51
|
Beta-defensin genes of the Colubridae snakes Phalotris mertensi , Thamnodynastes hypoconia , and T. strigatus. Toxicon 2018; 146:124-128. [DOI: 10.1016/j.toxicon.2018.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
|
52
|
Kini RM. Accelerated evolution of toxin genes: Exonization and intronization in snake venom disintegrin/metalloprotease genes. Toxicon 2018; 148:16-25. [PMID: 29634956 DOI: 10.1016/j.toxicon.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Toxin genes in animals undergo accelerated evolution compared to non-toxin genes to be effective and competitive in prey capture, as well as to enhance their predator defense. Several mechanisms have been proposed to explain this unusual phenomenon. These include (a) frequent mutations in exons compared to introns and nonsynonymous substitutions in exons; (b) high frequency of point mutations are due to the presence of more unstable triplets in exons compared to introns; (c) Accelerated Segment Switch in Exons to alter Targeting (ASSET); (d) Rapid Accumulation of Variations in Exposed Residues (RAVERs); (e) alteration in intron-exon boundary; (f) deletion of exon; and (g) loss/gain of domains through recombination. By systematic analyses of snake venom disintegrin/metalloprotease genes, I describe a new mechanism in the evolution of these genes through exonization and intronization. In the evolution of RTS/KTS disintegrins, a new exon (10a) is formed in intron 10 of the disintegrin/metalloprotease gene. Unlike more than 90% new exons that are from repetitive elements in introns, exon 10a originated from a non-repetitive element. To incorporate exon 10a, part of the exon 11 is intronized to retain the open reading frame. This is the first case of simultaneous exonization and intronization within a single gene. This new mechanism alters the function of toxins through drastic changes to the molecular surface via insertion of new exons and deletion of exons.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
53
|
Moe MK, Haug T, Sydnes MO, Sperstad SV, Li C, Vaagsfjord LC, de la Vega E, Stensvåg K. Paralithocins, Antimicrobial Peptides with Unusual Disulfide Connectivity from the Red King Crab, Paralithodes camtschaticus. JOURNAL OF NATURAL PRODUCTS 2018; 81:140-150. [PMID: 29338238 DOI: 10.1021/acs.jnatprod.7b00780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As part of an ongoing exploration of marine invertebrates as a source of new antimicrobial peptides, hemocyte extracts from the red king crab, Paralithodes camtschaticus, were studied. Three cationic cysteine (Cys)-rich peptides, named paralithocins 1-3, were isolated by bioassay-guided purification, and their amino acid sequences determined by Edman degradation and expressed sequences tag analysis. Disulfide bond mapping was performed by high-resolution tandem mass spectrometry. The peptides (38-51 amino acids in length) share a unique Cys motif composed of eight Cys, forming four disulfide bridges with a bond connectivity of (Cys relative position) Cys1-Cys8, Cys2-Cys6, Cys3-Cys5, and Cys4-Cys7, a disulfide arrangement that has not been previously reported among antimicrobial peptides. Thus, paralithocins 1-3 may be assigned to a previously unknown family of antimicrobial peptides within the group of Cys-rich antimicrobial peptides. Although none of the isolated peptides displayed antimicrobial activity against the target strains Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus, they inhibited the growth of several marine bacterial strains with minimal inhibitory concentrations in the 12.5-100 μM range. These findings corroborate the hypothesis that marine organisms are a valuable source for discovering bioactive peptides with new structural motifs.
Collapse
Affiliation(s)
- Morten K Moe
- Multidiciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital (Ahus) , NO-1478 Lørenskog, Norway
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Magne O Sydnes
- Biomiljø, International Research Institute of Stavanger , Mekjarvik 12, NO-4070 Randaberg, Norway
- Department of Mathematics and Natural Science, University of Stavanger , NO-4036 Stavanger, Norway
| | - Sigmund V Sperstad
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Chun Li
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Lena C Vaagsfjord
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Enrique de la Vega
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina , 221 Ft. Johnson Road, Charleston, South Carolina 29412, United States
| | - Klara Stensvåg
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina , 221 Ft. Johnson Road, Charleston, South Carolina 29412, United States
| |
Collapse
|
54
|
Molecular characterization and expression analysis of CSαβ defensin genes from the scorpion Mesobuthus martensii. Biosci Rep 2017; 37:BSR20171282. [PMID: 29162666 PMCID: PMC6435467 DOI: 10.1042/bsr20171282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
Defensins are important components of innate host defence system against bacteria, fungi, parasites and viruses. Here, we predicted six potential defensin genes from the genome of the scorpion Mesobuthus martensii and then validated four genes from them via the combination of PCR and genomic sequence analysis. These four scorpion defensin genes share the same gene organization and structure of two exons and one phase-I intron with the GT-AG rule. Conserved motif and phylogenetic analysis showed that they belonged to the members of the invertebrate cysteine-stabilized α-helix/β-sheet motif defensin (CSαβ) defensin family. All these four CSαβ defensin genes have the expression feature of constitutive transcription (CON) by the whole scorpion infection model, promoter sequence analysis and dual luciferase assays. Further evolution and comparison analysis found that the invertebrate CSαβ defensin genes from most of arachnids and mollusks appear to share the expression pattern of CON, but those from insects and lower invertebrates (nematodes, annelids, cnidarians and sponges) seem to have identical inducible transcription (IND) after being challenged by microorganisms. Together, we identified four scorpion CSαβ defensin genes with the expression feature of CON, and characterized the diversified expression patterns of the invertebrate CSαβ defensin genes, which will shed insights into the evolution of the invertebrate CSαβ defensin genes and their expression patterns.
Collapse
|
55
|
Abstract
While initially identified as a broad-spectrum antimicrobial peptide, constitutively expressed in epithelia, human β-defensin (hBD)-1 is now recognized to have a more complex pattern of expression of its gene, DEFB1, as well as activities that extend beyond direct antimicrobial. These observations suggest a complex role for hBD-1 in the host defense against viral infections, as evidenced by its expression in cells involved in viral defense, and its gene regulation in response to viral challenge. This regulation is observed both in vitro and in vivo in humans, as well as with the murine homolog, mBD-1. While numerous reviews have summarized the existing literature on β-defensin gene expression and activity, here we provide a focused review of relevant studies on the virus-mediated regulation of hBD-1 and how this regulation can provide a crucial aspect of the innate immune defense against viral infection.
Collapse
Affiliation(s)
- Lisa Kathleen Ryan
- University of Florida College of Medicine, Division of Infectious Disease, Department of Medicine and Global Medicine, 1600 SW Archer Road, Box 100277, Gainesville, FL 32610, USA.
| | - Gill Diamond
- University of Florida College of Dentistry, Department of Oral Biology, 1600 SW Archer Road, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|
56
|
Chang CI, Chen LH, Hu YF, Wu CC, Tsai JM. Determining the cleavage site for the mature antimicrobial peptide of Nile tilapia β-defensin using 2D electrophoresis, western blot, and mass spectrometry analysis. FISH & SHELLFISH IMMUNOLOGY 2017; 62:41-46. [PMID: 28089894 DOI: 10.1016/j.fsi.2017.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Several proteomic techniques were used to determine the cleavage site of the mature antimicrobial peptide of Nile tilapia β-defensin. The computer-predicted Nile tilapia β-defensin (25ASFPWSCLSLSGVCRKVCLPTELFFGPLGCGKGSLCCVSHFL66) composed of 42 amino acids was chemically synthesized and prepared to produce an antibody for Western blotting. Total proteins from the skin of the Nile tilapia were separated on two-dimensional electrophoresis, and the spot of Nile tilapia β-defensin was recognized using Western blot analysis. It was then excised and extracted from the gel. The precise molecular mass of this spot was determined by LC-MS/MS spectrometry. Four major peptides were discovered, with molecular weights of 4293.2 Da, 4306.5 Da, 4678.9 Da, and 4715.0 Da. The calculated mass of the 40-amino-acid sequence (27FPWSCLSLSGVCRKVCLPTELFFGPLGCGKGSLCCVSHFL66) of Nile tilapia β-defensin starting from Phe27 and ending with Leu66 was 4293.18 Da, which completely matched the 4293.2 Da peptide that was obtained from the mass spectrometry analysis. This result confirmed that the cleavage site for the mature C-terminal Nile tilapia β-defensin is at residue Ser26-Phe27, not at Ala24-25 as predicted by computer analysis. This study provides a simple but reliable model to determine the cleavage site for a mature antimicrobial peptide.
Collapse
Affiliation(s)
- Chin-I Chang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan.
| | - Li-Hao Chen
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan
| | - Yeh-Fang Hu
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan
| | - Chia-Che Wu
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan
| | - Jyh-Ming Tsai
- Department of Marine Biotechnology, National Kaohsiung Marine University, 142 Hai-Chuan Road, Kaohsiung 81157, Taiwan
| |
Collapse
|
57
|
Montero-Alejo V, Corzo G, Porro-Suardíaz J, Pardo-Ruiz Z, Perera E, Rodríguez-Viera L, Sánchez-Díaz G, Hernández-Rodríguez EW, Álvarez C, Peigneur S, Tytgat J, Perdomo-Morales R. Panusin represents a new family of β-defensin-like peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:310-321. [PMID: 27616720 DOI: 10.1016/j.dci.2016.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Beta_defensin have been solely found in vertebrates until β-defensin-like peptides were described as transcript isoforms in two species of Panulirus genus. They were considered as putative antimicrobials since their biological activity have not been demonstrated. Here we purified and characterized a defensin-like peptide from the hemocytes of spiny lobster P. argus, hereafter named panusin. Structurally, panusin presents a cysteine-stabilized α/β motif, and is prone to form homodimers. Biological activity of panusin showed broad-spectrum antimicrobial activity, characterized for being strikingly salt-resistant. Panusin did not showed hemolytic activity but was demonstrated its binding capacity to different lipid membrane models, indicating amphipathicity of β-sheet core as driving force for its antimicrobial activity. Panusin is considered a new kind of arthropod defensin which share structural and biological features with beta-defensin from vertebrates. The presence of beta-defensin like peptides in crustacean might suggest the emergence of the evolutionary relationship of β-defensins from vertebrates.
Collapse
Affiliation(s)
- Vivian Montero-Alejo
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Havana, Cuba.
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Javier Porro-Suardíaz
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Zenia Pardo-Ruiz
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Erick Perera
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Gabriela Sánchez-Díaz
- Department for Basic and Biomedical Sciences, Medicine Faculty, Artemisa, Cuba; Laboratory of Computational and Theoretical Chemistry, University of Havana, Havana, Cuba
| | - Erix Wiliam Hernández-Rodríguez
- Department for Basic and Biomedical Sciences, Medicine Faculty, Artemisa, Cuba; Laboratory of Computational and Theoretical Chemistry, University of Havana, Havana, Cuba
| | - Carlos Álvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
58
|
New fungal defensin-like peptides provide evidence for fold change of proteins in evolution. Biosci Rep 2017; 37:BSR20160438. [PMID: 27913751 PMCID: PMC5234102 DOI: 10.1042/bsr20160438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
Abstract
Defensins containing a consensus cystine framework, Cys[1]…Cys[2]X3Cys[3]…Cys[4]… Cys[5]X1Cys[6] (X, any amino acid except Cys; …, variable residue numbers), are extensively distributed in a variety of multicellular organisms (plants, fungi and invertebrates) and essentially involved in immunity as microbicidal agents. This framework is a prerequisite for forming the cysteine-stabilized α-helix and β-sheet (CSαβ) fold, in which the two invariant motifs, Cys[2]X3Cys[3]/Cys[5]X1Cys[6], are key determinants of fold formation. By using a computational genomics approach, we identified a large superfamily of fungal defensin-like peptides (fDLPs) in the phytopathogenic fungal genus – Zymoseptoria, which includes 132 structurally typical and 63 atypical members. These atypical fDLPs exhibit an altered cystine framework and accompanying fold change associated with their secondary structure elements and disulfide bridge patterns, as identified by protein structure modelling. Despite this, they definitely are homologous with the typical fDLPs in view of their precise gene structure conservation and identical precursor organization. Sequence and structural analyses combined with functional data suggest that most of Zymoseptoria fDLPs might have lost their antimicrobial activity. The present study provides a clear example of fold change in the evolution of proteins and is valuable in establishing remote homology among peptide superfamily members with different folds.
Collapse
|
59
|
Tarr DEK. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res Notes 2016; 9:490. [PMID: 27863510 PMCID: PMC5116183 DOI: 10.1186/s13104-016-2291-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND "Invertebrate defensins" belong to the cysteine-stabilized alpha-beta (CS-αβ), also known as the scorpion toxin-like, superfamily. Some other peptides belonging to this superfamily of defensive peptides are indistinguishable from "defensins," but have been assigned other names, making it unclear what, if any, criteria must be met to qualify as an "invertebrate defensin." In addition, there are other groups of defensins in invertebrates and vertebrates that are considered to be evolutionarily unrelated to those in the CS-αβ superfamily. This complicates analyses and discussions of this peptide group. This paper investigates the criteria for classifying a peptide as an invertebrate defensin, suggests a reference cysteine array that may be helpful in discussing peptides in this superfamily, and proposes that the superfamily (rather than the name "defensin") is the appropriate context for studying the evolution of invertebrate defensins with the CS-αβ fold. METHODS CS-αβ superfamily sequences were identified from previous literature and BLAST searches of public databases. Sequences were retrieved from databases, and the relevant motifs were identified and used to create a conceptual alignment to a ten-cysteine reference array. Amino acid sequences were aligned in MEGA6 with manual adjustments to ensure accurate alignment of cysteines. Phylogenetic analyses were performed in MEGA6 (maximum likelihood) and MrBayes (Bayesian). RESULTS Across invertebrate taxa, the term "defensin" is not consistently applied based on number of cysteines, cysteine spacing pattern, spectrum of antimicrobial activity, or phylogenetic relationship. The analyses failed to reveal any criteria that unify "invertebrate defensins" and differentiate them from other defensive peptides in the CS-αβ superfamily. Sequences from various groups within the CS-αβ superfamily of defensive peptides can be described by a ten-cysteine reference array that aligns their defining structural motifs. CONCLUSIONS The proposed ten-cysteine reference array can be used in addition to current nomenclature to compare sequences in the CS-αβ superfamily and clarify their features relative to one another. This will facilitate analysis and discussion of "invertebrate defensins" in an appropriate evolutionary context, rather than relying on nomenclature.
Collapse
Affiliation(s)
- D Ellen K Tarr
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
60
|
Liu QN, Xin ZZ, Chai XY, Jiang SH, Li CF, Zhang DZ, Zhou CL, Tang BP. Identification of differentially expressed genes in the spleens of polyriboinosinic polyribocytidylic acid (poly I:C)-stimulated yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2016; 56:278-285. [PMID: 27368543 DOI: 10.1016/j.fsi.2016.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The yellow catfish, Pelteobagrus fulvidraco (Siluriformes: Bagridae) is an economically important fish in China. However, genomic research and resources on this species are largely unavailable and still in infancy. In the present study, we constructed a cDNA library following poly I:C injection to screen for immune response genes in the spleens of P. fulvidraco using suppression subtractive hybridization (SSH). A total of 420 putative expressed sequence tag (EST) clones were identified at 24 h post-injection, which contain 103 genes consisting of 25 immune response genes, 12 cytoskeleton genes, 7 cell cycle and apoptosis genes, 7 respiration and energy metabolism genes, 7 transport genes, 26 metabolism genes, 10 stress response genes, 9 translational regulation genes, and 71 unknown genes. Real-time quantitative reverse transcription-PCR (qRT-PCR) results revealed that a set of randomly selected immune response genes were identified to be up-regulated after 24 h of poly I:C stimulation compared to controls. Our study provides an annotation of immune genes in detail and insight into fish immunity.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China.
| |
Collapse
|
61
|
Liu QN, Xin ZZ, Chai XY, Jiang SH, Li CF, Zhang HB, Ge BM, Zhang DZ, Zhou CL, Tang BP. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 56:248-254. [PMID: 27235365 DOI: 10.1016/j.fsi.2016.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Bao-Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China.
| |
Collapse
|
62
|
Qi Z, Xu W, Meng F, Zhang Q, Chen C, Shao R. Cloning and Expression of β-Defensin from Soiny Mullet (Liza haematocheila), with Insights of its Antibacterial Mechanism. PLoS One 2016; 11:e0157544. [PMID: 27322675 PMCID: PMC4913945 DOI: 10.1371/journal.pone.0157544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Beta-defensins are important part of innate immunity of fish, which are the first defense line against invading pathogens. In this study, the β-defensin (Lhβ-defensin) gene was cloned from spleen tissue of soiny mullet (Liza haematocheila). Lhβ-defensin cDNA was 747 bp in length, encoding 63 amino acids. Sequence alignment revealed that Lhβ-defensin contained six conserved cysteine residues and shared 97.5% sequence identities with grouper (Epinephelus coioides) β-defensin. Realtime PCR revealed that Lhβ-defensin was highest expressed in the immune related organs, such as spleen, kidney and gut of healthy fish. Following Streptococcus dysgalactiae infection, Lhβ-defensin was up-regulated in immune related organs, e.g. 17.6-fold in spleen and 10.87-fold in gut at 24 h post infection (hpi). Lhβ-defensin possessed a monomeric structure of a three-stranded anti-parallel β-sheet and an α-helix stabilized by three disulfide bonds formed by Cys30-Cys58, Cys36-Cys52, and Cys40-Cys59. In addition to the experimental work, computer simulation was also carried out to determine the possible conformation of β-defensin and its interaction with palmitoyloleoylphosphatidylglycerol (POPG), a model of bacteria membrane. The Lhβ-defensin was found to form dimeric structure stabilized by the van der Waals contacts of Leu35 and Cys37 in two anti-parallel β1-strands and the cation-π interaction between Tyr32 and Arg54 respectively in the two β1-strands. The most important interactions between β-defensin and membrane are the electrostatic interactions between Arg residues in β-defensin and head group of POPG bilayer as well as hydrogen bond interactions between them. Our results were useful for further understanding the potential mechanism of antimicrobial property of fish β-defensins.
Collapse
Affiliation(s)
- Zhitao Qi
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Wei Xu
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Qihuan Zhang
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Chenglung Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Rong Shao
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| |
Collapse
|
63
|
Tsvetkova EV, Leonova LE, Aleshina GM, Shamova OV, Romanovskaya EV, Mavropulo-Stolyarenko GR, Kokryakov VN. Antimicrobial effects of α-defensins from leukocytes of the hamadryas baboon Papio hamadryas. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016020046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 1. structure, biosynthesis, and evolution. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
65
|
Zhang L, Lu L, Li S, Zhang G, Ouyang L, Robinson K, Tang Y, Zhu Q, Li D, Hu Y, Liu Y. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens. PLoS One 2016; 11:e0154546. [PMID: 27135828 PMCID: PMC4852925 DOI: 10.1371/journal.pone.0154546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Host defense peptides (HDPs) play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3) is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD) expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs) and peripheral blood mononuclear cells (PBMCs) to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS). On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens.
Collapse
Affiliation(s)
- Long Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Lu Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Siming Li
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, P. R. China
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
| | - Linghua Ouyang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, P. R. China
| | - Kelsy Robinson
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
| | - Yanqiang Tang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, P. R. China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yaodong Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| |
Collapse
|
66
|
Shen W, Chen Y, Yao H, Du C, Luan N, Yan X. A novel defensin-like antimicrobial peptide from the skin secretions of the tree frog, Theloderma kwangsiensis. Gene 2016; 576:136-40. [DOI: 10.1016/j.gene.2015.09.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
67
|
Natarajan SB, Kim YS, Hwang JW, Park PJ. Immunomodulatory properties of shellfish derivatives associated with human health. RSC Adv 2016. [DOI: 10.1039/c5ra26375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Some vital components of marine shellfish are documented as an important source for both nutritional and pharmacological applications.
Collapse
Affiliation(s)
| | - Yon-Suk Kim
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Jin-Woo Hwang
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Pyo-Jam Park
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| |
Collapse
|
68
|
Schmitt P, Rosa RD, Destoumieux-Garzón D. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:958-70. [PMID: 26498397 DOI: 10.1016/j.bbamem.2015.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Delphine Destoumieux-Garzón
- CNRS, Ifremer, UPVD, Université de Montpellier. Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, Place Eugène Bataillon, 34090 Montpellier cedex, France.
| |
Collapse
|
69
|
Gerdol M, Venier P. An updated molecular basis for mussel immunity. FISH & SHELLFISH IMMUNOLOGY 2015; 46:17-38. [PMID: 25700785 DOI: 10.1016/j.fsi.2015.02.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Non-self recognition with the consequent tolerance or immune reaction is a crucial process to succeed as living organisms. At the same time the interactions between host species and their microbiome, including potential pathogens and parasites, significantly contribute to animal life diversity. Marine filter-feeding bivalves, mussels in particular, can survive also in heavily anthropized coastal waters despite being constantly surrounded by microorganisms. Based on the first outline of the Mytilus galloprovincialis immunome dated 2011, the continuously growing transcript data and the recent release of a draft mussel genome, we explored the available sequence data and scientific literature to reinforce our knowledge on the main gene-encoded elements of the mussel immune responses, from the pathogen recognition to its clearance. We carefully investigated molecules specialized in the sensing and targeting of potential aggressors, expected to show greater molecular diversification, and outlined, whenever relevant, the interconnected cascades of the intracellular signal transduction. Aiming to explore the diversity of extracellular, membrane-bound and intracellular pattern recognition receptors in mussel, we updated a highly complex immune system, comprising molecules which are described here in detail for the first time (e.g. NOD-like receptors) or which had only been partially characterized in bivalves (e.g. RIG-like receptors). Overall, our comparative sequence analysis supported the identification of over 70 novel full-length immunity-related transcripts in M. galloprovincialis. Nevertheless, the multiplicity of gene functions relevant to immunity, the involvement of part of them in other vital processes, and also the lack of a refined mussel genome make this work still not-exhaustive and support the development of more specific studies.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via L. Giorgeri 5, 34127 Trieste, Italy.
| | - Paola Venier
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35131 Padua, Italy.
| |
Collapse
|
70
|
Bachère E, Rosa RD, Schmitt P, Poirier AC, Merou N, Charrière GM, Destoumieux-Garzón D. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view. FISH & SHELLFISH IMMUNOLOGY 2015; 46:50-64. [PMID: 25753917 DOI: 10.1016/j.fsi.2015.02.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Oysters are sessile filter feeders that live in close association with abundant and diverse communities of microorganisms that form the oyster microbiota. In such an association, cellular and molecular mechanisms have evolved to maintain oyster homeostasis upon stressful conditions including infection and changing environments. We give here cellular and molecular insights into the Crassostrea gigas antimicrobial defense system with focus on antimicrobial peptides and proteins (AMPs). This review highlights the central role of the hemocytes in the modulation and control of oyster antimicrobial response. As vehicles for AMPs and other antimicrobial effectors, including reactive oxygen species (ROS), and together with epithelia, hemocytes provide the oyster with local defense reactions instead of systemic humoral ones. These reactions are largely based on phagocytosis but also, as recently described, on the extracellular release of antimicrobial histones (ETosis) which is triggered by ROS. Thus, ROS can signal danger and activate cellular responses in the oyster. From the current literature, AMP production/release could serve similar functions. We provide also new lights on the oyster genetic background that underlies a great diversity of AMP sequences but also an extraordinary individual polymorphism of AMP gene expression. We discuss here how this polymorphism could generate new immune functions, new pathogen resistances or support individual adaptation to environmental stresses.
Collapse
Affiliation(s)
- Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France.
| | - Rafael Diego Rosa
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France; Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Paulina Schmitt
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad, Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Aurore C Poirier
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| | - Nicolas Merou
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| | - Guillaume M Charrière
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| | - Delphine Destoumieux-Garzón
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| |
Collapse
|
71
|
The development of antimicrobial peptides as an approach to prevention of antibiotic resistance. ACTA ACUST UNITED AC 2015. [DOI: 10.1097/mrm.0000000000000032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
72
|
He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G, Kanost MR, Jiang H. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:23-37. [PMID: 25662101 PMCID: PMC4476920 DOI: 10.1016/j.ibmb.2015.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 05/09/2023]
Abstract
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kai Li
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Institute of Biological Sciences, Donghua University, Songjiang, Shanghai 310029, China
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
73
|
Tu J, Li D, Li Q, Zhang L, Zhu Q, Gaur U, Fan X, Xu H, Yao Y, Zhao X, Yang M. Molecular Evolutionary Analysis of β-Defensin Peptides in Vertebrates. Evol Bioinform Online 2015; 11:105-14. [PMID: 26056425 PMCID: PMC4451809 DOI: 10.4137/ebo.s25580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
Vertebrate β-defensins comprise an important family of antimicrobial peptides that protect organisms from a diverse spectrum of bacteria, viruses, fungi, and protozoan parasites. Previous studies have shown a marked variation in the number of β-defensins among species, but the underlying reason is unclear. To address this question, we performed comprehensive computational searches to study the intact β-defensin genes from 29 vertebrates. Phylogenetic analysis of the β-defensin genes in vertebrates identified frequent changes in the number of β-defensin genes and multiple species-specific gene gains and losses that have been occurring throughout the evolution of vertebrates. The number of intact β-defensin genes varied from 1 in the western clawed frog to 20 in cattle, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The β-defensin gene number in a species is relevant to the ever-changing microbial challenges from the environment that they inhabit. Selection pressure analysis shows there exist three amino acid sites under significant positive selection. Protein structural characteristics analysis suggests that structural diversity determines the diverse functions of β-defensins. Our study provides a new perspective on the relationships among vertebrate β-defensin gene repertoires and different survival circumstances, which helps explain how β-defensins have evolved.
Collapse
Affiliation(s)
- Jianbo Tu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qingqing Li
- School of Life Sciences, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, P.R. China
- Kunming Xianghao Technology Co, Ltd, Kunming, Yunnan, P.R. China
| | - Long Zhang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qing Zhu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Uma Gaur
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Huailiang Xu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yongfang Yao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xiaoling Zhao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
74
|
Dong JJ, Wu F, Ye X, Sun CF, Tian YY, Lu MX, Zhang R, Chen ZH. Β-defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti-bacterial activity of synthetic peptides. Gene 2015; 566:23-31. [PMID: 25871516 DOI: 10.1016/j.gene.2015.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
Beta-defensins (β-defensins) are small cationic amphiphilic peptides that are widely distributed in plants, insects, and vertebrates, and are important for their antimicrobial properties. In this study, the β-defensin (Onβ-defensin) gene of the Nile tilapia (Oreochromis niloticus) was cloned from spleen tissue. Onβ-defensin has a genomic DNA sequence of 674 bp and produces a cDNA of 454 bp. Sequence alignments showed that Onβ-defensin contains three exons and two introns. Sequence analysis of the cDNA identified an open reading frame of 201 bp, encoding 66 amino acids. Bioinformatic analysis showed that Onβ-defensin encodes a cytoplasmic protein molecule containing a signal peptide. The deduced amino acid sequence of this peptide contains six conserved cysteine residues and two conserved glycine residues, and shows 81.82% and 78.33% sequence similarities with β-defensin-1 of fugu (Takifugu rubripes) and rainbow trout (Oncorhynchus mykiss), respectively. Real-time quantitative PCR showed that the level of Onβ-defensin expression was highest in the skin (307.1-fold), followed by the spleen (77.3-fold), kidney (17.8-fold), and muscle (16.5-fold) compared to controls. By contrast, low levels of expression were found in the liver, heart, intestine, stomach, and gill (<3.0-fold). Artificial infection of tilapia with Streptococcus agalactiae (group B streptococcus [GBS] strain) resulted in a significantly upregulated expression of Onβ-defensin in the skin, muscle, kidney, and gill. In vitro antimicrobial experiments showed that a synthetic Onβ-defensin polypeptide had a certain degree of inhibitory effect on the growth of Escherichia coli DH5α and S. agalactiae. The results indicate that Onβ-defensin plays a role in immune responses that suppress or kill pathogens.
Collapse
Affiliation(s)
- Jun-Jian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fang Wu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Cheng-Fei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yuan-Yuan Tian
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mai-Xin Lu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Rui Zhang
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi-Hang Chen
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
75
|
Tassanakajon A, Somboonwiwat K, Amparyup P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:324-341. [PMID: 24950415 DOI: 10.1016/j.dci.2014.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
76
|
da Costa JP, Cova M, Ferreira R, Vitorino R. Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 2015; 99:2023-40. [PMID: 25586583 DOI: 10.1007/s00253-015-6375-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides are small molecules with activity against bacteria, yeasts, fungi, viruses, bacteria, and even tumor cells that make these molecules attractive as therapeutic agents. Due to the alarming increase of antimicrobial resistance, interest in alternative antimicrobial agents has led to the exploitation of antimicrobial peptides, both synthetic and from natural sources. Thus, many peptide-based drugs are currently commercially available for the treatment of numerous ailments, such as hepatitis C, myeloma, skin infections, and diabetes. Initial barriers are being increasingly overcome with the development of cost-effective, more stable peptides. Herein, we review the available strategies for their synthesis, bioinformatics tools for the rational design of antimicrobial peptides with enhanced therapeutic indices, hurdles and shortcomings limiting the large-scale production of AMPs, as well as the challenges that the pharmaceutical industry faces on their use as therapeutic agents.
Collapse
Affiliation(s)
- João Pinto da Costa
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | |
Collapse
|
77
|
Comparative Phylogeny of the Mucosa-Associated Lymphoid Tissue. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
78
|
Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids 2014; 46:2561-71. [DOI: 10.1007/s00726-014-1801-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/27/2014] [Indexed: 10/24/2022]
|
79
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
80
|
Masso-Silva JA, Diamond G. Antimicrobial peptides from fish. Pharmaceuticals (Basel) 2014; 7:265-310. [PMID: 24594555 PMCID: PMC3978493 DOI: 10.3390/ph7030265] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture.
Collapse
Affiliation(s)
- Jorge A Masso-Silva
- Department of Pediatrics and Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07101, USA.
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|
81
|
Abstract
Cationic and amphiphilic peptides are widely distributed in eukaryotic organisms and constitute a first line of host defense against invading pathogens. Some of these host defense peptides (HDPs) combine specific antibiotic activities with modulation of immune responses. Moreover, they are active against bacteria resistant to conventional antibiotics and show only modest resistance development under in vitro selection pressure. Based on these features, HDPs and particularly defensins are considered a promising source of novel anti-infective agents. This review summarizes the current knowledge about defensins from different kingdoms and discusses their potential for therapeutic application.
Collapse
|
82
|
Liang T, Wang DD, Zhang GR, Wei KJ, Wang WM, Zou GW. Molecular cloning and expression analysis of two β-defensin genes in the blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2013; 166:91-8. [PMID: 23876385 DOI: 10.1016/j.cbpb.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022]
Abstract
β-Defensins are a group of cysteine-rich, cationic antimicrobial peptides that play important roles in innate immune system against pathogenic microbes invading. In this study, the part-length cDNA sequences of two β-defensin genes (maΒD-1, maΒD-2) in blunt snout bream (Megalobrama amblycephala) were identified. Homology analysis showed that the cDNA sequences of maΒD-1 and maΒD-2 had high similarities to those in common carp and zebrafish. Real-time quantitative PCR results exhibited that expression level of maΒD-1 in juvenile tissues was the highest in skin, followed by blood and liver, whereas maΒD-2 was lowly expressed in liver, kidney, brain and foregut. In the early development period, fertilized eggs to 31-day post-hatching (dph) larvae, the expression levels of maΒD-1 were higher at the stage from heart beat stage to 3 dph with the highest value at 1 dph, whereas maΒD-2 was expressed higher at fertilized eggs and late cleavage stages. Following bacterial stimulation in vivo by Aeromonas sobria, maΒD-2 expressions were significantly up-regulated in liver, skin, gill, and foregut of juveniles, and maΒD-1 expressions were significantly up-regulated in liver and skin. The results suggest that maΒD-1 and maΒD-2 may play important roles in protecting blunt snout bream embryos, fry and juveniles from pathogenic microbe invading.
Collapse
Affiliation(s)
- Tao Liang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | |
Collapse
|
83
|
Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:39-62. [PMID: 22504163 DOI: 10.1016/j.dci.2012.04.001] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/18/2012] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|