51
|
Zhang T, Cheng Y, Zhou Y, Zhang Z, Qi S, Pan Z. Diagnostic performance of type I hypersensitivity-specific markers combined with CRP and IL-6 in complicated acute appendicitis in pediatric patients. Int Immunopharmacol 2023; 124:110977. [PMID: 37774482 DOI: 10.1016/j.intimp.2023.110977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE In this study, the diagnostic value of C-reactive protein (CRP), interleukin-6 (IL)-6, and specific markers for type I hypersensitivity were evaluated in pediatric patients with severe acute appendicitis. METHODS A total of 140 pediatric patients with "acute appendicitis" who underwent surgery at the Department of General Surgery of the Anhui Provincial Pediatric Patients' Hospital between December 2022 and April 2023 were studied retrospectively. The data collected included the gender, age, onset time, white blood cell count (WBC), CRP, procalcitonin (PCT), serum IgE, serum IL-4, serum IL-5, serum IL-6, serum IL-9, and serum IL-13 levels. The pediatric patients were divided into two groups based on the intraoperative situation and postoperative pathology: the non-complicated acute appendicitis group (NCAA) and the complicated acute appendicitis group (CAA). We analyzed the data from both groups using univariate and multivariate logistic regression models and constructed an ROC curve. RESULTS The CAA group outperformed the NCAA group in terms of onset time, WBC, CRP, PCT, IgE, IL-6, IL-9, and IL-13 levels (P < 0.05), but there was no statistically significant difference between the two groups in terms of gender, IL-4, or IL-5 levels (P > 0.05). Then, significant independent variables were incorporated into multivariate logistic regression. According to the results, CRP, IgE, IL-6, and IL-13 are all independent risk factors for CAA. The OR and 95% CI for each factor are as follows: CRP (OR = 1.073, 95%CI: 1.010-1.140, P = 0.022), IgE (OR = 0.975, 95%CI: 0.952-0.999, P = 0.038), IL-6 (OR = 1.494, 95%CI: 1.052-2.121, P = 0.025), and IL-13 (OR = 1.310, 95%CI: 1.036-1.657, P = 0.024). The receiving operator characteristics analysis yielded area under the curve (AUC) values of 0.8187, 0.9083, 0.8947, and 0.8394, respectively, for CRP, IgE, IL-6, and IL-13, confirming their significance in the diagnosis of CAA (P < 0.05). CONCLUSION Risk factors for CAA include CRP, IgE, IL-6, and IL-13. The combination of these serological markers can be used to diagnose CAA.
Collapse
Affiliation(s)
- Tao Zhang
- Department of General Surgery, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei 230000, Anhui, China; The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, Anhui, China
| | - Yuan Cheng
- Department of General Surgery, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Yuliang Zhou
- Department of General Surgery, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhenqiang Zhang
- Department of General Surgery, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Shiqin Qi
- Department of General Surgery, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhubin Pan
- Department of General Surgery, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei 230000, Anhui, China; The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, Anhui, China.
| |
Collapse
|
52
|
Simpson EL, Guttman-Yassky E, Eichenfield LF, Boguniewicz M, Bieber T, Schneider S, Guana A, Silverberg JI. Tralokinumab therapy for moderate-to-severe atopic dermatitis: Clinical outcomes with targeted IL-13 inhibition. Allergy 2023; 78:2875-2891. [PMID: 37455359 DOI: 10.1111/all.15811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory, intensely pruritic skin disorder associated with significant patient burden. Interleukin (IL)-13 is a cytokine that acts as a driver of immune dysregulation, skin-barrier dysfunction, and microbiome dysbiosis that characterizes AD, and is consistently overexpressed in AD skin. Tralokinumab is a fully human immunoglobulin (Ig) G4 monoclonal antibody that binds specifically to IL-13 with high affinity, thereby inhibiting subsequent downstream IL-13 signaling. Three pivotal phase 3 clinical trials demonstrated that tralokinumab 300 mg every other week, as monotherapy or in combination with topical corticosteroids as needed, provides significant improvements in signs and symptoms of moderate-to-severe AD, as measured by Investigator's Global Assessment 0/1 (clear/almost clear) and Eczema Area and Severity Index-75 at Week 16. Improvements were observed soon after tralokinumab initiation and were maintained over 52 weeks of therapy. Tralokinumab significantly improved patient-reported outcomes such as itch and sleep, and demonstrated a safety profile comparable with placebo; conjunctivitis during tralokinumab therapy was generally mild. Similar results were observed in a phase 3 adolescent trial. The role of IL-13 in the pathophysiology of AD justifies a targeted approach and a wealth of clinical data supports tralokinumab as a new therapeutic option for people with moderate-to-severe AD.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego and Rady Children's Hospital San Diego, San Diego, California, USA
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, USA
| | - Thomas Bieber
- Department of Dermatology and Allergy, Christine Kühne-Center for Allergy Research and Education (CK-CARE), University Hospital Bonn, Bonn, Germany
| | | | | | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
53
|
Russi AE, Shivakumar P, Luo Z, Bezerra J. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 2023; 78:1035-1049. [PMID: 37078450 PMCID: PMC10524120 DOI: 10.1097/hep.0000000000000418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND AIMS Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.
Collapse
Affiliation(s)
- Abigail E Russi
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jorge Bezerra
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children’s Health of Dallas, TX, USA
| |
Collapse
|
54
|
Pratim Das P, Medhi S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine 2023; 170:156347. [PMID: 37639845 DOI: 10.1016/j.cyto.2023.156347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Liver cirrhosis develops as a result of persistent inflammation and liver injury. The prolonged inflammation triggers the buildup of fibrous tissue and regenerative nodules within the liver, leading to the distortion of the hepatic vascular structure and impaired liver function. Cirrhosis disrupts the ability of liver function to maintain homeostasis and hepatic immunosurveillance which causes immunological dysfunction in the body. In pathological conditions, the production of cytokines in the liver is carefully regulated by various cells in response to tissue stimulation. Cytokines and inflammasomes are the key regulators and systematically contribute to the development of cirrhosis which involves an inflammatory response. However, the crosstalk role of different cytokines in the cirrhosis progression is poorly understood. Tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interferon-gamma (IFN-γ), among others, are proinflammatory cytokines that contribute to liver cell necrosis, which in turn causes the development of fibrosis. While IL-10 exhibits a potent anti-inflammatory effect on the liver by inhibiting immune cell activation and neutralizing pro-inflammatory cytokine activity. Inflammasomes have also been implicated in the profibrotic processes of liver cirrhosis, as well as the production of chemokines such as CCL2/MCP-1. It is evident that inflammasomes have a role in the proinflammatory response seen in chronic liver illnesses. In conclusion, cirrhosis significantly impacts the immune system, leading to immunological dysfunction and alterations in both innate and acquired immunity. Proinflammatory cytokines like TNF-α, IL-1β, IL-6, and IFNγ are upregulated in cirrhosis, contributing to liver cell necrosis and fibrosis development. Managing cytokine-mediated inflammation and fibrosis is a key therapeutic approach to alleviate portal hypertension and its associated liver complications. This review attempted to focus largely on the role of immune dysfunction mediated by different cytokines and inflammasomes involved in the progression, regulation and development of liver cirrhosis.
Collapse
Affiliation(s)
- Partha Pratim Das
- Dept. of Bioengineering & Technology, Gauhati University, Assam 781014, India
| | - Subhash Medhi
- Dept. of Bioengineering & Technology, Gauhati University, Assam 781014, India.
| |
Collapse
|
55
|
Li X, Ma Y, Liu C, Pu F, Zhang Y, Wang D. Platelet membrane-derived microparticles may be biomarkers in patients with hepatocellular carcinoma and can promote the invasion and metastasis of hepatoma carcinoma cells. Transfusion 2023; 63:1821-1831. [PMID: 37680187 DOI: 10.1111/trf.17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Platelet membrane-derived microparticles (PMPs) released by apheresis platelets (APs) during storage are involved in immunomodulatory and tumor processes. However, few studies have emphasized the relationship between PMPs and hepatocellular carcinoma (HCC). METHODS Enzyme-linked immunosorbent assay (ELISA) was used to detect PMPs in the plasma of HCC patients and healthy individuals. ELISA and flow cytometry were separately applied to analyze the variation in PMPs from APs prepared after 0, 3, 5, and 7 days of storage. Transwell was used to demonstrate the effects of PMPs on the invasion and migration of HCC cells. HCC-related indicators and invasion and migration-related markers were detected in vivo. RESULTS We found the amount of PMPs was significantly increased in HCC patients. There was also a significant difference in the amount of PMPs in APs with prolonged storage time. Further, the PMPs in D5 promoted the invasion and migration of HepG2 and Huh7 cells. Transcriptomics revealed striking differences in the expression of many tumor metastasis associated genes with PMPs treatment. PMPs promoted tumor growth and weight loss in HCC-bearing mice, and Western blot results showed that invasion and migration-related indicators also increase. CONCLUSION The content of PMPs in the plasma of HCC patients increases, and it can also promote the invasion and migration of HCC.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Ma
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengdi Liu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Pu
- Department of Blood Transfusion Research Laboratory, Zhongshan Blood Center, Zhongshan, China
| | - Yuan Zhang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
56
|
Pan HW, Guo J, Zhu L, Leung SWS, Zhang C, Lam JKW. Enhanced powder dispersion of dual-excipient spray-dried powder formulations of a monoclonal antibody and its fragment for local treatment of severe asthma. Int J Pharm 2023; 644:123272. [PMID: 37499774 DOI: 10.1016/j.ijpharm.2023.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The advent of biologics has brought renewed hope for patients with severe asthma, a condition notorious for being hampered by poor response to conventional therapies and adverse drug reactions owing to corticosteroid dependence. However, biologics are administered as injections, thereby precluding the benefits inhalation therapy could offer such as increased bioavailability at the site of action, minimal systemic side effects, non-invasiveness, and self-administration. Here, 2-hydroxypropyl-beta-cyclodextrin and ʟ-leucine were co-spray-dried, as protein stabiliser and dispersion enhancer, respectively, at various weight ratios to produce a series of formulation platforms. Powder aerosolisation characteristics and particle morphology were assessed for suitability for pulmonary delivery. The selected platform with the best aerosol performance, a 1:1 ratio of the excipients, was then incorporated with a monoclonal antibody directed against IL-4 receptor alpha or its antigen-binding fragment. The dual-excipient antibody formulations exhibited emitted fraction of at least 80% and fine particle fraction exceeding 60% in cascade impactor study, while the residual moisture content was within a desirable range between 1% and 3%. The in vitro antigen-binding ability and inhibitory potency of the spray-dried antibody were satisfactorily preserved. The results from this study corroborate the viability of inhaled solid-state biomacromolecules as a promising treatment approach for asthma.
Collapse
Affiliation(s)
- Harry W Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jinlin Guo
- R&D Department, Shanghai MabGeek Biotech Co. Ltd., Room 304, No. 1011 Halei Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Lingqiao Zhu
- R&D Department, Shanghai MabGeek Biotech Co. Ltd., Room 304, No. 1011 Halei Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Chenghai Zhang
- R&D Department, Shanghai MabGeek Biotech Co. Ltd., Room 304, No. 1011 Halei Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China.
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39, Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
57
|
Allen CA, Goderie SK, Liu M, Kiehl TR, Farjood F, Wang Y, Boles NC, Temple S. Adult Mouse Leptomeninges Exhibit Regional and Age-related Cellular Heterogeneity Implicating Mental Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557097. [PMID: 37745502 PMCID: PMC10515796 DOI: 10.1101/2023.09.10.557097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The leptomeninges envelop the central nervous system (CNS) and contribute to cerebrospinal fluid (CSF) production and homeostasis. We analyzed the meninges overlying the anterior or posterior forebrain in the adult mouse by single nuclear RNA-sequencing (snucRNA-seq). This revealed regional differences in fibroblast and endothelial cell composition and gene expression. Surprisingly, these non-neuronal cells co-expressed genes implicated in neural functions. The regional differences changed with aging, from 3 to 18 months. Cytokine analysis revealed specific soluble factor production from anterior vs posterior meninges that also altered with age. Secreted factors from the leptomeninges from different regions and ages differentially impacted the survival of anterior or posterior cortical neuronal subsets, neuron morphology, and glia proliferation. These findings suggest that meningeal dysfunction in different brain regions could contribute to specific neural pathologies. The disease-associations of meningeal cell genes differentially expressed with region and age were significantly enriched for mental and substance abuse disorders.
Collapse
Affiliation(s)
| | | | - Mo Liu
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | | | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| |
Collapse
|
58
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
59
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
60
|
Schrijver DP, Röring RJ, Deckers J, de Dreu A, Toner YC, Prevot G, Priem B, Munitz J, Nugraha EG, van Elsas Y, Azzun A, Anbergen T, Groh LA, Becker AMD, Pérez-Medina C, Oosterwijk RS, Novakovic B, Moorlag SJCFM, Jansen A, Pickkers P, Kox M, Beldman TJ, Kluza E, van Leent MMT, Teunissen AJP, van der Meel R, Fayad ZA, Joosten LAB, Fisher EA, Merkx M, Netea MG, Mulder WJM. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. Nat Biomed Eng 2023; 7:1097-1112. [PMID: 37291433 PMCID: PMC10504080 DOI: 10.1038/s41551-023-01050-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.
Collapse
Affiliation(s)
- David P Schrijver
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Deckers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne de Dreu
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yohana C Toner
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Prevot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram Priem
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Angiogenesis Laboratory, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jazz Munitz
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eveline G Nugraha
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yuri van Elsas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Azzun
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anouk M D Becker
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Tumor Immunology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Roderick S Oosterwijk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Boris Novakovic
- Epigenetics Group, Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aron Jansen
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thijs J Beldman
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ewelina Kluza
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Maarten Merkx
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
61
|
Li H, He C, Zhu R, Chen FM, Wang L, Leung FP, Tian XY, Tse G, Wong WT. Type 2 cytokines promote angiogenesis in ischemic muscle via endothelial IL-4Rα signaling. Cell Rep 2023; 42:112964. [PMID: 37556326 DOI: 10.1016/j.celrep.2023.112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/21/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Peripheral arterial disease (PAD) is one of the leading causes of cardiovascular morbidity and mortality worldwide, yet current trials on therapeutic angiogenesis remain suboptimal. Type 2 immunity is critical for post-ischemic regeneration, but its regulatory role in revascularization is poorly characterized. Here, we show that type 2 cytokines, interleukin-4 (IL-4) and interleukin-13 (IL-13), are the key mediators in post-ischemic angiogenesis. IL-4/IL-13-deficient mice exhibit impaired reperfusion and muscle repair in an experimental model of PAD. We find that deletion of IL-4Rα in the endothelial compartment, rather than the myeloid compartment, leads to remarkable impairment in revascularization. Mechanistically, IL-4/IL-13 promote endothelial cell proliferation, migration, and tube formation via IL-4Rα/STAT6 signaling. Furthermore, attenuated IL-4/IL-13 expression is associated with the angiogenesis deficit in the setting of diabetic PAD, while IL-4/IL-13 treatment rescues this defective regeneration. Our findings reveal the therapeutic potential of type 2 cytokines in treating patients with muscle ischemia.
Collapse
Affiliation(s)
- Huixian Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Chufeng He
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruiwen Zhu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Francis M Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lin Wang
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Fung Ping Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong 999077, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
62
|
Bezerra WP, Salmeron ACA, Branco ACCC, Morais IC, de Farias Sales VS, Machado PRL, Souto JT, de Araújo JMG, Guedes PMDM, Sato MN, Nascimento MSL. Low CCL2 and CXCL8 Production and High Prevalence of Allergies in Children with Microcephaly Due to Congenital Zika Syndrome. Viruses 2023; 15:1832. [PMID: 37766239 PMCID: PMC10535964 DOI: 10.3390/v15091832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Congenital Zika Syndrome (CZS) is associated with an increased risk of microcephaly in affected children. This study investigated the peripheral dysregulation of immune mediators in children with microcephaly due to CZS. Gene expression quantified by qPCR in whole blood samples showed an increase in IFNγ and IL-13 transcripts in children affected with microcephaly compared to the control group. The microcephaly group exhibited significantly decreased CCL2 and CXCL8 levels in serum, quantified by CBA assay. An allergic profile questionnaire revealed a high prevalence of allergies in the microcephaly group. In accordance, elevated serum IgE level measured by the Proquantum Immunoassay was observed in children affected with microcephaly compared to the control group. Altogether, these findings show a persistent systemic inflammation in children with microcephaly due to CZS and suggest a possible impairment in leukocyte migration caused by low production of CCL2 and CXCL8, in addition to high levels of IgE associated with high prevalence of allergies. The dysregulation of inflammatory genes and chemokines underscores the importance of understanding the immunological characteristics of CZS. Further investigation into the long-term consequences of systemic inflammation in these children is crucial for developing appropriate therapeutic strategies and tailored vaccination protocols.
Collapse
Affiliation(s)
- Wallace Pitanga Bezerra
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| | - Amanda Costa Ayres Salmeron
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba 59280-000, RN, Brazil;
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo 05403-000, SP, Brazil; (A.C.C.C.B.); (M.N.S.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ingryd Camara Morais
- Virology Laboratory, Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-190, RN, Brazil;
| | - Valéria Soraya de Farias Sales
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.S.d.F.S.); (P.R.L.M.)
| | - Paula Renata Lima Machado
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.S.d.F.S.); (P.R.L.M.)
| | - Janeusa Trindade Souto
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
- Virology Laboratory, Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-190, RN, Brazil;
| | - Paulo Marcos da Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo 05403-000, SP, Brazil; (A.C.C.C.B.); (M.N.S.)
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| |
Collapse
|
63
|
Saglani S, Yates L, Lloyd CM. Immunoregulation of asthma by type 2 cytokine therapies: Treatments for all ages? Eur J Immunol 2023; 53:e2249919. [PMID: 36932669 DOI: 10.1002/eji.202249919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Asthma is classically considered to be a disease of type 2 immune dysfunction, since many patients exhibit the consequences of excess secretion of cytokines such as IL-4, IL-5, and IL-13 concomitant with inflammation typified by eosinophils. Mouse and human disease models have determined that many of the canonical pathophysiologic features of asthma may be caused by these disordered type 2 immune pathways. As such considerable efforts have been made to develop specific drugs targeting key cytokines. There are currently available multiple biologic agents that successfully reduce the functions of IL-4, IL-5, and IL-13 in patients, and many improve the course of severe asthma. However, none are curative and do not always minimize the key features of disease, such as airway hyperresponsiveness. Here, we review the current therapeutic landscape targeting type 2 immune cytokines and discuss evidence of efficacy and limitations of their use in adults and children with asthma.
Collapse
Affiliation(s)
- Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Laura Yates
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
64
|
Gumkowska-Sroka O, Kotyla K, Mojs E, Palka K, Kotyla P. Novel Therapeutic Strategies in the Treatment of Systemic Sclerosis. Pharmaceuticals (Basel) 2023; 16:1066. [PMID: 37630981 PMCID: PMC10458905 DOI: 10.3390/ph16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin and with an unpredictable course, with both cutaneous and internal organ manifestations. Despite the enormous progress in rheumatology and clinical immunology, the background of this disease is largely unknown, and no specific therapy exists. The therapeutic approach aims to treat and preserve the function of internal organs, and this approach is commonly referred to as organ-based treatment. However, in modern times, data from other branches of medicine may offer insight into how to treat disease-related complications, making it possible to find new drugs to treat this disease. In this review, we present therapeutic options aiming to stop the progression of fibrotic processes, restore the aberrant immune response, stop improper signalling from proinflammatory cytokines, and halt the production of disease-related autoantibodies.
Collapse
Affiliation(s)
- Olga Gumkowska-Sroka
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Kacper Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Klaudia Palka
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| |
Collapse
|
65
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
66
|
Gatmaitan JG, Lee JH. Challenges and Future Trends in Atopic Dermatitis. Int J Mol Sci 2023; 24:11380. [PMID: 37511138 PMCID: PMC10380015 DOI: 10.3390/ijms241411380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis represents a complex and multidimensional interaction that represents potential fields of preventive and therapeutic management. In addition to the treatment armamentarium available for atopic dermatitis, novel drugs targeting significant molecular pathways in atopic dermatitis biologics and small molecules are also being developed given the condition's complex pathophysiology. While most of the patients are expecting better efficacy and long-term control, the response to these drugs would still depend on numerous factors such as complex genotype, diverse environmental triggers and microbiome-derived signals, and, most importantly, dynamic immune responses. This review article highlights the challenges and the recently developed pharmacological agents in atopic dermatitis based on the molecular pathogenesis of this condition, creating a specific therapeutic approach toward a more personalized medicine.
Collapse
Affiliation(s)
- Julius Garcia Gatmaitan
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Gatmaitan Medical and Skin Center, Baliuag 3006, Bulacan, Philippines
- Skines Aesthetic and Laser Center, Quezon City 1104, Metro Manila, Philippines
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
67
|
Chen J, Chen S, Gong G, Yang F, Chen J, Wang Y. Inhibition of IL-4/STAT6/IRF4 signaling reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110554. [PMID: 37385124 DOI: 10.1016/j.intimp.2023.110554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Previous studies have shown that epithelial-to-mesenchymal transition (EMT) in nasal epithelial cells is critical for tissue remodeling of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the precise mechanism underlying the EMT remains poorly understood. This study aimed to investigate the role of interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6)/interferon regulatory factor 4 (IRF4) signaling pathway on EMT in eosinophilic CRSwNP. METHODS We performed quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescent staining, and Western blotting to evaluate the expression of STAT6, IRF4, and EMT markers in sinonasal mucosal samples. Effects of IL-4-induced EMT were determined using primary human nasal epithelial cells (hNECs) from patients with eosinophilic CRSwNP. Wound scratch assay, cell morphology, Western blotting, and immunofluorescence cytochemistry were performed to evaluate EMT, and EMT-related markers. Next, human THP-1 monocytic cells were stimulated by phorbolate-12-myristate-13-acetate to differentiate into M0 and were subsequently polarized into M1 with lipopolysaccharide and interferon-γ, M2 with IL-4. The markers of the macrophage phenotype were assessed by Western blotting. The co-culture system was built to explore the interaction between macrophages (THP-1 cells) and hNECs. After co-culture with M2 macrophages, EMT-related markers of primary hNECs were evaluated by immunofluorescence cytochemistry and Western blotting. Enzymelinked immunosorbent assays were used to detect transforming growth factor beta 1 (TGF-β1) in THP-1-derived supernatants. RESULTS STAT6 and IRF4 mRNA and protein expression were significantly upregulated in both eosinophilic and noneosinophilic nasal polyps compared with control tissues. The expression of STAT6 and IRF4 in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps. STAT6 and IRF4 were not only expressed in epithelial cells but also in macrophages. The number of STAT6+CD68+ cells and IRF4+CD68+ cells in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps and control tissues. EMT was enhanced in eosinophilic CRSwNP compared to the healthy controls and noneosinophilic CRSwNP. IL-4-stimulated human nasal epithelial cells exhibited EMT characteristics. The hNECs co-cultured with M2 macrophages demonstrated high levels of EMT-related markers. The TGF-β1 level was significantly induced by IL-4 and elevated (M2) rather than control macrophages. The inhibition of STAT6 by AS1517499 reduced the expression of IRF4 in epithelial cells and macrophages and counteracted IL-4-induced EMT in epithelial cells. CONCLUSION In eosinophilic nasal polyps, IL-4 induces STAT6 signaling to upregulate IRF4 expression in epithelial cells and macrophages. IL-4 promotes EMT of hNECs through the STAT6/IRF4 signaling pathway. IL-4-induced M2 macrophages enhanced EMT of hNECs. Inhibition of STAT6 can downregulate the expression of IRF4 and suppress the EMT process, thus providing a new strategy for the treatment of nasal polyps.
Collapse
Affiliation(s)
- Jingcai Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otorhinolaryngology, The First Affiliated Hospital, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Gong
- Department of Otorhinolaryngology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan 430022, China
| | - Fan Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
68
|
Chakma CR, Good-Jacobson KL. Requirements of IL-4 during the Generation of B Cell Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1853-1860. [PMID: 37276051 DOI: 10.4049/jimmunol.2200922] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 06/07/2023]
Abstract
IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
69
|
Baker MC, Sheth K, Lu R, Lu D, von Kaeppler EP, Bhat A, Felson DT, Robinson WH. Increased risk of osteoarthritis in patients with atopic disease. Ann Rheum Dis 2023; 82:866-872. [PMID: 36987654 PMCID: PMC10314085 DOI: 10.1136/ard-2022-223640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES To determine the incidence of osteoarthrits (OA) in patients with atopic disease compared with matched non-exposed patients. METHODS We conducted a retrospective cohort study with propensity score matching using claims data from Optum's de-identified Clinformatics Data Mart (CDM) (January 2003 to June 2019) and electronic health record data from the Stanford Research Repository (STARR) (January 2010 to December 2020). We included adult patients without pre-existing OA or inflammatory arthritis who were exposed to atopic disease or who were non-exposed. The primary outcome was the development of incident OA. RESULTS In Optum CDM, we identified 117 346 exposed patients with asthma or atopic dermatitis (mean age 52 years; 60% female) and 1 247 196 non-exposed patients (mean age 50 years; 48% female). After propensity score matching (n=1 09 899 per group), OA incidence was higher in patients with asthma or atopic dermatitis (26.9 per 1000 person-years) compared with non-exposed patients (19.1 per 1000 person-years), with an adjusted odds ratio (aOR) of 1.58 (95% CI 1.55 to 1.62) for developing OA. This effect was even more pronounced in patients with both asthma and atopic dermatitis compared with non-exposed patients (aOR=2.15; 95% CI 1.93 to 2.39) and in patients with asthma compared with patients with chronic obstructive pulmonary disease (aOR=1.83; 95% CI 1.73 to 1.95). We replicated our results in an independent dataset (STARR), which provided the added richness of body mass index data. The aOR of developing OA in patients with asthma or atopic dermatitis versus non-exposed patients in STARR was 1.42 (95% CI 1.36 to 1.48). CONCLUSIONS This study demonstrates an increased incidence of OA in patients with atopic disease. Future interventional studies may consider targeting allergic pathways for the prevention or treatment of OA.
Collapse
Affiliation(s)
- Matthew C Baker
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Khushboo Sheth
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Chinook Therapeutics Inc, Berkeley, California, USA
| | - Rong Lu
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Di Lu
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ericka P von Kaeppler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Archana Bhat
- Research Informatics Center, Stanford University, Stanford, California, USA
| | - David T Felson
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Division of Rheumatology, Palo Alto VA Medical Center, Palo Alto, California, USA
| |
Collapse
|
70
|
Wu T, Li N, Luo F, Chen Z, Ma L, Hu T, Hong G, Li H. Screening prognostic markers for hepatocellular carcinoma based on pyroptosis-related lncRNA pairs. BMC Bioinformatics 2023; 24:176. [PMID: 37120506 PMCID: PMC10148420 DOI: 10.1186/s12859-023-05299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Pyroptosis is closely related to cancer prognosis. In this study, we tried to construct an individualized prognostic risk model for hepatocellular carcinoma (HCC) based on within-sample relative expression orderings (REOs) of pyroptosis-related lncRNAs (PRlncRNAs). METHODS RNA-seq data of 343 HCC samples derived from The Cancer Genome Atlas (TCGA) database were analyzed. PRlncRNAs were detected based on differentially expressed lncRNAs between sample groups clustered by 40 reported pyroptosis-related genes (PRGs). Univariate Cox regression was used to screen out prognosis-related PRlncRNA pairs. Then, based on REOs of prognosis-related PRlncRNA pairs, a risk model for HCC was constructed by combining LASSO and stepwise multivariate Cox regression analysis. Finally, a prognosis-related competing endogenous RNA (ceRNA) network was built based on information about lncRNA-miRNA-mRNA interactions derived from the miRNet and TargetScan databases. RESULTS Hierarchical clustering of HCC patients according to the 40 PRGs identified two groups with a significant survival difference (Kaplan-Meier log-rank, p = 0.026). Between the two groups, 104 differentially expressed lncRNAs were identified (|log2(FC)|> 1 and FDR < 5%). Among them, 83 PRlncRNA pairs showed significant associations between their REOs within HCC samples and overall survival (Univariate Cox regression, p < 0.005). An optimal 11-PRlncRNA-pair prognostic risk model was constructed for HCC. The areas under the curves (AUCs) of time-dependent receiver operating characteristic (ROC) curves of the risk model for 1-, 3-, and 5-year survival were 0.737, 0.705, and 0.797 in the validation set, respectively. Gene Set Enrichment Analysis showed that inflammation-related interleukin signaling pathways were upregulated in the predicted high-risk group (p < 0.05). Tumor immune infiltration analysis revealed a higher abundance of regulatory T cells (Tregs) and M2 macrophages and a lower abundance of CD8 + T cells in the high-risk group, indicating that excessive pyroptosis might occur in high-risk patients. Finally, eleven lncRNA-miRNA-mRNA regulatory axes associated with pyroptosis were established. CONCLUSION Our risk model allowed us to determine the robustness of the REO-based PRlncRNA prognostic biomarkers in the stratification of HCC patients at high and low risk. The model is also helpful for understanding the molecular mechanisms between pyroptosis and HCC prognosis. High-risk patients may have excessive pyroptosis and thus be less sensitive to immune therapy.
Collapse
Affiliation(s)
- Tong Wu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Na Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Fengyuan Luo
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Zhihong Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tao Hu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
71
|
Ionescu EM, Olteanu AO, Tieranu CG, Popa LO, Andrei SI, Preda CM, Dutescu MI, Bojinca M, Tieranu I, Popa OM. Interleukin-4 Gene Polymorphisms in Romanian Patients with Inflammatory Bowel Diseases: Association with Disease Risk and Clinical Features. Diagnostics (Basel) 2023; 13:1465. [PMID: 37189566 PMCID: PMC10137844 DOI: 10.3390/diagnostics13081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
1. INTRODUCTION Multiple cytokines have been studied for their role in the propagation of the inflammatory process related to inflammatory bowel diseases (IBD), but the role of interleukin-4 remains controversial. The aim of this study was to evaluate the role of two IL-4 gene single nucleotide polymorphisms (SNPs) in disease susceptibility and phenotypic expression. 2. MATERIALS AND METHODS A group of 160 patients with IBD (86CD/74UC) and 160 healthy controls were genotyped for IL-4 rs2243250/-590C/T and rs2070874/-34C/T using real-time polymerase chain reaction with TaqMan assay. 3. RESULTS The analysis of IBD patients and controls revealed a significantly reduced frequency of the minor allele T of both SNPs in CD patients (p = 0.03, OR 0.55 and p = 0.02, OR 0.52) and for the entire IBD group (p = 0.01, OR 0.57 and p = 0.01, OR 0.55). Haplotype analysis identified the most frequent haplotype (rs2243250/rs2070874 CC) associated with a high risk for developing IBD (either UC or CD) (p = 0.003). IBD patients with extraintestinal manifestations had significantly increased frequency of the minor alleles T. We also found an association between the presence of allele C of rs2070874 and response to antiTNF treatment. 4. CONCLUSIONS This is the first study to investigate the IL-4 gene's relation to IBD susceptibility conducted in Romania. Both SNPs were found to be associated with disease susceptibility and phenotypic features, such as extraintestinal manifestations and response to antiTNF agents.
Collapse
Affiliation(s)
- Elena Mirela Ionescu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Andrei Ovidiu Olteanu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristian George Tieranu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Luis Ovidiu Popa
- Molecular Biology Department, “Grigore Antipa” National Museum of Natural History, 011341 Bucharest, Romania
| | - Silvia Ioana Andrei
- Clinic of Internal Medicine II, Thüringen-Kliniken “Georgius Agricola“, 07318 Saalfeld, Germany
| | - Carmen Monica Preda
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Monica Irina Dutescu
- “Prof. Dr. C. T. Nicolau” National Institute of Blood Transfusion, 011155 Bucharest, Romania
| | - Mihai Bojinca
- Department of Rheumatology and Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Tieranu
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Olivia Mihaela Popa
- Department of Immunology and Pathophysiology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
72
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
73
|
Pastor‐Fernández A, Bertos AR, Sierra‐Ramírez A, del Moral‐Salmoral J, Merino J, de Ávila AI, Olagüe C, Villares R, González‐Aseguinolaza G, Rodríguez MÁ, Fresno M, Gironés N, Bustos M, Smerdou C, Fernandez‐Marcos PJ, von Kobbe C. Treatment with the senolytics dasatinib/quercetin reduces SARS-CoV-2-related mortality in mice. Aging Cell 2023; 22:e13771. [PMID: 36704839 PMCID: PMC10014049 DOI: 10.1111/acel.13771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/28/2023] Open
Abstract
The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases. Using the established COVID-19 murine model K18-hACE2, we demonstrated that a combination of the senolytics dasatinib and quercetin (D/Q) significantly reduced SARS-CoV-2-related mortality, delayed its onset, and reduced the number of other clinical symptoms. The increase in senescent markers that we detected in the lungs in response to SARS-CoV-2 may be related to the post-COVID-19 sequelae described to date. These results place senescent cells as central targets for the treatment of COVID-19, and make D/Q a new and promising therapeutic tool.
Collapse
Affiliation(s)
- Andrés Pastor‐Fernández
- Metabolic Syndrome Group‐BIOPROMETMadrid Institute for Advanced Studies‐IMDEA Food, CEI UAM+CSICMadridSpain
| | - Antonio R. Bertos
- Department of Internal Medicine and Surgical Animal, Faculty of Veterinary/VISAVET CentreComplutense University of MadridMadridSpain
| | - Arantzazu Sierra‐Ramírez
- Metabolic Syndrome Group‐BIOPROMETMadrid Institute for Advanced Studies‐IMDEA Food, CEI UAM+CSICMadridSpain
| | - Javier del Moral‐Salmoral
- Departamento de Biología MolecularUniversidad Autónoma de Madrid (UAM)MadridSpain
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Javier Merino
- Departamento de Biología MolecularUniversidad Autónoma de Madrid (UAM)MadridSpain
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Ana I. de Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos IIIMadridSpain
| | - Cristina Olagüe
- Division of Gene Therapy and Regulation of Gene ExpressionCIMA Universidad de NavarraPamplonaSpain
| | - Ricardo Villares
- Centro Nacional de Biotecnología (CNB‐CSIC)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | | | - María Ángeles Rodríguez
- Institute of Biomedicine of Seville (IBiS), Spanish National Research Council (CSIC)University of Seville, Virgen del Rocio University HospitalSevilleSpain
| | - Manuel Fresno
- Departamento de Biología MolecularUniversidad Autónoma de Madrid (UAM)MadridSpain
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Nuria Gironés
- Departamento de Biología MolecularUniversidad Autónoma de Madrid (UAM)MadridSpain
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Spanish National Research Council (CSIC)University of Seville, Virgen del Rocio University HospitalSevilleSpain
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene ExpressionCIMA Universidad de NavarraPamplonaSpain
| | | | - Cayetano von Kobbe
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
74
|
Aranda CJ, Gonzalez-Kozlova E, Saunders SP, Fernandes-Braga W, Ota M, Narayanan S, He JS, Del Duca E, Swaroop B, Gnjatic S, Shattner G, Reibman J, Soter NA, Guttman-Yassky E, Curotto de Lafaille MA. IgG memory B cells expressing IL4R and FCER2 are associated with atopic diseases. Allergy 2023; 78:752-766. [PMID: 36445014 PMCID: PMC9991991 DOI: 10.1111/all.15601] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Atopic diseases are characterized by IgE antibody responses that are dependent on cognate CD4 T cell help and T cell-produced IL-4 and IL-13. Current models of IgE cell differentiation point to the role of IgG memory B cells as precursors of pathogenic IgE plasma cells. The goal of this work was to identify intrinsic features of memory B cells that are associated with IgE production in atopic diseases. METHODS Peripheral blood B lymphocytes were collected from individuals with physician diagnosed asthma or atopic dermatitis (AD) and from non-atopic individuals. These samples were analyzed by spectral flow cytometry, single cell RNA sequencing (scRNAseq), and in vitro activation assays. RESULTS We identified a novel population of IgG memory B cells characterized by the expression of IL-4/IL-13 regulated genes FCER2/CD23, IL4R, IL13RA1, and IGHE, denoting a history of differentiation during type 2 immune responses. CD23+ IL4R+ IgG+ memory B cells had increased occurrence in individuals with atopic disease. Importantly, the frequency of CD23+ IL4R+ IgG+ memory B cells correlated with levels of circulating IgE. Consistently, in vitro stimulated B cells from atopic individuals generated more IgE+ cells than B cells from non-atopic subjects. CONCLUSIONS These findings suggest that CD23+ IL4R+ IgG+ memory B cells transcribing IGHE are potential precursors of IgE plasma cells and are linked to pathogenic IgE production.
Collapse
Affiliation(s)
- Carlos J Aranda
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| | | | - Sean P Saunders
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Weslley Fernandes-Braga
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| | - Miyo Ota
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| | - Sriram Narayanan
- Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Jin-Shu He
- Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Ester Del Duca
- Department of Dermatology, ISMMS, New York, New York, USA
| | - Bose Swaroop
- Department of Dermatology, ISMMS, New York, New York, USA
| | - Sacha Gnjatic
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
- Tisch Cancer Institute, ISMMS, New York, New York, USA
| | - Gail Shattner
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Joan Reibman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | | | | | - Maria A Curotto de Lafaille
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
- Precision Immunology Institute (PrIISM), ISMMS, New York, New York, USA
| |
Collapse
|
75
|
Xiao H, Yun S, Huang W, Dang H, Jia Z, Chen K, Zhao X, Wu Y, Shi Y, Wang J, Zou J. IL-4/13 expressing CD3γ/δ + T cells regulate mucosal immunity in response to Flavobacterium columnare infection in grass carp. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108586. [PMID: 36740082 DOI: 10.1016/j.fsi.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Interleukin (IL) 4 and 13 are signature cytokines orchestrating Th2 immune response. Teleost fish have two homologs, termed IL-4/13A and IL-4/13B, and have been functionally characterized. However, what cells express IL-4/13A and IL-4/13B has not been investigated in fish. In this work, the recombinant IL-4/13A and IL-4/13B proteins of grass carp (Ctenopharyngodon idella) were produced in the Escherichia coli (E. coli) cells and purified. Monoclonal antibodies (mAbs) against the recombinant CiIL-4/13A and CiIL-4/13B proteins were prepared and characterized. Western blotting analysis showed that the CiIL-4/13A and CiIL-4/13B mAbs could specifically recognize the recombinant proteins expressed in the E. coli cells and HEK293T cells and did not cross-react with each other. Confocal microscopy revealed that the CiIL-4/13A+ and CiIL-4/13B+ cells were present in the gills, intestine and spleen and could be upregulated in fish infected with Flavobacterium columnare (F. columnare). Interestingly, the cells expressing CiIL-4/13A and CiIL-4/13B were mostly CD3γ/δ+ cells. The CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells were significantly upregulated in the gill filaments and the intestinal mucosa after F. columnare infection. Our results imply that the CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells are important for homeostasis and the regulation of mucosal immunity.
Collapse
Affiliation(s)
- Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Shengran Yun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yanjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
76
|
Parhizgari N, Zarei Ghobadi M, Rezaei F, Maraashi SM, Khatami MR, Mokhtari-Azad T. Transcriptomic analysis of human cytomegalovirus to survey the indirect effects on renal transplant recipients. Transpl Immunol 2023; 78:101746. [PMID: 36796459 DOI: 10.1016/j.trim.2022.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2023]
Abstract
Post-transplant human cytomegalovirus (HCMV) viremia has been linked to adverse "indirect effects" among transplant patients. HCMV-created immunomodulatory mechanisms could be associated with the indirect effects. OBJECTIVE In the present study, the RNA-Seq whole transcriptome of renal transplant (RT) patients was analyzed to seek the underlying pathobiologic pathways associated with the long-term indirect effects of HCMV. METHODS To investigate the activated biological pathways in HCMV infection, total RNA was extracted from PBMCs of 2 RT patients with active HCMV and 2 RT patients without infection and then were sequenced using RNA-Seq. The resulted raw data were analyzed by conventional RNA-Seq software to determine the Differentially Expressed Genes (DEGs). Afterward, Gene Ontology (GO) and pathway enrichment analyses were conducted to determine the enriched pathways and biological processes by DEGs. Eventually, the relative expressions of some significant genes were validated in the twenty external RT patients. RESULT The analysis of RNA-Seq data related to RT patients with HCMV active viremia led to the identification of 140 up-regulated and 100 down-regulated DEGs. KEGG pathway analysis revealed the enrichment of DEGs in IL18 signaling, AGE-RAGE signaling pathway in diabetic complications, signaling by GPCR, Platelet activation, signaling and aggregation, Estrogen signaling pathway and signaling by Wnt due to HCMV infection. The expression levels of six genes involved in enriched pathways including F3, PTX3, ADRA2B, GNG11, GP9, HBEGF were then verified using RT-qPCR. The results were in consistent with RNA-Seq resultsoutcomes. CONCLUSION This study specifies some pathobiological pathways which are activated in HCMV active infection and could be linked to the adverse indirect effects caused by HCMV infection in transplant patients.
Collapse
Affiliation(s)
- Najmeh Parhizgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahdi Maraashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
77
|
Lytvyn Y, Gooderham M. Targeting Interleukin 13 for the Treatment of Atopic Dermatitis. Pharmaceutics 2023; 15:568. [PMID: 36839890 PMCID: PMC9966769 DOI: 10.3390/pharmaceutics15020568] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin condition that has a significant impact on a patient's quality of life and requires ongoing management. Conventional topical and systemic therapies do not target specific components of AD pathogenesis and, therefore, have limited efficacy and may be associated with long-term toxicity. Thus, AD management is challenging, with a significant proportion of patients not achieving clear skin or a reduction in pruritus. There remains a large unmet need for effective therapeutic strategies with favorable safety profiles that can be used long-term in patients with refractory AD. The emergence of targeted biological and small molecule therapies has effectively broadened available treatment options for moderate-to-severe AD. Most recently, interleukin 13 (IL-13) inhibitors were shown to be efficacious and well-tolerated, with tralokinumab already approved for use in this patient population. It is important for dermatologists to be aware of the evidence behind this emerging class of biologic agents to guide treatment choices and improve outcomes in patients with AD. The main objective of this paper is to review the current literature regarding the efficacy and safety of current and emerging anti-IL-13 monoclonal antibodies, including tralokinumab, lebrikizumab, cendakimab, and eblasakimab, for the treatment of moderate-to-severe AD.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Melinda Gooderham
- SKiN Centre for Dermatology, Peterborough, ON K9J 5K2, Canada
- Probity Medical Research, Waterloo, ON N2J 1C4, Canada
- Department of Family Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
78
|
Kadin ME, Morgan J, Wei W, Song Z, Yang Y. CD30 Regulation of IL-13-STAT6 Pathway in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Aesthet Surg J 2023; 43:137-146. [PMID: 35999655 PMCID: PMC10208747 DOI: 10.1093/asj/sjac234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare, usually indolent CD30+ T-cell lymphoma with tumor cells, often surrounded by eosinophils, expressing IL-13 and pSTAT6. OBJECTIVES The aim of this study was to understand the unique tumor pathology and growth regulation of BIA-ALCL, leading to potential targeted therapies. METHODS We silenced CD30 and analyzed its effect on IL-13 signaling and tumor cell viability. IL-13 signaling receptors of BIA-ALCL cell lines were evaluated by flow cytometry and pSTAT6 detected by immunohistochemistry. CD30 was deleted by CRISPR/Cas9 editing. Effects of CD30 deletion on transcription of IL-13 and IL-4, and phosphorylation of STAT6 were determined by real-time polymerase chain reaction and western blotting. The effect of CD30 deletion on p38 mitogen-activated protein kinase (MAPK) phosphorylation was determined. Suppression of IL-13 transcription by a p38 MAPK inhibitor was tested. Tumor cell viability following CD30 deletion and treatment with a pSTAT6 inhibitor were measured in cytotoxicity assays. RESULTS BIA-ALCL lines TLBR1 and TLBR2 displayed signaling receptors IL-4Rα, IL-13Rα1 and downstream pSTAT6. Deletion of CD30 by CRISPR/Cas9 editing significantly decreased transcription of IL-13, less so Th2 cytokine IL-4, and phosphorylation of STAT6. Mechanistically, we found CD30 expression is required for p38 MAPK phosphorylation and activation, and IL-13-STAT6 signaling was reduced by an inhibitor of p38 MAPK in BIA-ALCL tumor cells. Tumor cell viability was decreased by silencing of CD30, and a specific inhibitor of STAT6, indicating STAT6 inhibition is cytotoxic to BIA-ALCL tumor cells. CONCLUSIONS These findings suggest reagents targeting the IL-13 pathway, pSTAT6 and p38 MAPK, may become useful for treating BIA-ALCL patients.
Collapse
Affiliation(s)
- Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert
School of Medicine, Providence, RI. USA
| | | | - Wei Wei
- Fox Chase Cancer Center, Philadelphia,
PA, USA
| | - Zhihui Song
- Fox Chase Cancer Center, Philadelphia,
PA, USA
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer
Center, Philadelphia, PA, USA
| |
Collapse
|
79
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
80
|
Huang J, Puente H, Wareing NE, Wu M, Mayes MD, Karmouty-Quintana H, Assassi S, Mills TW. STAT6 suppression prevents bleomycin-induced dermal fibrosis. FASEB J 2023; 37:e22761. [PMID: 36629780 PMCID: PMC10226134 DOI: 10.1096/fj.202200994r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Fibrosis of the skin and internal organs is a hallmark of systemic sclerosis (SSc). Although the pathogenesis of SSc is poorly understood, increasing evidence suggests that interleukins (IL)-4 and - 13 contribute to the pathogenesis of skin fibrosis by promoting collagen production and myofibroblast differentiation. Signal transducers and activators of transcription 6 (STAT6) is one of the most important downstream transcription factors activated by both IL-4 and IL-13. However, it is not completely understood whether STAT6 plays a role during the pathogenesis of skin fibrosis in SSc. In this study, we observed increased STAT6 phosphorylation in fibrotic skin samples collected from SSc patients as well as bleomycin-injected murine mice. Knockout of Stat6 in mice significantly (1) suppressed the expression of fibrotic cytokines including Il13, Il17, Il22, Ccl2, and the alternatively activated macrophage marker Cd206; (2) reduced the production of collagen and fibronectin, and (3) attenuated late-stage skin fibrosis and inflammation induced by bleomycin. Consistently, mice treated with STAT6 inhibitor AS1517499 also attenuated skin fibrosis on day 28. In addition, a co-culture experiment demonstrated that skin epithelial cells with STAT6 knockdown had reduced cytokine expression in response to IL-4/IL-13, and subsequently attenuated fibrotic protein expression in skin fibroblasts. On the other side, STAT6 depletion in skin fibroblasts attenuated IL-4/IL-13-induced cytokine and fibrotic marker expression, and reduced CXCL2 expression in co-cultured keratinocytes. In summary, our study highlighted an important yet not fully understood role of STAT6 in skin fibrosis by driving innate inflammation and differentiation of alternatively activated macrophages in response to injury.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hydia Puente
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nancy E. Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minghua Wu
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maureen D. Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
81
|
Gärtner Y, Bitar L, Zipp F, Vogelaar CF. Interleukin-4 as a therapeutic target. Pharmacol Ther 2023; 242:108348. [PMID: 36657567 DOI: 10.1016/j.pharmthera.2023.108348] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine mainly known for its role in type 2 immunity. Therapies antagonizing or blocking IL-4 activity have been developed to counteract diseases such as atopic dermatitis and asthma. In contrast, other disorders experimentally benefit from IL-4-related effects and IL-4 recently demonstrated beneficial activity in experimental stroke, spinal cord injury and the animal model of multiple sclerosis. To exploit IL-4-related activity for therapeutic concepts, current experimental efforts include modifying the pathway without inducing type 2 immune response and targeting of the cytokine to specific tissues. Here, we review different activities of IL-4 as well as therapeutic strategies.
Collapse
Affiliation(s)
- Yvonne Gärtner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
82
|
Yang L, Guo P, Wang P, Wang W, Liu J. IL-6/ERK signaling pathway participates in type I IFN-programmed, unconventional M2-like macrophage polarization. Sci Rep 2023; 13:1827. [PMID: 36726024 PMCID: PMC9892596 DOI: 10.1038/s41598-022-23721-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/03/2022] [Indexed: 02/03/2023] Open
Abstract
Type I interferons (IFN-Is) have been harnessed for cancer therapies due to their immunostimulatory functions. However, certain tumor-tolerating activities by IFN-Is also exist, and may potentially thwart their therapeutic effects. In this respect, our previous studies have demonstrated a monocyte-orchestrated, IFN-I-to-IL-4 cytokine axis, which can subsequently drive M2-skewed pro-tumoral polarization of macrophages. Whether other IFN-dependent signals may also contribute to such an unconventional circumstance of M2-like macrophage skewing remain unexplored. Herein, we first unveil IL-6 as another ligand that participates in IFN-dependent induction of a typical M2 marker (ARG1) in transitional monocytes. Indeed, IL-6 significantly promotes IL-4-dependent induction of a major group of prominent M2 markers in mouse bone marrow-derived macrophages (BMDMs) and human peripheral blood-derived macrophages, while it alone does not engage marked increases of these markers. Such a pattern of regulation is confirmed globally by RNAseq analyses in BMDMs, which in turn suggests an association of IL-6-amplified subset of M2 genes with the ERK1/2 signaling pathway. Interestingly, pharmacological experiments establish the role of SHP2-ERK cascade in mediating IL-6's enhancement effect on these M2 targets. Similar approaches also validate the involvement of IL-6/ERK signaling in promoting the IFN-dependent, unconventional M2-skewing phenotype in transitional monocytes. Furthermore, an inhibitor of ERK signaling cooperates with an IFN-I inducer to enable a greater antitumor effect, which correlates with suppression of treatment-elicited ARG1. The present work establishes a role of IL-6/ERK signaling in promoting M2-like macrophage polarization, and suggests this axis as a potential therapeutic target for combination with IFN-I-based cancer treatments.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Wei Wang
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China. .,The First People's Hospital of Yancheng, Yancheng, 224006, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
83
|
Zuurveld M, Ayechu-Muruzabal V, Folkerts G, Garssen J, van‘t Land B, Willemsen LEM. Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a CpG-Activated Epithelial/Immune Cell Coculture. Biomolecules 2023; 13:biom13020263. [PMID: 36830632 PMCID: PMC9953370 DOI: 10.3390/biom13020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Proper early life immune development creates a basis for a healthy and resilient immune system, which balances immune tolerance and activation. Deviations in neonatal immune maturation can have life-long effects, such as development of allergic diseases. Evidence suggests that human milk oligosaccharides (HMOS) possess immunomodulatory properties essential for neonatal immune maturation. To understand the immunomodulatory properties of enzymatic or bacterial produced HMOS, the effects of five HMOS (2'FL, 3FL, 3'SL, 6'SL and LNnT), present in human milk have been studied. A PBMC immune model, the IEC barrier model and IEC/PBMC transwell coculture models were used, representing critical steps in mucosal immune development. HMOS were applied to IEC cocultured with activated PBMC. In the presence of CpG, 2'FL and 3FL enhanced IFNγ (p < 0.01), IL10 (p < 0.0001) and galectin-9 (p < 0.001) secretion when added to IEC; 2'FL and 3FL decreased Th2 cell development while 3FL enhanced Treg polarization (p < 0.05). IEC were required for this 3FL mediated Treg polarization, which was not explained by epithelial-derived galectin-9, TGFβ nor retinoic acid secretion. The most pronounced immunomodulatory effects, linking to enhanced type 1 and regulatory mediator secretion, were observed for 2'FL and 3FL. Future studies are needed to further understand the complex interplay between HMO and early life mucosal immune development.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| | - Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Belinda van‘t Land
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| |
Collapse
|
84
|
Ota M, Hoehn KB, Ota T, Aranda CJ, Friedman S, Braga WF, Malbari A, Kleinstein SH, Sicherer SH, Curotto de Lafaille MA. The memory of pathogenic IgE is contained within CD23 + IgG1 + memory B cells poised to switch to IgE in food allergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525506. [PMID: 36747707 PMCID: PMC9900782 DOI: 10.1101/2023.01.25.525506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Food allergy is caused by allergen-specific IgE antibodies but little is known about the B cell memory of persistent IgE responses. Here we describe in human pediatric peanut allergy CD23 + IgG1 + memory B cells arising in type 2 responses that contain peanut specific clones and generate IgE cells on activation. These 'type2-marked' IgG1 + memory B cells differentially express IL-4/IL-13 regulated genes FCER2 / CD23, IL4R , and germline IGHE and carry highly mutated B cell receptors (BCRs). Further, high affinity memory B cells specific for the main peanut allergen Ara h 2 mapped to the population of 'type2-marked' IgG1 + memory B cells and included convergent BCRs across different individuals. Our findings indicate that CD23 + IgG1 + memory B cells transcribing germline IGHE are a unique memory population containing precursors of pathogenic IgE. One-Sentence Summary We describe a unique population of IgG + memory B cells poised to switch to IgE that contains high affinity allergen-specific clones in peanut allergy.
Collapse
|
85
|
Longo V, Aloi N, Lo Presti E, Fiannaca A, Longo A, Adamo G, Urso A, Meraviglia S, Bongiovanni A, Cibella F, Colombo P. Impact of the flame retardant 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) in THP-1 macrophage-like cell function via small extracellular vesicles. Front Immunol 2023; 13:1069207. [PMID: 36685495 PMCID: PMC9852912 DOI: 10.3389/fimmu.2022.1069207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) is one of the most widespread environmental brominated flame-retardant congeners which has also been detected in animal and human tissues. Several studies have reported the effects of PBDEs on different health issues, including neurobehavioral and developmental disorders, reproductive health, and alterations of thyroid function. Much less is known about its immunotoxicity. The aim of our study was to investigate the effects that treatment of THP-1 macrophage-like cells with PBDE-47 could have on the content of small extracellular vesicles' (sEVs) microRNA (miRNA) cargo and their downstream effects on bystander macrophages. To achieve this, we purified sEVs from PBDE-47 treated M(LPS) THP-1 macrophage-like cells (sEVsPBDE+LPS) by means of ultra-centrifugation and characterized their miRNA cargo by microarray analysis detecting the modulation of 18 miRNAs. Furthermore, resting THP-1 derived M(0) macrophage-like cells were cultured with sEVsPBDE+LPS, showing that the treatment reshaped the miRNA profiles of 12 intracellular miRNAs. This dataset was studied in silico, identifying the biological pathways affected by these target genes. This analysis identified 12 pathways all involved in the maturation and polarization of macrophages. Therefore, to evaluate whether sEVsPBDE+LPS can have some immunomodulatory activity, naïve M(0) THP-1 macrophage-like cells cultured with purified sEVsPBDE+LPS were studied for IL-6, TNF-α and TGF-β mRNAs expression and immune stained with the HLA-DR, CD80, CCR7, CD38 and CD209 antigens and analyzed by flow cytometry. This analysis showed that the PBDE-47 treatment does not induce the expression of specific M1 and M2 cytokine markers of differentiation and may have impaired the ability to make immunological synapses and present antigens, down-regulating the expression of HLA-DR and CD209 antigens. Overall, our study supports the model that perturbation of miRNA cargo by PBDE-47 treatment contributes to the rewiring of cellular regulatory pathways capable of inducing perturbation of differentiation markers on naïve resting M(0) THP-1 macrophage-like cells.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Antonino Fiannaca
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Alfonso Urso
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy,*Correspondence: Paolo Colombo,
| |
Collapse
|
86
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
87
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
88
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
89
|
Lyu W, Chen Y, Zhao K, Tan X, Wu Y, Qiu S. Alterations of peripheral cytokines, BDNF, and surface-based morphometry indices in T2DM patients without cognitive impairment. Front Neurosci 2023; 17:1141261. [PMID: 37113152 PMCID: PMC10126356 DOI: 10.3389/fnins.2023.1141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose This study aimed to investigate potential biological mechanisms underlying cognitive function alterations in Type 2 diabetes mellitus (T2DM) patients by integrating cortical morphology with peripheral cytokine levels and brain-derived neurotrophic factor (BDNF) levels, and to offer potential insights for the early detection of T2DM-related cognitive impairment. Methods This study included 16 T2DM patients with a Montreal Cognitive Assessment (MoCA) score of at least 26 points, as well as 16 healthy controls with normal cognitive function. The participants also completed the digit span test and digit symbol substitution test. Participants' serum levels of Interleukin 4 (IL-4), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and BDNF were also examined. Each subject underwent a high-resolution 3T structural brain MRI scan. Based on the aparc. a2009s atlas, we calculated the cortical thickness, sulcus depth, gyrification index, and fractal dimension for each participant using surface-based morphometry (SBM). Correlation analysis between cognitive measures, serum levels of cytokines and BDNF, and SBM indices were further performed. Results The levels of IL-4 and BDNF showed significant group differences. In the T2DM group, the sulcus depth exhibited a significant decrease in the left transverse frontopolar gyri and sulci, as well as in the right pole-occipital; the fractal dimension showed a significant increase in the right posterior-dorsal part of the cingulate gyrus; and the gyrification index significantly increased in the left inferior part of the precentral sulcus and right triangular part of the inferior frontal gyrus. Correlation analysis revealed a significant positive correlation between IL-10 levels and the sulcus depth of left transverse frontopolar gyri and sulci; a significant positive correlation between the sulcus depth of the right pole-occipital and the digit span test-forward scores, and a significant negative correlation between the gyrification index of the left inferior part of the precentral sulcus and the digit span test-backward scores among T2DM participants. Conclusion T2DM patients without cognitive impairment displayed reductions in IL 4 and BDNF levels, as well as significant alterations in their SBM indices, indicating that prior to the emergence of cognitive impairment, the SBM indices, peripheral cytokines, and BDNF may have altered in T2DM patients. IL-10 may lessen inflammation-related brain edema and preserve sulcus depth in T2DM patients through its anti-inflammatory activity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kui Zhao
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- Ye Wu,
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Shijun Qiu,
| |
Collapse
|
90
|
Brook B, Fatou B, Kumar Checkervarty A, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The mRNA vaccine BNT162b2 demonstrates impaired T H1 immunogenicity in human elders in vitro and aged mice in vivo. RESEARCH SQUARE 2022:rs.3.rs-2395118. [PMID: 36597547 PMCID: PMC9810224 DOI: 10.21203/rs.3.rs-2395118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have been key to addressing the SARS-CoV-2 pandemic but have impaired immunogenicity and durability in vulnerable older populations. We evaluated the mRNA vaccine BNT162b2 in human in vitro whole blood assays with supernatants from adult (18-50 years) and elder (≥60 years) participants measured by mass spectrometry and proximity extension assay proteomics. BNT162b2 induced increased expression of soluble proteins in adult blood (e.g., C1S, PSMC6, CPN1), but demonstrated reduced proteins in elder blood (e.g., TPM4, APOF, APOC2, CPN1, and PI16), including 30-85% lower induction of TH1-polarizing cytokines and chemokines (e.g., IFNγ, and CXCL10). Elder TH1 impairment was validated in mice in vivo and associated with impaired humoral and cellular immunogenicity. Our study demonstrates the utility of a human in vitro platform to model age-specific mRNA vaccine activity, highlights impaired TH1 immunogenicity in older adults, and provides rationale for developing enhanced mRNA vaccines with greater immunogenicity in vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Amy C Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, University of Rome, Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
91
|
Molecular Mechanisms in the Vascular and Nervous Systems following Traumatic Spinal Cord Injury. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010009. [PMID: 36675958 PMCID: PMC9866624 DOI: 10.3390/life13010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Traumatic spinal cord injury (SCI) induces various complex pathological processes that cause physical impairment and psychological devastation. The two phases of SCI are primary mechanical damage (the immediate result of trauma) and secondary injury (which occurs over a period of minutes to weeks). After the mechanical impact, vascular disruption, inflammation, demyelination, neuronal cell death, and glial scar formation occur during the acute phase. This sequence of events impedes nerve regeneration. In the nervous system, various extracellular secretory factors such as neurotrophic factors, growth factors, and cytokines are involved in these events. In the vascular system, the blood-spinal cord barrier (BSCB) is damaged, allowing immune cells to infiltrate the parenchyma. Later, endogenous angiogenesis is promoted during the subacute phase. In this review, we describe the roles of secretory factors in the nervous and vascular systems following traumatic SCI, and discuss the outcomes of their therapeutic application in traumatic SCI.
Collapse
|
92
|
Zhao Q, Dai H, Hu Y, Jiang H, Feng Z, Liu W, Dong Z, Tang X, Hou F, Rui H, Liu B. Cytokines network in primary membranous nephropathy. Int Immunopharmacol 2022; 113:109412. [DOI: 10.1016/j.intimp.2022.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
93
|
HSD3B1 Expression Is Upregulated by Interleukin 4 in HT-29 Colon Cancer Cells via Multiple Signaling Pathways. Int J Mol Sci 2022; 23:ijms232113572. [DOI: 10.3390/ijms232113572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
3β-Hydroxysteroid dehydrogenase/isomerase is essential for the synthesis of active steroid hormones. Interleukin 4 (IL4) induces the expression of HSD3B1 in various human cancer cell lines. Here, we demonstrated that administration of IL4 to an HT-29 colon cancer cell line induced high expression of HSD3B1 at the mRNA and protein levels. In the HT-29 cells, IL4 stimulated the activity of signal transducer and activator of transcription 6 (STAT6) and promoted its binding to the STAT6-binding site in the HSD3B1 promoter. The STAT6 inhibitor significantly suppressed HSD3B1 induction by IL4 in a dose-dependent manner. Moreover, inhibition of the PI3-kinase/AKT pathway strongly suppressed the IL4-induced HSD3B1 expression. Glycogen synthase kinase 3 (GSK3), a downstream target of AKT, had a stimulatory effect on the IL4-induced HSD3B1 expression. However, IL4 stimulated the phosphorylation of AKT, which inhibited the GSK3 activity at the early stage. Hence, GSK3 potentiated the HSD3B1 levels at the late stage of the IL4 stimulation. Additionally, inhibitors of mitogen-activated protein kinases (MAPKs), ERK1/2 and p38, but not of JNK, partly reduced the HSD3B1 expression following the IL4 stimulation. We further demonstrated that IL4 potently promoted steroid synthesis. Our results indicate that IL4 induces HSD3B1 expression via multiple signaling pathways in HT-29 cells and may play a role in the regulation of steroid synthesis.
Collapse
|
94
|
Bakhshian Nik A, Alvarez-Argote S, O'Meara CC. Interleukin 4/13 signaling in cardiac regeneration and repair. Am J Physiol Heart Circ Physiol 2022; 323:H833-H844. [PMID: 36149768 PMCID: PMC9602781 DOI: 10.1152/ajpheart.00310.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Interleukin 4 (IL4) and interleukin 13 (IL13) are closely related cytokines that have been classically attributed to type II immunity, namely, differentiation of T-helper 2 (TH2) cells and alternative activation of macrophages. Although the role of IL4/13 has been well described in various contexts such as defense against helminth parasites, pathogenesis of allergic disease, and several models of wound healing, relatively little is known about the role of IL4/13 in the heart following injury. Emerging literature has identified various roles for IL4/13 in animal models of cardiac regeneration as well as in the adult mammalian heart following myocardial injury. Notably, although IL4 and IL13 signal to hematopoietic cell types following myocardial infarction (MI) to promote wound healing phenotypes, there is substantial evidence that these cytokines can signal directly to non-hematopoietic cell types in the heart during development, homeostasis, and following injury. Comprehensive understanding of the molecular and cellular actions of IL4/13 in the heart is still lacking, but overall evidence to date suggests that activation of these cytokines results in beneficial outcomes with respect to cardiac repair. Here, we aim to comprehensively review the role of IL4 and IL13 and their prospective mechanisms in cardiac regeneration and repair.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Santiago Alvarez-Argote
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
95
|
Jaén M, Martín-Regalado Á, Bartolomé RA, Robles J, Casal JI. Interleukin 13 receptor alpha 2 (IL13Rα2): Expression, signaling pathways and therapeutic applications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188802. [PMID: 36152905 DOI: 10.1016/j.bbcan.2022.188802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.
Collapse
Affiliation(s)
- Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
96
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
97
|
Wei R, Chen L, Li P, Lin C, Zeng Q. IL-13 alleviates idiopathic pulmonary hypertension by inhibiting the proliferation of pulmonary artery smooth muscle cells and regulating macrophage infiltration. Am J Transl Res 2022; 14:4573-4590. [PMID: 35958460 PMCID: PMC9360879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic pulmonary arterial hypertension (IPAH) is characterized by medial hypertrophy due to pulmonary artery smooth muscle cell (PASMC) hyperplasia. In the present study, we conducted bioinformatic analyses and cellular experiments to assess the involvement of the interleukin-13 (IL-13) in IPAH. METHODS The differentially expressed genes (DEGs) in IPAH and DEGs in IPAH caused by IL-13 treatment were screened using the GEO database. PPI networks were used to analyze the hub genes. Hypoxia-induced PASMCs were treated with IL-13 for in vitro assays. CCK8 and EdU staining were used to observe proliferation of PASMCs, and RT-qPCR was applied to detect the expression of hub genes. The conserved binding sites of microRNAs (miRNAs) in the 3'UTR of hub genes were investigated, and the regulatory relationships of the relevant miRNAs on their targets were verified by RT-qPCR and dual-luciferase assays. The GO and KEGG analyses were performed to study the downstream pathways. The effect of hub genes on immune cell infiltration in IPAH was investigated. RESULTS IL-13 altered gene expression in IPAH. IL-13 inhibited the proliferation and the expression of hub genes in PASMCs. The 3'UTR sites between HNRNPA2B1, HNRNPH1, SRSF1, HNRNPU and HNRNPA3 in the hub genes and candidate regulatory miRNAs were well conserved in humans. IL-13-mediated hub genes regulated multiple pathways and influenced immune cell infiltration. Hypoxia-induced PASMCs promoted the M2 polarization of macrophages, whereas IL-13-treated PASMCs skewed the macrophages toward M1 polarization. CONCLUSIONS IL-13-mediated alterations in hub genes inhibit PASMC proliferation and promote M1 macrophage infiltration in IPAH.
Collapse
Affiliation(s)
- Ruda Wei
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Liting Chen
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
- Department of Cardiovascular Medicine, Air force Medical Center, PLABeijing 100142, P. R. China
| | - Pengchuan Li
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Chaoyang Lin
- Department of Internal Medicine, Dachong Hospital of ZhongshanZhongshan 528476, Guangdong, P. R. China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan 250011, Shandong, P. R. China
| |
Collapse
|
98
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
99
|
Liu CH, Lin BS, Wu MY, Song YC, Ke TW, Chou YL, Liu CT, Lin CH, Radojcic V, Drake C, Yen HR. Adoptive transfer of IL-4 reprogrammed Tc17 cells elicits anti-tumour immunity through functional plasticity. Immunology 2022; 166:310-326. [PMID: 35322421 PMCID: PMC11558351 DOI: 10.1111/imm.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Ability of IL-17-producing CD8+ T cells (Tc17) to transform into cytotoxic anti-tumour effectors makes them a promising candidate for immune effector cell (IEC) therapy. However, key factors regulating Tc17 reprogramming remain poorly defined, hindering translation of Tc17-based IEC use from bench to bedside. We probed the effects of multiple cytokines and underlying signalling pathways on Tc17 cells and identified pivotal role for IL-4 and PI3K/AKT in promoting Tc17 transformation into cytotoxic IFN-γ-producing IECs, an effect dependent on Eomes expression. IL-4 not only triggered Tc17 cytotoxicity, but also induced cell expansion, which significantly improved the antitumour potential of Tc17 cells compared to that of IFN-γ-producing CD8+ T cells (Tc1) in a murine model. Furthermore, IL-4/AKT signalling drove the upregulation of the T-cell receptor-associated transmembrane adaptor 1 (Trat1) in Tc17 cells to promote IL-4-induced T-cell receptor stabilization and Tc17 cytotoxicity. Finally, we proposed a possible procedure to expand human Tc17 from peripheral blood of cancer patients, and confirmed the function of IL-4 in Tc17 reprogramming. Collectively, these results document a novel IL-4/AKT/Eomes/Trat1 axis that promotes expansion and transformation of Tc17 cells into cytotoxic effectors with a therapeutic potential. IL-4 priming of Tc17 cells should be further explored as a cell therapy engineering strategy to generate IECs to augment anti-tumour responses.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bo-Shiou Lin
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chyi Song
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Lun Chou
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsin Lin
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Vedran Radojcic
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Charles Drake
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Hematology Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hung-Rong Yen
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
100
|
Shaoyao-Gancao Decoction Promoted Microglia M2 Polarization via the IL-13-Mediated JAK2/STAT6 Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm 2022; 2022:1707122. [PMID: 35757105 PMCID: PMC9232306 DOI: 10.1155/2022/1707122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Microglia in the penumbra shifted from M2 to M1 phenotype between 3 and 5 days after cerebral ischemia-reperfusion, which promoted local inflammation and injury. Shaoyao-Gancao Decoction (SGD) has been found to result in a significant upregulation of IL-13 in the penumbra, which has been shown to induce polarization of M2 microglia. There was thus a hypothesis that SGD could exert an anti-inflammatory and neuroprotective effect by activating IL-13 to induce microglia polarization towards M2 phenotype, and the purpose of this study was to explore the influence of SGD on microglia phenotype switching and its possible mechanism. Rats who received middle cerebral artery occlusion surgery (MCAO) were treated with SGD for 3 or 6 days, to investigate the therapeutic effect and the underlying mechanism of SGD for cerebral ischemia-reperfusion injury (CI/RP). The results indicated that SGD improved neurobehavioral scores and reduced apoptosis. Furthermore, SGD significantly decreased M1 microglia and M1-like markers, but increased M2 microglia and M2 markers. Moreover, higher levels of IL-13 and ratios of p-JAK2/JAK2 and p-STAT6/STAT6 were found in the SGD group compared to the MCAO. In conclusion, it was verified that SGD prevented injury by driving microglia phenotypic switching from M1 to M2, probably via IL-13 and its downstream JAK2-STAT6 pathway. Given that no further validation tests were included in this study, it is necessary to conduct more experiments to confirm the reliability of the above results.
Collapse
|