 74:2999-3009. [PMID: 28401269 PMCID: PMC5501900 DOI: 10.1007/s00018-017-2511-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
92
|
Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358:20-30. [PMID: 28363828 DOI: 10.1016/j.yexcr.2017.03.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/11/2023]
Abstract
Epithelial tissues are defined by polarized epithelial cells that are integrated into tissues and exhibit barrier function in order to regulate what is allowed to pass between cells. Cell-cell junctions must be stable enough to promote barrier function and tissue integrity, yet plastic enough to remodel when necessary. This remarkable ability to dynamically sense and respond to changes in cell shape and tissue tension allows cell-cell junctions to remain functional during events that disrupt epithelial homeostasis including morphogenesis, wound healing, and cell division. In order to achieve this plasticity, both tight junctions and adherens junctions are coupled to the underlying actomyosin cytoskeleton. Here, we discuss the importance of the junctional linkage to actomyosin and how a localized zone of active RhoA along with other Rho GTPases work together to orchestrate junctional actomyosin dynamics. We focus on how scaffold proteins help coordinate Rho GTPases, their upstream regulators, and their downstream effectors for efficient, localized Rho GTPase signaling output. Additionally, we highlight important roles junctional actin-binding proteins play in addition to their traditional roles in organizing actin. Together, Rho GTPases, their regulators, and effectors form compartmentalized signaling modules that regulate actomyosin structure and contractility to achieve proper cell-cell adhesion and tissue barriers.
Collapse
Affiliation(s)
- Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
93
|
Pinheiro D, Hannezo E, Herszterg S, Bosveld F, Gaugue I, Balakireva M, Wang Z, Cristo I, Rigaud SU, Markova O, Bellaïche Y. Transmission of cytokinesis forces via E-cadherin dilution and actomyosin flows. Nature 2017; 545:103-107. [PMID: 28296858 DOI: 10.1038/nature22041] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
During epithelial cytokinesis, the remodelling of adhesive cell-cell contacts between the dividing cell and its neighbours has profound implications for the integrity, arrangement and morphogenesis of proliferative tissues. In both vertebrates and invertebrates, this remodelling requires the activity of non-muscle myosin II (MyoII) in the interphasic cells neighbouring the dividing cell. However, the mechanisms that coordinate cytokinesis and MyoII activity in the neighbours are unknown. Here we show that in the Drosophila notum epithelium, each cell division is associated with a mechanosensing and transmission event that controls MyoII dynamics in neighbouring cells. We find that the ring pulling forces promote local junction elongation, which results in local E-cadherin dilution at the ingressing adherens junction. In turn, the reduction in E-cadherin concentration and the contractility of the neighbouring cells promote self-organized actomyosin flows, ultimately leading to accumulation of MyoII at the base of the ingressing junction. Although force transduction has been extensively studied in the context of adherens junction reinforcement to stabilize adhesive cell-cell contacts, we propose an alternative mechanosensing mechanism that coordinates actomyosin dynamics between epithelial cells and sustains the remodelling of the adherens junction in response to mechanical forces.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Rd, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sophie Herszterg
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Floris Bosveld
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Isabelle Gaugue
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Maria Balakireva
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Zhimin Wang
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Inês Cristo
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Stéphane U Rigaud
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Olga Markova
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, France
| |
Collapse
|
94
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
95
|
Acharya BR, Wu SK, Lieu ZZ, Parton RG, Grill SW, Bershadsky AD, Gomez GA, Yap AS. Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Rep 2017; 18:2854-2867. [DOI: 10.1016/j.celrep.2017.02.078] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/19/2017] [Accepted: 02/27/2017] [Indexed: 01/08/2023] Open
|
96
|
Bertocchi C, Wang Y, Ravasio A, Hara Y, Wu Y, Sailov T, Baird MA, Davidson MW, Zaidel-Bar R, Toyama Y, Ladoux B, Mege RM, Kanchanawong P. Nanoscale architecture of cadherin-based cell adhesions. Nat Cell Biol 2017; 19:28-37. [PMID: 27992406 PMCID: PMC5421576 DOI: 10.1038/ncb3456] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Multicellularity in animals requires dynamic maintenance of cell-cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization in cadherin-based adhesions by super-resolution microscopy, revealing a multi-compartment nanoscale architecture, with the plasma-membrane-proximal cadherin-catenin compartment segregated from the actin cytoskeletal compartment, bridged by an interface zone containing vinculin. Vinculin position is determined by α-catenin, and following activation, vinculin can extend ∼30 nm to bridge the cadherin-catenin and actin compartments, while modulating the nanoscale positions of the actin regulators zyxin and VASP. Vinculin conformational activation requires tension and tyrosine phosphorylation, regulated by Abl kinase and PTP1B phosphatase. Such modular architecture provides a structural framework for mechanical and biochemical signal integration by vinculin, which may differentially engage cadherin-catenin complexes with the actomyosin machinery to regulate cell adhesions.
Collapse
Affiliation(s)
| | - Yilin Wang
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Andrea Ravasio
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Yusuke Hara
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Yao Wu
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Talgat Sailov
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Michelle A. Baird
- National High Magnetic Field Laboratory, The Florida State University, Tallahassee, FL, USA, 32310
| | - Michael W. Davidson
- National High Magnetic Field Laboratory, The Florida State University, Tallahassee, FL, USA, 32310
- Department of Biological Science, The Florida State University, Tallahassee, FL, USA, 32306
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Department of Biomedical Engineering, National University of Singapore, Republic of Singapore, 117583
| | - Yusuke Toyama
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore, 117543
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore, 117604
| | - Benoit Ladoux
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Institut Jacques Monod, Université Paris Diderot and CNRS UMR 7592, Paris, France
| | - Rene-Marc Mege
- Institut Jacques Monod, Université Paris Diderot and CNRS UMR 7592, Paris, France
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Department of Biomedical Engineering, National University of Singapore, Republic of Singapore, 117583
| |
Collapse
|
97
|
Zulueta-Coarasa T, Fernandez-Gonzalez R. Tension (re)builds: Biophysical mechanisms of embryonic wound repair. Mech Dev 2016; 144:43-52. [PMID: 27989746 DOI: 10.1016/j.mod.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022]
Abstract
Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions.
Collapse
Affiliation(s)
- Teresa Zulueta-Coarasa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
98
|
Manibog K, Yen CF, Sivasankar S. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy. Methods Enzymol 2016; 582:297-320. [PMID: 28062039 DOI: 10.1016/bs.mie.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges.
Collapse
Affiliation(s)
- K Manibog
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States
| | - C F Yen
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States
| | - S Sivasankar
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States.
| |
Collapse
|
99
|
Ireton K. Rickettsia Evades a Tense Situation. Cell Host Microbe 2016; 20:549-550. [PMID: 27832582 DOI: 10.1016/j.chom.2016.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacterial pathogens remodel the plasma membrane of the host cell in order to promote infection. In a recent Cell paper, Lamason et al. (2016) identify a mechanism of remodeling by pathogenic Rickettsia that involves manipulation of plasma membrane tension.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
100
|
Coravos JS, Martin AC. Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells. Dev Cell 2016; 39:346-358. [PMID: 27773487 PMCID: PMC5102765 DOI: 10.1016/j.devcel.2016.09.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/21/2016] [Accepted: 09/25/2016] [Indexed: 11/17/2022]
Abstract
Actomyosin networks generate contractile force that changes cell and tissue shape. In muscle cells, actin filaments and myosin II appear in a polarized structure called a sarcomere, in which myosin II is localized in the center. Nonmuscle cortical actomyosin networks are thought to contract when nonmuscle myosin II (myosin) is activated throughout a mixed-polarity actin network. Here, we identified a mutant version of the myosin-activating kinase, ROCK, that localizes diffusely, rather than centrally, in epithelial cell apices. Surprisingly, this mutant inhibits constriction, suggesting that centrally localized apical ROCK/myosin activity promotes contraction. We determined actin cytoskeletal polarity by developing a barbed end incorporation assay for Drosophila embryos, which revealed barbed end enrichment at junctions. Our results demonstrate that epithelial cells contract with a spatially organized apical actomyosin cortex, involving a polarized actin cytoskeleton and centrally positioned myosin, with cell-scale order that resembles a muscle sarcomere.
Collapse
Affiliation(s)
- Jonathan S Coravos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|