51
|
Lin J, Xu L, Yang J, Wang Z, Shen X. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. STRESS BIOLOGY 2021; 1:11. [PMID: 37676535 PMCID: PMC10441901 DOI: 10.1007/s44154-021-00008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 09/08/2023]
Abstract
Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
52
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
53
|
Niehus R, Oliveira NM, Li A, Fletcher AG, Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife 2021; 10:69756. [PMID: 34488940 PMCID: PMC8423443 DOI: 10.7554/elife.69756] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022] Open
Abstract
Bacteria inhibit and kill one another with a diverse array of compounds, including bacteriocins and antibiotics. These attacks are highly regulated, but we lack a clear understanding of the evolutionary logic underlying this regulation. Here, we combine a detailed dynamic model of bacterial competition with evolutionary game theory to study the rules of bacterial warfare. We model a large range of possible combat strategies based upon the molecular biology of bacterial regulatory networks. Our model predicts that regulated strategies, which use quorum sensing or stress responses to regulate toxin production, will readily evolve as they outcompete constitutive toxin production. Amongst regulated strategies, we show that a particularly successful strategy is to upregulate toxin production in response to an incoming competitor’s toxin, which can be achieved via stress responses that detect cell damage (competition sensing). Mirroring classical game theory, our work suggests a fundamental advantage to reciprocation. However, in contrast to classical results, we argue that reciprocation in bacteria serves not to promote peaceful outcomes but to enable efficient and effective attacks.
Collapse
Affiliation(s)
- Rene Niehus
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Harvard University, Boston, United States
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China.,Institue for Artificial Intelligence, Peking University, Beijing, China
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
54
|
Antimicrobial and Antibiofilm Activities of 4,5-Dihydro-1H-pyrazole-1-carboximidamide Hydrochloride against Salmonella spp. J CHEM-NY 2021. [DOI: 10.1155/2021/5587318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present study, the antimicrobial and antibiofilm activities of two 4,5-dihydro-1H-pyrazole-1-carboximidamide hydrochloride, (trifluoromethyl) phenyl-substituted (compound 1) and bromophenyl-substituted (compound 2), were evaluated against four Salmonella spp. serotypes through broth microdilution and biofilm-forming activity. Further, the cytotoxicity of the compounds was evaluated by cell viability assays using cultures of HeLa and Vero cell lines, and the mutagenic potential was assessed by the Ames test. In the broth microdilution test, compound 1 inhibited 90% of the strains tested at the minimum inhibitory concentration of 62.5 μg mL−1. Furthermore, both compounds prevented biofilm formation, with a reduction of up to 5.2 log10. HeLa and Vero cells exhibited 100% viability in the presence of compound 1. In contrast, low cell viability was observed in the presence of 15 µg mL−1 of compound 2. Furthermore, no mutagenic potential was detected at any of the tested concentrations of compound 1.
Collapse
|
55
|
Formylglycine-generating enzyme-like proteins constitute a novel family of widespread type VI secretion system immunity proteins. J Bacteriol 2021; 203:e0028121. [PMID: 34398661 DOI: 10.1128/jb.00281-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which prevent effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of the antibacterial effector of unknown function Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data shows that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against non-kin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be co-opted as a scaffold in multiple proteins to carry out diverse functions. Importance Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.
Collapse
|
56
|
Butaitė E, Kramer J, Kümmerli R. Local adaptation, geographical distance and phylogenetic relatedness: Assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J Evol Biol 2021; 34:1266-1278. [PMID: 34101930 PMCID: PMC8453950 DOI: 10.1111/jeb.13883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Buijs Y, Zhang SD, Jørgensen KM, Isbrandt T, Larsen TO, Gram L. Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine Vibrionaceae strains. FEMS Microbiol Ecol 2021; 97:6164864. [PMID: 33693627 DOI: 10.1093/femsec/fiab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Deciphering the cues that stimulate microorganisms to produce their full secondary metabolic potential promises to speed up the discovery of novel drugs. Ecology-relevant conditions, including carbon-source(s) and microbial interactions, are important effectors of secondary metabolite production. Vice versa secondary metabolites are important mediators in microbial interactions, although their exact natural functions are not always completely understood. In this study, we investigated the effects of microbial interactions and in-culture produced antibiotics on the production of secondary metabolites by Vibrio coralliilyticus and Photobacterium galatheae, two co-occurring marine Vibrionaceae. In co-culture, production of andrimid by V. coralliilyticus and holomycin by P. galatheae, were, compared to monocultures, increased 4.3 and 2.7 fold, respectively. Co-cultures with the antibiotic deficient mutant strains (andrimid- and holomycin-) did not reveal a significant role for the competitor's antibiotic as stimulator of own secondary metabolite production. Furthermore, we observed that V. coralliilyticus detoxifies holomycin by sulphur-methylation. Results presented here indicate that ecological competition in Vibrionaceae is mediated by, and a cue for, antibiotic secondary metabolite production.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Karen Marie Jørgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
58
|
Miryala S, Nair VG, Chandramohan S, Srinandan CS. Matrix inhibition by Salmonella excludes uropathogenic E. coli from biofilm. FEMS Microbiol Ecol 2021; 97:5924450. [PMID: 33059364 DOI: 10.1093/femsec/fiaa214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022] Open
Abstract
Biofilm is a predominant lifestyle of bacteria that comprises of cells as collectives enmeshed in a polymeric matrix. Biofilm formation is vital for bacterial species as it provides access to nutrients and protects the cells from environmental stresses. Here we show that interference in biofilm matrix production is a strategy by the competing bacterial species to reduce the ability of the other species to colonize a surface. Escherichia coli colonies that differ in matrix production display different morphologies on Congo red agar media, which we exploited for screening bacterial isolates capable of inhibiting the matrix. The cell-free supernatants from growth culture of the screened isolates impaired uropathogenic E. coli (UPEC) UTI89 strain's biofilm. A physicochemical analysis suggested that the compound could be a glycopeptide or a polysaccharide. Isolates that inhibited matrix production belonged to species of the family Enterobacteriaceae such as Shigella, Escherichia, Enterobacter and Salmonella. Competition experiments between the isolates and the UPEC strain resulted in mutual inhibition, particularly during biofilm formation causing significant reduction in productivity and fitness. Furthermore, we show that Salmonella strains competitively excluded the UPEC strain in the biofilm by inhibiting its matrix production, highlighting the role of interference competition.
Collapse
Affiliation(s)
- Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - Veena G Nair
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - S Chandramohan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| |
Collapse
|
59
|
Grobas I, Polin M, Asally M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 2021; 10:62632. [PMID: 33722344 PMCID: PMC7963483 DOI: 10.7554/elife.62632] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Self-organized multicellular behaviors enable cells to adapt and tolerate stressors to a greater degree than isolated cells. However, whether and how cellular communities alter their collective behaviors adaptively upon exposure to stress is largely unclear. Here, we investigate this question using Bacillus subtilis, a model system for bacterial multicellularity. We discover that, upon exposure to a spatial gradient of kanamycin, swarming bacteria activate matrix genes and transit to biofilms. The initial stage of this transition is underpinned by a stress-induced multilayer formation, emerging from a biophysical mechanism reminiscent of motility-induced phase separation (MIPS). The physical nature of the process suggests that stressors which suppress the expansion of swarms would induce biofilm formation. Indeed, a simple physical barrier also induces a swarm-to-biofilm transition. Based on the gained insight, we propose a strategy of antibiotic treatment to inhibit the transition from swarms to biofilms by targeting the localized phase transition.
Collapse
Affiliation(s)
- Iago Grobas
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom
| | - Marco Polin
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom.,Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom.,Physics Department, University of Warwick, Coventry, United Kingdom.,Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), C/ Miquel Marqués, Balearic Islands, Spain
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
60
|
Sadiq FA, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhao J, Zhang H. Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Crit Rev Microbiol 2021; 47:338-358. [PMID: 33651958 DOI: 10.1080/1040841x.2021.1887079] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Existence of most bacterial species, in natural, industrial, and clinical settings in the form of surface-adhered communities or biofilms has been well acknowledged for decades. Research predominantly focusses on single-species biofilms as these are relatively easy to study. However, microbiologists are now interested in studying multispecies biofilms and revealing interspecific interactions in these communities because of the existence of a plethora of different bacterial species together in almost all natural settings. Multispecies biofilms-led emergent properties are triggered by bacterial social interactions which have huge implication for research and practical knowledge useful for the control and manipulation of these microbial communities. Here, we discuss some important bacterial interactions that take place in multispecies biofilm communities and provide insights into community-wide changes that indicate bacterial interactions and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
61
|
Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. Glucose confers protection to Escherichia coli against contact killing by Vibrio cholerae. Sci Rep 2021; 11:2935. [PMID: 33536444 PMCID: PMC7858629 DOI: 10.1038/s41598-021-81813-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Evolutionary arms races are broadly prevalent among organisms including bacteria, which have evolved defensive strategies against various attackers. A common microbial aggression mechanism is the type VI secretion system (T6SS), a contact-dependent bacterial weapon used to deliver toxic effector proteins into adjacent target cells. Sibling cells constitutively express immunity proteins that neutralize effectors. However, less is known about factors that protect non-sibling bacteria from T6SS attacks independently of cognate immunity proteins. In this study, we observe that human Escherichia coli commensal strains sensitive to T6SS attacks from Vibrio cholerae are protected when co-cultured with glucose. We confirm that glucose does not impair V. cholerae T6SS activity. Instead, we find that cells lacking the cAMP receptor protein (CRP), which regulates expression of hundreds of genes in response to glucose, survive significantly better against V. cholerae T6SS attacks even in the absence of glucose. Finally, we show that the glucose-mediated T6SS protection varies with different targets and killers. Our findings highlight the first example of an extracellular small molecule modulating a genetically controlled response for protection against T6SS attacks. This discovery may have major implications for microbial interactions during pathogen-host colonization and survival of bacteria in environmental communities.
Collapse
Affiliation(s)
- Cristian V Crisan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Holly L Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabi Steinbach
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J Yunker
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
62
|
Taxonomic and Functional Shifts in the Sprout Spent Irrigation Water Microbiome in Response to Salmonella Contamination of Alfalfa Seeds. Appl Environ Microbiol 2021; 87:AEM.01811-20. [PMID: 33218999 DOI: 10.1128/aem.01811-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in Salmonella-sprout research, little is known about the relationship between Salmonella and the sprout microbiome during sprouting. Sprout spent irrigation water (SSIW) provides an informative representation of the total microbiome of this primarily aquaponic crop. This study was designed to characterize the function and taxonomy of the most actively transcribed genes in SSIW from Salmonella enterica serovar Cubana-contaminated alfalfa seeds throughout the sprouting process. Genomic DNA and total RNA from SSIW was collected at regular intervals and sequenced using Illumina MiSeq and NextSeq platforms. Nucleic acid data were annotated using four different pipelines. Both metagenomic and metatranscriptomic analyses revealed a diverse and highly dynamic SSIW microbiome. A "core" SSIW microbiome comprised Klebsiella, Enterobacter, Pantoea, and Cronobacter The impact, however, of Salmonella contamination on alfalfa seeds influenced SSIW microbial community dynamics not only structurally but also functionally. Changes in genes associated with metabolism, genetic information processing, environmental information processing, and cellular processes were abundant and time dependent. At time points of 24 h, 48 h, and 96 h, totals of 541, 723, and 424 S Cubana genes, respectively, were transcribed at either higher or lower levels than at 0 h in SSIW during sprouting. An array of S Cubana genes (107) were induced at all three time points, including genes involved in biofilm formation and modulation, stress responses, and virulence and tolerance to antimicrobials. Taken together, these findings expand our understanding of the effect of Salmonella seed contamination on the sprout crop microbiome and metabolome.IMPORTANCE Interactions of human enteric pathogens like Salmonella with plants and plant microbiomes remain to be elucidated. The rapid development of next-generation sequencing technologies provides powerful tools enabling investigation of such interactions from broader and deeper perspectives. Using metagenomic and metatranscriptomic approaches, this study identified not only changes in microbiome structure of SSIW associated with sprouting but also changes in the gene expression patterns related to the sprouting process in response to Salmonella contamination of alfalfa seeds. This study advances our knowledge on Salmonella-plant (i.e., sprout) interaction.
Collapse
|
63
|
Zheng T, Li J, Liu C. Improvement of α-amylase to the metabolism adaptions of soil bacteria against PFOS exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111770. [PMID: 33396088 DOI: 10.1016/j.ecoenv.2020.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Toxicity of perfluoroalkyl substances (PFASs) in soils towards bacteria shows an impact on its ecosystem function. This study aims to obtain insight into the effect of hydrolase (e.g. α-amylase) in soil on metabolism adaptions of bacteria (e.g. Bacillus substilis) against PFOS exposure. Results show that exogenous α-amylase alleviates PFOS toxicity to bacteria growth, disturbance to membrane permeability and stimulation to reactive oxygen species (ROS) production. The mechanisms were owing to that α-amylase strongly influences the strategies of metabolism adaptions of bacteria against PFOS stress. In details, α-amylase prompts bacteria to regulate the secretion of extracellular polymeric substances (EPSs) and the production of metabolic signal (acetic acid), which leads to changes in the physicochemical properties (hydrophilicity, surface charge) of the bacterial surface and the inactivation of the interaction with PFOS, thereby reducing the PFOS toxicity. Molecular simulations show that PFOS combines with Srt A at Gly 53 and Trp 171, which may induce the increase of permeability and changes of surface characteristics. Meanwhile, α-amylase competes with Srt A to bind PFOS at Arg 125 and Lys 176. This competition changes the physicochemical characteristics of PFOS and its bioavailability, further improving the metabolism adaptions of bacteria against PFOS. Altogether, this work provides direct evidences about α-amylase buffering effect of PFOS and demonstrates that the presence of α-amylase affects the essential but complex metabolic response in bacteria triggered by PFOS.
Collapse
Affiliation(s)
- Tongtong Zheng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jie Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chunguang Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
64
|
T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation. Int J Mol Sci 2021; 22:ijms22020478. [PMID: 33418898 PMCID: PMC7825059 DOI: 10.3390/ijms22020478] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely distributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by many different mechanisms to respond to various physiological conditions. This review summarizes our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable environmental and host conditions.
Collapse
|
65
|
Wang X, Cheng Y, Zhang W, Lu Q, Wen G, Luo Q, Shao H, Pan Z, Zhang T. (p)ppGpp synthetases are required for the pathogenicity of Salmonella Pullorum in chickens. Microbiol Res 2021; 245:126685. [PMID: 33418400 DOI: 10.1016/j.micres.2020.126685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
Salmonella Pullorum is a pathogen specific to birds that can cause Pullorum disease in young chickens and lead to considerable economic losses in the poultry industry. During transmission and infection, S. Pullorum will encounter various environmental stresses and host defenses. The stringent response is an important adaptation response induced by (p)ppGpp, and in Salmonella, (p)ppGpp is synthesized by two (p)ppGpp synthetases, RelA and SpoT. To investigate the role of (p)ppGpp synthetases in the adaptation and pathogenicity of S. Pullorum, a (p)ppGpp synthetases mutant (ΔrelAΔspoT) was constructed, and its physiological phenotypes and pathogenicity, as well as transcription profiling, were compared with the parent strain. The ΔrelAΔspoT mutant showed decreased ability to form biofilms, and reduced resistance to acidic, alkaline, high osmolarity and H2O2 conditions. The internalization of the ΔrelAΔspoT mutant into host cells in vitro and its lethality and colonization abilities within young chickens were also significantly reduced. RNA sequencing showed that the (p)ppGpp synthetases did not only affect the classic stringent response, such as inhibition of DNA replication and protein synthesis, but also controlled the expression of many virulence factors, in particular, the Salmonella pathogenicity island 1 (SPI-1) and SPI-2 type III secretion systems (T3SSs), and adhesion factors. These results suggest that the (p)ppGpp synthetases are required for the pathogenicity of S. Pullorum by affecting its stress response and the expression of the virulence factors.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei provincial key laboratory of animal pathogenic microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei provincial key laboratory of animal pathogenic microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei provincial key laboratory of animal pathogenic microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei provincial key laboratory of animal pathogenic microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei provincial key laboratory of animal pathogenic microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei provincial key laboratory of animal pathogenic microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
66
|
Jacobs L, Meesters J, Parijs I, Hooyberghs G, Van der Eycken EV, Lories B, Steenackers HP. 2-Aminoimidazoles as potent inhibitors of contaminating brewery biofilms. BIOFOULING 2021; 37:61-77. [PMID: 33573402 DOI: 10.1080/08927014.2021.1874366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Cleaning and disinfection protocols are not always able to remove biofilm microbes present in breweries, indicating that novel anti-biofilm strategies are needed. The preventive activities of three in-house synthesized members of the 2-aminoimidazole class of anti-biofilm molecules were studied against 17 natural brewery biofilms and benchmarked against 18 known inhibitors. Two 2-aminoimidazoles belonged to the top six inhibitors, which were retested against 12 defined brewery biofilm models. For the three best inhibitors, tannic acid (n° 1), 2-aminoimidazole imi-AAC-5 (n° 2), and baicalein (n° 3), the effect on the microbial metabolic activity was evaluated. Here, the top three inhibitors showed similar effectiveness, with baicalein possessing a slightly higher efficacy. Even though the 2-aminoimidazole was the second-best inhibitor, it showed a lower biocidal activity than tannic acid, making it less prone to resistance evolution. Overall, this study supports the potential of 2-aminoimidazoles as a preventive anti-biofilm strategy.
Collapse
Affiliation(s)
- Lene Jacobs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | | - Ilse Parijs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | - Geert Hooyberghs
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Bram Lories
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | |
Collapse
|
67
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
68
|
Buijs Y, Isbrandt T, Zhang SD, Larsen TO, Gram L. The Antibiotic Andrimid Produced by Vibrio coralliilyticus Increases Expression of Biosynthetic Gene Clusters and Antibiotic Production in Photobacterium galatheae. Front Microbiol 2020; 11:622055. [PMID: 33424823 PMCID: PMC7793655 DOI: 10.3389/fmicb.2020.622055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The development and spread of multidrug resistant pathogens have reinforced the urgency to find novel natural products with antibiotic activity. In bacteria, orphan biosynthetic gene clusters (BGCs) far outnumber the BGCs for which chemistry is known, possibly because they are transcriptionally silent under laboratory conditions. A strategy to trigger the production of this biosynthetic potential is to challenge the microorganism with low concentrations of antibiotics, and by using a Burkholderia genetic reporter strain (Seyedsayamdost, Proc Natl Acad Sci 111:7266-7271), we found BGC unsilencing activity for the antimicrobial andrimid, produced by the marine bacterium Vibrio coralliilyticus. Next, we challenged another marine Vibrionaceae, Photobacterium galatheae, carrier of seven orphan BGCs with sub-inhibitory concentrations of andrimid. A combined approach of transcriptional and chemical measurements of andrimid-treated P. galatheae cultures revealed a 10-fold upregulation of an orphan BGC and, amongst others, a 1.6-2.2-fold upregulation of the gene encoding the core enzyme for biosynthesis of holomycin. Also, addition of andrimid caused an increase, based on UV-Vis peak area, of 4-fold in production of the antibiotic holomycin. Transcriptional measurements of stress response related genes in P. galatheae showed a co-occurrence of increased transcript levels of rpoS (general stress response) and andrimid induced holomycin overproduction, while in trimethoprim treated cultures attenuation of holomycin production coincided with a transcriptional increase of recA (SOS stress response). This study shows that using antimicrobial compounds as activators of secondary metabolism can be a useful strategy in eliciting biosynthetic gene clusters and facilitate natural product discovery. Potentially, such interactions could also have ecological relevant implications.
Collapse
Affiliation(s)
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
69
|
Steinbach G, Crisan C, Ng SL, Hammer BK, Yunker PJ. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J R Soc Interface 2020; 17:20200486. [PMID: 33292099 PMCID: PMC7811593 DOI: 10.1098/rsif.2020.0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations. However, we find that the efficacy of contact killing is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing physical contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as 106-fold, we find that, as a result of the formation of dead cell debris barriers, the impact of contact killing depends sensitively on the initial concentration of killer cells. Killer cells are incapable of invading or eliminating competitors on a community level. Instead, bacterial warfare itself can facilitate coexistence between nominally antagonistic strains. While a variety of defensive strategies against microbial warfare exist, the material consequences of cell death provide target cells with their first line of defence.
Collapse
Affiliation(s)
- Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristian Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
70
|
Robitaille S, Trus E, Ross BD. Bacterial Defense against the Type VI Secretion System. Trends Microbiol 2020; 29:187-190. [PMID: 32951987 DOI: 10.1016/j.tim.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
Bacteria have evolved systems dedicated to interbacterial competition. Here we highlight defenses utilized by Gram-negative cells against type VI secretion system (T6SS)-wielding competitors, including physical barriers, genetically encoded antidotes, and stress responses. Further investigation of specific and general defenses will reveal the interbacterial selective pressures impacting bacterial survival in nature.
Collapse
Affiliation(s)
- Sophie Robitaille
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Evan Trus
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Benjamin D Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
71
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
72
|
Tipping MJ, Gibbs KA. Biofilms: Managing Stress to Navigate Group Dynamics. Curr Biol 2020; 30:R324-R326. [PMID: 32259509 DOI: 10.1016/j.cub.2020.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To thrive in dense communities, organisms have to navigate neighbors and resources. A new study reveals that bacteria integrate cues of communal living through stress pathways. The primary source of the stress - at least for one bacterium - is a direct conflict with neighbors.
Collapse
Affiliation(s)
- Murray J Tipping
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|