51
|
Costa JF, Dines M, Lamprecht R. The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Front Synaptic Neurosci 2020; 12:12. [PMID: 32362820 PMCID: PMC7182350 DOI: 10.3389/fnsyn.2020.00012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form memories in the brain is needed for daily functions, and its impairment is associated with human mental disorders. Evidence indicates that long-term memory (LTM)-related processes such as its consolidation, extinction and forgetting involve changes of synaptic efficacy produced by alterations in neural transmission and morphology. Modulation of the morphology and number of dendritic spines has been proposed to contribute to changes in neuronal transmission mediating such LTM-related processes. Rac GTPase activity is regulated by synaptic activation and it can affect spine morphology by controlling actin-regulatory proteins. Recent evidence shows that changes in Rac GTPase activity affect memory consolidation, extinction, erasure and forgetting and can affect spine morphology in brain areas that mediate these behaviors. Altered Rac GTPase activity is associated with abnormal spine morphology and brain disorders. By affecting Rac GTPase activity we can further understand the roles of spine morphogenesis in memory. Moreover, manipulation of Rac GTPase activity may serve as a therapeutic tool for the treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | | | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
52
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
53
|
Memory Susceptibility to Retroactive Interference Is Developmentally Regulated by NMDA Receptors. Cell Rep 2020; 26:2052-2063.e4. [PMID: 30784588 DOI: 10.1016/j.celrep.2019.01.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
Retroactive interference (RI) occurs when new incoming information impairs an existing memory, which is one of the primary sources of forgetting. Although long-term potentiation (LTP) reversal shows promise as the underlying neural correlate, the key molecules that control the sensitivity of memory circuits to RI are unknown, and the developmental trajectory of RI effects is unclear. Here we found that depotentiation in the hippocampal dentate gyrus (DG) depends on GluN2A-containing NMDA receptors (NMDARs). The susceptibility of LTP to disruption progressively increases with the rise in the GluN2A/GluN2B ratio during development. The vulnerability of hippocampus-dependent memory to interference from post-learning novelty exploration is subject to similar developmental regulation by NMDARs. Both GluN2A overexpression and GluN2B downregulation in the DG promote RI-induced forgetting. Altogether, our results suggest that a switch in GluN2 subunit predominance may confer age-related differences to depotentiation and underlie the developmental decline in memory resistance to RI.
Collapse
|
54
|
Lian B, Liu M, Lan Z, Sun T, Meng Z, Chang Q, Liu Z, Zhang J, Zhao C. Hippocampal overexpression of SGK1 ameliorates spatial memory, rescues Aβ pathology and actin cytoskeleton polymerization in middle-aged APP/PS1 mice. Behav Brain Res 2020; 383:112503. [PMID: 31981651 DOI: 10.1016/j.bbr.2020.112503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
The increasing occurrence and ineffective treatment of Alzheimer's disease (AD) has become one of the major challenges of the world. Limited studies have shown that serum- and glucocorticoid-inducible kinase 1 (SGK1) is involved in spatial memory formation and consolidation, but its role in AD-like spatial memory impairment and the related mechanisms are not clear. In this study, we first examined the age-related changes of SGK1 in the hippocampus of female APP/PS1 (AD) mice. Based on the finding and our previous finding that significant spatial memory impairment was detected in 8-month old AD mice, SGK1-overexpressing AAV (oSGK1) was constructed and injected into the hippocampus of 9-month old AD mice. One month later, the behavior alterations, Aβ production and deposit as well as changes of CA1 spine density and selected actin polymerization remodeling proteins were examined. The results showed that significant decrease of SGK1 was detected in 10-month old AD mice. The spatial memory impairment, the production and deposit of Aβ were reversed by oSGK1. Levels of hippocampal ADAM10 (α-secretase) and IDE (Aβ degradase), actin remodeling related proteins Rictor, Rac1, Cdc42 and Profilin-1 were significantly increased after oSGK1 treatment while hippocampal BACE1 (γ-secretase) and Cofilin remained unchanged. Taken together, our findings demonstrated a pivotal role of SGK1 in the treatment of AD-related memory impairment through upregulation of non- amyloidogenic processing of APP and degradation of Aβ, increase in spine plasticity related proteins, indicating increase in hippocampal SGK1 may be a potent therapeutic target against AD.
Collapse
Affiliation(s)
- Biyao Lian
- Department of Histology and Embryology, Ningxia Medical University, Yinchuan, 750004, China
| | - Mengying Liu
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China; The 305 Hospital of PLA, 100017, Beijing, China
| | - Zhen Lan
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Sun
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Zhaoyou Meng
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Qing Chang
- Department of Histology and Embryology, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Jiqiang Zhang
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China.
| | - Chengjun Zhao
- Department of Histology and Embryology, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
55
|
Liu Y, Lv L, Wang L, Zhong Y. Social Isolation Induces Rac1-Dependent Forgetting of Social Memory. Cell Rep 2019; 25:288-295.e3. [PMID: 30304669 DOI: 10.1016/j.celrep.2018.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
Social isolation (SI) has detrimental effects on human and animal cognitive functions. In particular, acute isolation in adult mice impairs social recognition memory (SRM). Previous accounts of this impairment have focused primarily on memory consolidation. However, the current study suggests that impaired SRM results from enhanced forgetting. SI accelerates SRM decay without affecting memory formation. The impairment is caused by elevated Rac1 activity in the hippocampus. Using adeno-associated-virus-based genetic manipulation, we found that inhibition of Rac1 activity blocked forgetting of SRM in isolated adult mice, whereas activation of Rac1 accelerated forgetting in group-housed mice. Moreover, resocialization reversed the accelerated forgetting following isolation in correlation with suppression of Rac1 activity. In addition, accelerated long-term potentiation (LTP) decay in isolated mice brain slices was rescued by inhibition of Rac1 activity. Taken together, the findings lead us to conclude that social memory deficits in isolated mice are mediated by enhanced Rac1-dependent forgetting.
Collapse
Affiliation(s)
- Yunlong Liu
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Lv
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lianzhang Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
56
|
Lv L, Liu Y, Xie J, Wu Y, Zhao J, Li Q, Zhong Y. Interplay between α2-chimaerin and Rac1 activity determines dynamic maintenance of long-term memory. Nat Commun 2019; 10:5313. [PMID: 31757963 PMCID: PMC6876637 DOI: 10.1038/s41467-019-13236-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 10/22/2019] [Indexed: 12/05/2022] Open
Abstract
Memory consolidation theory suggests that once memory formation has been completed, memory is maintained at a stable strength and is incapable of further enhancement. However, the current study reveals that even long after formation, contextual fear memory could be further enhanced. Such unexpected enhancement is possible because memory is dynamically maintained at an intermediate level that allows for bidirectional regulation. Here we find that both Rac1 activation and expression of α2-chimaerin are stimulated by single-trial contextual fear conditioning. Such sustained Rac1 activity mediates reversible forgetting, and α2-chimaerin acts as a memory molecule that reverses forgetting to sustain memory through inhibition of Rac1 activity during the maintenance stage. Therefore, the balance between activated Rac1 and expressed α2-chimaerin defines dynamic long-term memory maintenance. Our findings demonstrate that consolidated memory maintains capacity for bidirectional regulation.
Collapse
Affiliation(s)
- Li Lv
- Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunlong Liu
- Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianxin Xie
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Wu
- Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianjian Zhao
- Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qian Li
- Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Zhong
- Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
57
|
Zhao J, Ying L, Liu Y, Liu N, Tu G, Zhu M, Wu Y, Xiao B, Ye L, Li J, Guo F, Zhang L, Wang H, Zhang L. Different roles of Rac1 in the acquisition and extinction of methamphetamine-associated contextual memory in the nucleus accumbens. Am J Cancer Res 2019; 9:7051-7071. [PMID: 31660086 PMCID: PMC6815963 DOI: 10.7150/thno.34655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023] Open
Abstract
Rationale: Repeated methamphetamine (METH) exposure induces long-term cognitive deficits and pathological drug-associated memory that can be disrupted by manipulating memory reconsolidation and extinction. The nucleus accumbens (NAc) is the key region of the brain reward system and predominantly consists of two subtypes of medium spiny neurons (MSNs) based on the expression of D1 or D2 dopamine receptors (D1-MSNs or D2-MSNs). Spine structural plasticity in the NAc is critical for the acquisition, reconsolidation and extinction of drug-associated memory. However, the molecular mechanisms underlying METH-associated memory and spine remodelling in each type of MSNs in the NAc remain unknown. Here, we explored whether Rac1 in the NAc mediates METH-associated contextual memory and spine remodelling. Methods: Pharmacological and genetic manipulations of Rac1 were used to investigate its role during the acquisition, reconsolidation and extinction of METH-associated contextual memory. Recombinant adeno-associated viruses expressing mCherry under the control of the dopamine D1 receptor gene promoter (Drd1-mCherry) or dopamine D2 receptor gene promoter (Drd2-mCherry) were used to specifically label D1-MSNs or D2-MSNs. Results: Using viral-mediated gene transfer, we demonstrated that decreased Rac1 activity was required for the acquisition of METH-associated contextual memory and the METH-induced increase in thin spine density, whereas increased Rac1 signalling was important for the extinction of METH-associated contextual memory and the related elimination of thin spines. Moreover, the increase of dendritic spines was both found in D1-MSNs and D2-MSNs during the acquisition process, but extinction training selectively decreased the spine density in D1-MSNs. Interestingly, Rac1 was responsible for METH-induced spine plasticity in D1-MSNs but not in D2-MSNs. Additionally, we found that microinjection of a Rac1 inhibitor or activator into the NAc was not sufficient to disrupt reconsolidation, and the pharmacological activation of Rac1 in the NAc facilitated the extinction of METH-associated contextual memory. Regarding cognitive memory, decreased Rac1 activity improved the METH-induced impairment in object recognition memory. Conclusion: Our findings indicate that Rac1 plays opposing roles in the acquisition and extinction of METH-associated contextual memory and reveal the cell-specific role of Rac1 in METH-associated spine remodelling, suggesting that Rac1 is a potential therapeutic target for reducing relapse in METH addiction and remediating METH-induced recognition memory impairment.
Collapse
|
58
|
Genetic dissection of active forgetting in labile and consolidated memories in Drosophila. Proc Natl Acad Sci U S A 2019; 116:21191-21197. [PMID: 31488722 PMCID: PMC6800343 DOI: 10.1073/pnas.1903763116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Different memory components are forgotten through distinct molecular mechanisms. In Drosophila, the activation of 2 Rho GTPases (Rac1 and Cdc42), respectively, underlies the forgetting of an early labile memory (anesthesia-sensitive memory, ASM) and a form of consolidated memory (anesthesia-resistant memory, ARM). Here, we dissected the molecular mechanisms that tie Rac1 and Cdc42 to the different types of memory forgetting. We found that 2 WASP family proteins, SCAR/WAVE and WASp, act downstream of Rac1 and Cdc42 separately to regulate ASM and ARM forgetting in mushroom body neurons. Arp2/3 complex, which organizes branched actin polymerization, is a canonical downstream effector of WASP family proteins. However, we found that Arp2/3 complex is required in Cdc42/WASp-mediated ARM forgetting but not in Rac1/SCAR-mediated ASM forgetting. Instead, we identified that Rac1/SCAR may function with formin Diaphanous (Dia), a nucleator that facilitates linear actin polymerization, in ASM forgetting. The present study, complementing the previously identified Rac1/cofilin pathway that regulates actin depolymerization, suggests that Rho GTPases regulate forgetting by recruiting both actin polymerization and depolymerization pathways. Moreover, Rac1 and Cdc42 may regulate different types of memory forgetting by tapping into different actin polymerization mechanisms.
Collapse
|
59
|
Mariottini C, Munari L, Gunzel E, Seco JM, Tzavaras N, Hansen J, Stern SA, Gao V, Aleyasin H, Sharma A, Azeloglu EU, Hodes GE, Russo SJ, Huff V, Birtwistle MR, Blitzer RD, Alberini CM, Iyengar R. Wilm's tumor 1 promotes memory flexibility. Nat Commun 2019; 10:3756. [PMID: 31434897 PMCID: PMC6704057 DOI: 10.1038/s41467-019-11781-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm's Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences.
Collapse
Affiliation(s)
- Chiara Mariottini
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA.
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA.
| | - Leonardo Munari
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Ellen Gunzel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Joseph M Seco
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Nikos Tzavaras
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Jens Hansen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Sarah A Stern
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
- Center for Neural Science, New York University, New York, 10003, NY, USA
| | - Virginia Gao
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
- Center for Neural Science, New York University, New York, 10003, NY, USA
| | - Hossein Aleyasin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Ali Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Evren U Azeloglu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Georgia E Hodes
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Scott J Russo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Vicki Huff
- Department of Genetics, M.D. Anderson Cancer Center, University of Texas, Houston, 77030, TX, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA
| | - Cristina M Alberini
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA.
- Center for Neural Science, New York University, New York, 10003, NY, USA.
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA.
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, NY, USA.
| |
Collapse
|
60
|
Inhibition of Rac1-dependent forgetting alleviates memory deficits in animal models of Alzheimer's disease. Protein Cell 2019; 10:745-759. [PMID: 31321704 PMCID: PMC6776562 DOI: 10.1007/s13238-019-0641-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Accelerated forgetting has been identified as a feature of Alzheimer's disease (AD), but the therapeutic efficacy of the manipulation of biological mechanisms of forgetting has not been assessed in AD animal models. Ras-related C3 botulinum toxin substrate 1 (Rac1), a small GTPase, has been shown to regulate active forgetting in Drosophila and mice. Here, we showed that Rac1 activity is aberrantly elevated in the hippocampal tissues of AD patients and AD animal models. Moreover, amyloid-beta 42 could induce Rac1 activation in cultured cells. The elevation of Rac1 activity not only accelerated 6-hour spatial memory decay in 3-month-old APP/PS1 mice, but also significantly contributed to severe memory loss in aged APP/PS1 mice. A similar age-dependent Rac1 activity-based memory loss was also observed in an AD fly model. Moreover, inhibition of Rac1 activity could ameliorate cognitive defects and synaptic plasticity in AD animal models. Finally, two novel compounds, identified through behavioral screening of a randomly selected pool of brain permeable small molecules for their positive effect in rescuing memory loss in both fly and mouse models, were found to be capable of inhibiting Rac1 activity. Thus, multiple lines of evidence corroborate in supporting the idea that inhibition of Rac1 activity is effective for treating AD-related memory loss.
Collapse
|
61
|
Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation. J Neurosci 2019; 39:4959-4975. [PMID: 30992372 DOI: 10.1523/jneurosci.2395-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 11/21/2022] Open
Abstract
Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.
Collapse
|
62
|
Castillo Díaz F, Hernandez MA, Capellá T, Medina JH. Dopamine Neurotransmission in the Ventral Tegmental Area Promotes Active Forgetting of Cocaine-Associated Memory. Mol Neurobiol 2019; 56:6206-6217. [DOI: 10.1007/s12035-019-1516-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
63
|
PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. J Neurosci 2019; 39:1828-1841. [PMID: 30622166 DOI: 10.1523/jneurosci.2270-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022] Open
Abstract
Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Collapse
|
64
|
A retrieval-specific mechanism of adaptive forgetting in the mammalian brain. Nat Commun 2018; 9:4660. [PMID: 30405121 PMCID: PMC6220340 DOI: 10.1038/s41467-018-07128-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022] Open
Abstract
Forgetting is a ubiquitous phenomenon that is actively promoted in many species. How and whether organisms’ behavioral goals drive which memories are actively forgotten is unknown. Here we show that processes essential to controlling goal-directed behavior trigger active forgetting of distracting memories that interfere with behavioral goals. When rats need to retrieve particular memories to guide exploration, it reduces later retention of other memories encoded in that environment. As with humans, this retrieval-induced forgetting is competition-dependent, cue-independent and reliant on prefrontal control: Silencing the medial prefrontal cortex with muscimol abolishes the effect. cFos imaging reveals that prefrontal control demands decline over repeated retrievals as competing memories are forgotten successfully, revealing a key adaptive benefit of forgetting. Occurring in 88% of the rats studied, this finding establishes a robust model of how adaptive forgetting harmonizes memory with behavioral demands, permitting isolation of its circuit, cellular and molecular mechanisms. Forgetting is ubiquitous across the animal kingdom, but neuroscience is only beginning to address its mechanisms. This study shows that rats, like humans, actively forget memories that interfere with retrieval, and that this retrieval-induced forgetting requires the prefrontal cortex.
Collapse
|
65
|
Patel U, Perez L, Farrell S, Steck D, Jacob A, Rosiles T, Krause E, Nguyen M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional changes before and after forgetting of a long-term sensitization memory in Aplysia californica. Neurobiol Learn Mem 2018; 155:474-485. [PMID: 30243850 PMCID: PMC6365195 DOI: 10.1016/j.nlm.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.
Collapse
Affiliation(s)
- Ushma Patel
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Leticia Perez
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Steven Farrell
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Derek Steck
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Athira Jacob
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Tania Rosiles
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Everett Krause
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Melissa Nguyen
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Robert J Calin-Jageman
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Irina E Calin-Jageman
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States.
| |
Collapse
|
66
|
Chowdhury S, Dai B, Mémoli F. The importance of forgetting: Limiting memory improves recovery of topological characteristics from neural data. PLoS One 2018; 13:e0202561. [PMID: 30180172 PMCID: PMC6122934 DOI: 10.1371/journal.pone.0202561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/05/2018] [Indexed: 11/25/2022] Open
Abstract
We develop of a line of work initiated by Curto and Itskov towards understanding the amount of information contained in the spike trains of hippocampal place cells via topology considerations. Previously, it was established that simply knowing which groups of place cells fire together in an animal's hippocampus is sufficient to extract the global topology of the animal's physical environment. We model a system where collections of place cells group and ungroup according to short-term plasticity rules. In particular, we obtain the surprising result that in experiments with spurious firing, the accuracy of the extracted topological information decreases with the persistence (beyond a certain regime) of the cell groups. This suggests that synaptic transience, or forgetting, is a mechanism by which the brain counteracts the effects of spurious place cell activity.
Collapse
Affiliation(s)
- Samir Chowdhury
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Bowen Dai
- Department of Computer Science, Dartmouth University, Hanover, New Hampshire, United States of America
| | - Facundo Mémoli
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
67
|
Basu S, Lamprecht R. The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory. Front Mol Neurosci 2018; 11:143. [PMID: 29765302 PMCID: PMC5938600 DOI: 10.3389/fnmol.2018.00143] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.
Collapse
Affiliation(s)
- Sreetama Basu
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
68
|
Zhang X, Li Q, Wang L, Liu ZJ, Zhong Y. Active Protection: Learning-Activated Raf/MAPK Activity Protects Labile Memory from Rac1-Independent Forgetting. Neuron 2018; 98:142-155.e4. [DOI: 10.1016/j.neuron.2018.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
|
69
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
70
|
Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling. Mol Neurobiol 2018; 55:7453-7462. [DOI: 10.1007/s12035-018-0919-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/21/2018] [Indexed: 01/23/2023]
|
71
|
Medina JH. Neural, Cellular and Molecular Mechanisms of Active Forgetting. Front Syst Neurosci 2018; 12:3. [PMID: 29467630 PMCID: PMC5808127 DOI: 10.3389/fnsys.2018.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022] Open
Abstract
The neurobiology of memory formation attracts much attention in the last five decades. Conversely, the rules that govern and the mechanisms underlying forgetting are less understood. In addition to retroactive interference, retrieval-induced forgetting and passive decay of time, it has been recently demonstrated that the nervous system has a diversity of active and inherent processes involved in forgetting. In Drosophila, some operate mainly at an early stage of memory formation and involves dopamine (DA) neurons, specific postsynaptic DA receptor subtypes, Rac1 activation and induces rapid active forgetting. In mammals, others regulate forgetting and persistence of seemingly consolidated memories and implicate the activity of DA receptor subtypes and AMPA receptors in the hippocampus (HP) and related structures to activate parallel signaling pathways controlling active time-dependent forgetting. Most of them may involve plastic changes in synaptic and extrasynaptic receptors including specific removal of GluA2 AMPA receptors. Forgetting at longer timescales might also include changes in adult neurogenesis in the dentate gyrus (DG) of the HP. Therefore, based on relevance or value considerations neuronal circuits may regulate in a time-dependent manner what is formed, stored, and maintained and what is forgotten.
Collapse
Affiliation(s)
- Jorge H Medina
- Laboratorio de Memoria, IBCN Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
72
|
Liao Z, Tao Y, Guo X, Cheng D, Wang F, Liu X, Ma L. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory. Front Mol Neurosci 2017; 10:396. [PMID: 29230165 PMCID: PMC5712045 DOI: 10.3389/fnmol.2017.00396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.
Collapse
Affiliation(s)
- Zhaohui Liao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yezheng Tao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaomu Guo
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Deqin Cheng
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
73
|
Martinez LA, Tejada-Simon MV. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 2017; 55:5951-5961. [DOI: 10.1007/s12035-017-0819-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
74
|
Davis RL, Zhong Y. The Biology of Forgetting-A Perspective. Neuron 2017; 95:490-503. [PMID: 28772119 DOI: 10.1016/j.neuron.2017.05.039] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/23/2023]
Abstract
Pioneering research studies, beginning with those using Drosophila, have identified several molecular and cellular mechanisms for active forgetting. The currently known mechanisms for active forgetting include neurogenesis-based forgetting, interference-based forgetting, and intrinsic forgetting, the latter term describing the brain's chronic signaling systems that function to slowly degrade molecular and cellular memory traces. The best-characterized pathway for intrinsic forgetting includes "forgetting cells" that release dopamine onto engram cells, mobilizing a signaling pathway that terminates in the activation of Rac1/Cofilin to effect changes in the actin cytoskeleton and neuron/synapse structure. Intrinsic forgetting may be the default state of the brain, constantly promoting memory erasure and competing with processes that promote memory stability like consolidation. A better understanding of active forgetting will provide insights into the brain's memory management system and human brain disorders that alter active forgetting mechanisms.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA.
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, School for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
75
|
|