51
|
Strong IJT, Lei X, Chen F, Yuan K, O’Farrell PH. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol 2020; 18:e3000891. [PMID: 33090988 PMCID: PMC7608951 DOI: 10.1371/journal.pbio.3000891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/03/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Externally deposited eggs begin development with an immense cytoplasm and a single overwhelmed nucleus. Rapid mitotic cycles restore normality as the ratio of nuclei to cytoplasm (N/C) increases. A threshold N/C has been widely proposed to activate zygotic genome transcription and onset of morphogenesis at the mid-blastula transition (MBT). To test whether a threshold N/C is required for these events, we blocked N/C increase by down-regulating cyclin/Cdk1 to arrest early cell cycles in Drosophila. Embryos that were arrested two cell cycles prior to the normal MBT activated widespread transcription of the zygotic genome including genes previously described as N/C dependent. Zygotic transcription of these genes largely retained features of their regulation in space and time. Furthermore, zygotically regulated post-MBT events such as cellularization and gastrulation movements occurred in these cell cycle-arrested embryos. These results are not compatible with models suggesting that these MBT events are directly coupled to N/C. Cyclin/Cdk1 activity normally declines in tight association with increasing N/C and is regulated by N/C. By experimentally promoting the decrease in cyclin/Cdk1, we uncoupled MBT from N/C increase, arguing that N/C-guided down-regulation of cyclin/Cdk1 is sufficient for genome activation and MBT.
Collapse
Affiliation(s)
- Isaac J. T. Strong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Patrick H. O’Farrell
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
52
|
Zavortink M, Rutt LN, Dzitoyeva S, Henriksen JC, Barrington C, Bilodeau DY, Wang M, Chen XXL, Rissland OS. The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA binding proteins during the maternal-to-zygotic transition. eLife 2020; 9:53889. [PMID: 32573431 PMCID: PMC7384856 DOI: 10.7554/elife.53889] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a conserved step in animal development, where control is passed from the maternal to the zygotic genome. Although the MZT is typically considered from its impact on the transcriptome, we previously found that three maternally deposited Drosophila RNA-binding proteins (ME31B, Trailer Hitch [TRAL], and Cup) are also cleared during the MZT by unknown mechanisms. Here, we show that these proteins are degraded by the ubiquitin-proteasome system. Marie Kondo, an E2 conjugating enzyme, and the E3 CTLH ligase are required for the destruction of ME31B, TRAL, and Cup. Structure modeling of the Drosophila CTLH complex suggests that substrate recognition is different than orthologous complexes. Despite occurring hours earlier, egg activation mediates clearance of these proteins through the Pan Gu kinase, which stimulates translation of Kdo mRNA. Clearance of the maternal protein dowry thus appears to be a coordinated, but as-yet underappreciated, aspect of the MZT. Bestselling author and organizing consultant Marie Kondo has helped people around the world declutter their homes by getting rid of physical items that do not bring them joy. Keeping the crowded environment inside a living cell organized also requires work and involves removing molecules that are no longer needed. A fertilized egg cell, for example, contains molecules from the mother that regulate the initial stages as it develops into an embryo. Later on, the embryo takes control of its own development by destroying these inherited molecules and switches to making its own instead. This process is called the maternal-to-zygotic transition. The molecules passed from the mother to the egg cell include proteins and messenger RNAs (molecules that include the coded instructions to make new proteins). Previous research has begun to reveal how the embryo destroys the mRNAs it inherits from its mother and how it starts to make its own. Yet almost nothing is known about how an embryo gets rid of its mother’s proteins. To address this question, Zavortink, Rutt, Dzitoyeva et al. used an approach known as an RNA interference screen to identify factors required to destroy three maternal proteins in fruit fly embryos. The experiments helped identify one enzyme that worked together with another larger enzyme complex to destroy the maternal proteins. This enzyme belongs to a class of enzymes known as ubiquitin-conjugating enzymes (or E2 enzymes) and it was given the name “Kdo”, short for “Marie Kondo”. Further experiments showed that the mRNAs that code for the Kdo enzyme were present in unfertilized eggs, but in a repressed state that prevented the eggs from making the enzyme. Once an egg started to develop into an embryo, these mRNAs became active and the embryo started to make Kdo enzymes. This led to the three maternal proteins being destroyed during the maternal-to-zygotic transition. These findings reveal a new pathway that regulates the destruction of maternal proteins as the embryo develops. The next challenge will be identifying other maternal proteins that do not “spark joy” and understanding the role their destruction plays in the earliest events of embryonic development.
Collapse
Affiliation(s)
| | - Lauren N Rutt
- University of Colorado School of Medicine, Aurora, United States
| | | | | | - Chloe Barrington
- University of Colorado School of Medicine, Aurora, United States
| | | | | | | | | |
Collapse
|
53
|
Peng W, Yu S, Handler AM, Zhang H. Transcriptome Analysis of the Oriental Fruit Fly Bactrocera dorsalis Early Embryos. INSECTS 2020; 11:insects11050323. [PMID: 32456171 PMCID: PMC7290859 DOI: 10.3390/insects11050323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/01/2022]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most devastating and highly invasive agricultural pests world-wide, resulting in severe economic loss. Thus, it is of great interest to understand the transcriptional changes that occur during the activation of its zygotic genome at the early stages of embryonic development, especially the expression of genes involved in sex determination and the cellularization processes. In this study, we applied Illumina sequencing to identify B. dorsalis sex determination genes and early zygotic genes by analyzing transcripts from three early embryonic stages at 0–1, 2–4, and 5–8 h post-oviposition, which include the initiation of sex determination and cellularization. These tests generated 13,489 unigenes with an average length of 2185 bp. In total, 1683, 3201 and 3134 unigenes had significant changes in expression levels at times after oviposition including at 2–4 h versus 0–1 h, 5–8 h versus 0–1 h, and 5–8 h versus 2–4 h, respectively. Clusters of gene orthology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed throughout embryonic development to better understand the functions of differentially expressed unigenes. We observed that the RNA binding and spliceosome pathways were highly enriched and overrepresented during the early stage of embryogenesis. Additionally, transcripts for 21 sex-determination and three cellularization genes were identified, and expression pattern analysis revealed that the majority of these genes were highly expressed during embryogenesis. This study is the first assembly performed for B. dorsalis based on Illumina next-generation sequencing technology during embryogenesis. Our data should contribute significantly to the fundamental understanding of sex determination and early embryogenesis in tephritid fruit flies, and provide gene promoter and effector gene candidates for transgenic pest-management strategies for these economically important species.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shuning Yu
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
| | - Alfred M. Handler
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA;
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
- Correspondence:
| |
Collapse
|
54
|
Bruzzone L, Argüelles C, Sanial M, Miled S, Alvisi G, Gonçalves-Antunes M, Qasrawi F, Holmgren RA, Smibert CA, Lipshitz HD, Boccaccio GL, Plessis A, Bécam I. Regulation of the RNA-binding protein Smaug by the GPCR Smoothened via the kinase Fused. EMBO Rep 2020; 21:e48425. [PMID: 32383557 DOI: 10.15252/embr.201948425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
From fly to mammals, the Smaug/Samd4 family of prion-like RNA-binding proteins control gene expression by destabilizing and/or repressing the translation of numerous target transcripts. However, the regulation of its activity remains poorly understood. We show that Smaug's protein levels and mRNA repressive activity are downregulated by Hedgehog signaling in tissue culture cells. These effects rely on the interaction of Smaug with the G-protein coupled receptor Smoothened, which promotes the phosphorylation of Smaug by recruiting the kinase Fused. The activation of Fused and its binding to Smaug are sufficient to suppress its ability to form cytosolic bodies and to antagonize its negative effects on endogenous targets. Importantly, we demonstrate in vivo that HH reduces the levels of smaug mRNA and increases the level of several mRNAs downregulated by Smaug. Finally, we show that Smaug acts as a positive regulator of Hedgehog signaling during wing morphogenesis. These data constitute the first evidence for a post-translational regulation of Smaug and reveal that the fate of several mRNAs bound to Smaug is modulated by a major signaling pathway.
Collapse
Affiliation(s)
- Lucia Bruzzone
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Matthieu Sanial
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Samia Miled
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Giorgia Alvisi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Fairouz Qasrawi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Robert A Holmgren
- Department of Mol. Biosci., Northwestern University, Evanston, IL, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Graciela L Boccaccio
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne Plessis
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Isabelle Bécam
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
55
|
Ramat A, Garcia-Silva MR, Jahan C, Naït-Saïdi R, Dufourt J, Garret C, Chartier A, Cremaschi J, Patel V, Decourcelle M, Bastide A, Juge F, Simonelig M. The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res 2020; 30:421-435. [PMID: 32132673 PMCID: PMC7196074 DOI: 10.1038/s41422-020-0294-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and PIWI proteins are essential in germ cells to repress transposons and regulate mRNAs. In Drosophila, piRNAs bound to the PIWI protein Aubergine (Aub) are transferred maternally to the embryo and regulate maternal mRNA stability through two opposite roles. They target mRNAs by incomplete base pairing, leading to their destabilization in the soma and stabilization in the germ plasm. Here, we report a function of Aub in translation. Aub is required for translational activation of nanos mRNA, a key determinant of the germ plasm. Aub physically interacts with the poly(A)-binding protein (PABP) and the translation initiation factor eIF3. Polysome gradient profiling reveals the role of Aub at the initiation step of translation. In the germ plasm, PABP and eIF3d assemble in foci that surround Aub-containing germ granules, and Aub acts with eIF3d to promote nanos translation. These results identify translational activation as a new mode of mRNA regulation by Aub, highlighting the versatility of PIWI proteins in mRNA regulation.
Collapse
Affiliation(s)
- Anne Ramat
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Maria-Rosa Garcia-Silva
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Camille Jahan
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Julie Cremaschi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Vipul Patel
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | | - François Juge
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
56
|
The conserved regulatory basis of mRNA contributions to the early Drosophila embryo differs between the maternal and zygotic genomes. PLoS Genet 2020; 16:e1008645. [PMID: 32226006 PMCID: PMC7145188 DOI: 10.1371/journal.pgen.1008645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/09/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
The gene products that drive early development are critical for setting up developmental trajectories in all animals. The earliest stages of development are fueled by maternally provided mRNAs until the zygote can take over transcription of its own genome. In early development, both maternally deposited and zygotically transcribed gene products have been well characterized in model systems. Previously, we demonstrated that across the genus Drosophila, maternal and zygotic mRNAs are largely conserved but also showed a surprising amount of change across species, with more differences evolving at the zygotic stage than the maternal stage. In this study, we use comparative methods to elucidate the regulatory mechanisms underlying maternal deposition and zygotic transcription across species. Through motif analysis, we discovered considerable conservation of regulatory mechanisms associated with maternal transcription, as compared to zygotic transcription. We also found that the regulatory mechanisms active in the maternal and zygotic genomes are quite different. For maternally deposited genes, we uncovered many signals that are consistent with transcriptional regulation at the level of chromatin state through factors enriched in the ovary, rather than precisely controlled gene-specific factors. For genes expressed only by the zygotic genome, we found evidence for previously identified regulators such as Zelda and GAGA-factor, with multiple analyses pointing toward gene-specific regulation. The observed mechanisms of regulation are consistent with what is known about regulation in these two genomes: during oogenesis, the maternal genome is optimized to quickly produce a large volume of transcripts to provide to the oocyte; after zygotic genome activation, mechanisms are employed to activate transcription of specific genes in a spatiotemporally precise manner. Thus the genetic architecture of the maternal and zygotic genomes, and the specific requirements for the transcripts present at each stage of embryogenesis, determine the regulatory mechanisms responsible for transcripts present at these stages.
Collapse
|
57
|
Laver JD, Ly J, Winn JK, Karaiskakis A, Lin S, Nie K, Benic G, Jaberi-Lashkari N, Cao WX, Khademi A, Westwood JT, Sidhu SS, Morris Q, Angers S, Smibert CA, Lipshitz HD. The RNA-Binding Protein Rasputin/G3BP Enhances the Stability and Translation of Its Target mRNAs. Cell Rep 2020; 30:3353-3367.e7. [PMID: 32160542 DOI: 10.1016/j.celrep.2020.02.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
G3BP RNA-binding proteins are important components of stress granules (SGs). Here, we analyze the role of the Drosophila G3BP Rasputin (RIN) in unstressed cells, where RIN is not SG associated. Immunoprecipitation followed by microarray analysis identifies over 550 mRNAs that copurify with RIN. The mRNAs found in SGs are long and translationally silent. In contrast, we find that RIN-bound mRNAs, which encode core components of the transcription, splicing, and translation machinery, are short, stable, and highly translated. We show that RIN is associated with polysomes and provide evidence for a direct role for RIN and its human homologs in stabilizing and upregulating the translation of their target mRNAs. We propose that when cells are stressed, the resulting incorporation of RIN/G3BPs into SGs sequesters them away from their short target mRNAs. This would downregulate the expression of these transcripts, even though they are not incorporated into stress granules.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Jimmy Ly
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Jamie K Winn
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Kun Nie
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Giulia Benic
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Nima Jaberi-Lashkari
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Alireza Khademi
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - J Timothy Westwood
- Department of Biology, University of Toronto, 3359 Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Ave, Toronto, Ontario, Canada, M160 College Street, Toronto, ON M5G 1M1, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
58
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
59
|
Biswas J, Nunez L, Das S, Yoon YJ, Eliscovich C, Singer RH. Zipcode Binding Protein 1 (ZBP1; IGF2BP1): A Model for Sequence-Specific RNA Regulation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:1-10. [PMID: 32086331 DOI: 10.1101/sqb.2019.84.039396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fate of an RNA, from its localization, translation, and ultimate decay, is dictated by interactions with RNA binding proteins (RBPs). β-actin mRNA has functioned as the classic example of RNA localization in eukaryotic cells. Studies of β-actin mRNA over the past three decades have allowed understanding of how RBPs, such as ZBP1 (IGF2BP1), can control both RNA localization and translational status. Here, we summarize studies of β-actin mRNA and focus on how ZBP1 serves as a model for understanding interactions between RNA and their binding protein(s). Central to the study of RNA and RBPs were technological developments that occurred along the way. We conclude with a future outlook highlighting new technologies that may be used to address still unanswered questions about RBP-mediated regulation of mRNA during its life cycle, within the cell.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Leti Nunez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, USA
| |
Collapse
|
60
|
Eichler CE, Hakes AC, Hull B, Gavis ER. Compartmentalized oskar degradation in the germ plasm safeguards germline development. eLife 2020; 9:49988. [PMID: 31909715 PMCID: PMC6986870 DOI: 10.7554/elife.49988] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Partitioning of mRNAs into ribonucleoprotein (RNP) granules supports diverse regulatory programs within the crowded cytoplasm. At least two types of RNP granules populate the germ plasm, a cytoplasmic domain at the posterior of the Drosophila oocyte and embryo. Germ granules deliver mRNAs required for germline development to pole cells, the germ cell progenitors. A second type of RNP granule, here named founder granules, contains oskar mRNA, which encodes the germ plasm organizer. Whereas oskar mRNA is essential for germ plasm assembly during oogenesis, we show that it is toxic to pole cells. Founder granules mediate compartmentalized degradation of oskar during embryogenesis to minimize its inheritance by pole cells. Degradation of oskar in founder granules is temporally and mechanistically distinct from degradation of oskar and other mRNAs during the maternal-to-zygotic transition. Our results show how compartmentalization in RNP granules differentially controls fates of mRNAs localized within the same cytoplasmic domain.
Collapse
Affiliation(s)
- Catherine E Eichler
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Brooke Hull
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
61
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
62
|
Abstract
Drosophila melanogaster embryos develop initially as a syncytium of totipotent nuclei and subsequently, once cellularized, undergo morphogenetic movements associated with gastrulation to generate the three somatic germ layers of the embryo: mesoderm, ectoderm, and endoderm. In this chapter, we focus on the first phase of gastrulation in Drosophila involving patterning of early embryos when cells differentiate their gene expression programs. This patterning process requires coordination of multiple developmental processes including genome reprogramming at the maternal-to-zygotic transition, combinatorial action of transcription factors to support distinct gene expression, and dynamic feedback between this genetic patterning by transcription factors and changes in cell morphology. We discuss the gene regulatory programs acting during patterning to specify the three germ layers, which involve the regulation of spatiotemporal gene expression coupled to physical tissue morphogenesis.
Collapse
Affiliation(s)
- Angelike Stathopoulos
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Susan Newcomb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
63
|
Chakravarty AK, Smejkal T, Itakura AK, Garcia DM, Jarosz DF. A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Mol Cell 2019; 77:251-265.e9. [PMID: 31757755 PMCID: PMC6980676 DOI: 10.1016/j.molcel.2019.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Spatiotemporal gene regulation is often driven by RNA-binding proteins that harbor long intrinsically disordered regions in addition to folded RNA-binding domains. We report that the disordered region of the evolutionarily ancient developmental regulator Vts1/Smaug drives self-assembly into gel-like condensates. These proteinaceous particles are not composed of amyloid, yet they are infectious, allowing them to act as a protein-based epigenetic element: a prion [SMAUG+]. In contrast to many amyloid prions, condensation of Vts1 enhances its function in mRNA decay, and its self-assembly properties are conserved over large evolutionary distances. Yeast cells harboring [SMAUG+] downregulate a coherent network of mRNAs and exhibit improved growth under nutrient limitation. Vts1 condensates formed from purified protein can transform naive cells to acquire [SMAUG+]. Our data establish that non-amyloid self-assembly of RNA-binding proteins can drive a form of epigenetics beyond the chromosome, instilling adaptive gene expression programs that are heritable over long biological timescales.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Tina Smejkal
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Alan K Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - David M Garcia
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
64
|
Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae. Mol Cell 2019; 77:266-278.e6. [PMID: 31757756 DOI: 10.1016/j.molcel.2019.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Theory and experiments suggest that organisms would benefit from pre-adaptation to future stressors based on reproducible environmental fluctuations experienced by their ancestors, but the mechanisms driving pre-adaptation remain enigmatic. We report that the [SMAUG+] prion allows yeast to anticipate nutrient repletion after periods of starvation, providing a strong selective advantage. By transforming the landscape of post-transcriptional gene expression, [SMAUG+] regulates the decision between two broad growth and survival strategies: mitotic proliferation or meiotic differentiation into a stress-resistant state. [SMAUG+] is common in laboratory yeast strains, where standard propagation practice produces regular cycles of nutrient scarcity followed by repletion. Distinct [SMAUG+] variants are also widespread in wild yeast isolates from multiple niches, establishing that prion polymorphs can be utilized in natural populations. Our data provide a striking example of how protein-based epigenetic switches, hidden in plain sight, can establish a transgenerational memory that integrates adaptive prediction into developmental decisions.
Collapse
|
65
|
Expression Analysis of mRNA Decay of Maternal Genes during Bombyx mori Maternal-to-Zygotic Transition. Int J Mol Sci 2019; 20:ijms20225651. [PMID: 31718114 PMCID: PMC6887711 DOI: 10.3390/ijms20225651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Maternal genes play an important role in the early embryonic development of the silkworm. Early embryonic development without new transcription depends on maternal components stored in the egg during oocyte maturation. The maternal-to-zygotic transition (MZT) is a tightly regulated process that includes maternal mRNAs elimination and zygotic transcription initiation. This process has been extensively studied within model species. Each model organism has a unique pattern of maternal transcriptional clearance classes in MZT. In this study, we identified 66 maternal genes through bioinformatics analysis and expression analysis in the eggs of silkworm virgin moths (Bombyx mori). All 66 maternal genes were expressed in vitellogenesis in day eight female pupae. During MZT, the degradation of maternal gene mRNAs could be divided into three clusters. We found that eight maternal genes of cluster 1 remained stable from 0 to 3.0 h, 17 maternal genes of cluster 2 were significantly decayed from 0.5 to 1.0 h and 41 maternal genes of cluster 3 were significantly decayed after 1.5 h. Therefore, the initial time-point of degradation of cluster 2 was earlier than that of cluster 3. The maternal gene mRNAs decay of clusters 2 and 3 is first initiated by maternal degradation activity. Our study expands upon the identification of silkworm maternal genes and provides a perspective for further research of the embryo development in Bombyx mori.
Collapse
|
66
|
Abstract
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Collapse
|
67
|
Vejnar CE, Abdel Messih M, Takacs CM, Yartseva V, Oikonomou P, Christiano R, Stoeckius M, Lau S, Lee MT, Beaudoin JD, Musaev D, Darwich-Codore H, Walther TC, Tavazoie S, Cifuentes D, Giraldez AJ. Genome wide analysis of 3' UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Res 2019; 29:1100-1114. [PMID: 31227602 PMCID: PMC6633259 DOI: 10.1101/gr.245159.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.
Collapse
Affiliation(s)
- Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Mario Abdel Messih
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- University of New Haven, West Haven, Connecticut 06516, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Genentech, Incorporated, South San Francisco, California 94080, USA
| | - Panos Oikonomou
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Romain Christiano
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Marlon Stoeckius
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- New York Genome Center, New York, New York 10013, USA
| | - Stephanie Lau
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Miler T Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jean-Denis Beaudoin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Damir Musaev
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Hiba Darwich-Codore
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02124, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Saeed Tavazoie
- Department of Biochemistry and Molecular Biophysics, and Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Daniel Cifuentes
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
68
|
Wong JM, Gaitán-Espitia JD, Hofmann GE. Transcriptional profiles of early stage red sea urchins (Mesocentrotus franciscanus) reveal differential regulation of gene expression across development. Mar Genomics 2019; 48:100692. [PMID: 31227413 DOI: 10.1016/j.margen.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
The red sea urchin, Mesocentrotus franciscanus, is an ecologically important kelp forest species that also serves as a valuable fisheries resource. In this study, we have assembled and annotated a developmental transcriptome for M. franciscanus that represents eggs and six stages of early development (8- to 16-cell, morula, hatched blastula, early gastrula, prism and early pluteus). Characterization of the transcriptome revealed distinct patterns of gene expression that corresponded to major developmental and morphological processes. In addition, the period during which maternally-controlled transcription was terminated and the zygotic genome was activated, the maternal-to-zygotic transition (MZT), was found to begin during early cleavage and persist through the hatched blastula stage, an observation that is similar to the timing of the MZT in other sea urchin species. The presented developmental transcriptome will serve as a useful resource for investigating, in both an ecological and fisheries context, how the early developmental stages of this species respond to environmental stressors.
Collapse
Affiliation(s)
- Juliet M Wong
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Juan D Gaitán-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
69
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
70
|
Teixeira FK, Lehmann R. Translational Control during Developmental Transitions. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032987. [PMID: 30082467 DOI: 10.1101/cshperspect.a032987] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The many steps of gene expression, from the transcription of a gene to the production of its protein product, are well understood. Yet, transcriptional regulation has been the focal point for the study of gene expression during development. However, quantitative studies reveal that messenger RNA (mRNA) levels are not necessarily good predictors of the respective proteins' levels in a cell. This discrepancy is, at least in part, the result of developmentally regulated, translational mechanisms that control the spatiotemporal regulation of gene expression. In this review, we focus on translational regulatory mechanisms mediating global transitions in gene expression: the shift from the maternal to the embryonic developmental program in the early embryo and the switch from the self-renewal of stem cells to differentiation in the adult.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
71
|
Induced androgenetic development in rainbow trout and transcriptome analysis of irradiated eggs. Sci Rep 2019; 9:8084. [PMID: 31147623 PMCID: PMC6542805 DOI: 10.1038/s41598-019-44568-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation is administered to damage nuclear genome in fish eggs during induced androgenesis. In this study, we examined whether 350 Gy of X-ray applied to damage chromosomes in the rainbow trout eggs affects maternal RNA. Shortly after irradiation, we did not find any symptoms of RNA degradation in the treated eggs. Significant (p < 0.01) differences between non-irradiated and irradiated eggs concerned only a few transcripts including increased expression of immediate early response 2 (IER2) and early growth response 1 (EGR1) genes observed in the irradiated eggs. Both genes belong to the group of “immediate early genes” that respond quickly to the diverse extracellular stimuli. Elevated expression of these genes was accompanied by decreased level of ssa-miR-10b-5p and ssa-miR-21b-5p (p < 0.05), for which IER2 and EGR1 are target genes. The level of RNA in the fertilized irradiated eggs was highly significantly lower than in the non-irradiated eggs (p < 0.001) and in the unfertilized irradiated eggs (p < 0.0001). However, transcriptome profiles of fertilized non-irradiated eggs and fertilized irradiated eggs did not differ significantly. Thus, we assume that reduced abundance of mRNA in the fertilized irradiated eggs was associated with post-translational degradation and clearance of the maternal transcripts rather than from the irradiation of eggs.
Collapse
|
72
|
Wu Q, Medina SG, Kushawah G, DeVore ML, Castellano LA, Hand JM, Wright M, Bazzini AA. Translation affects mRNA stability in a codon-dependent manner in human cells. eLife 2019; 8:45396. [PMID: 31012849 PMCID: PMC6529216 DOI: 10.7554/elife.45396] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/20/2019] [Indexed: 12/26/2022] Open
Abstract
mRNA translation decodes nucleotide into amino acid sequences. However, translation has also been shown to affect mRNA stability depending on codon composition in model organisms, although universality of this mechanism remains unclear. Here, using three independent approaches to measure exogenous and endogenous mRNA decay, we define which codons are associated with stable or unstable mRNAs in human cells. We demonstrate that the regulatory information affecting mRNA stability is encoded in codons and not in nucleotides. Stabilizing codons tend to be associated with higher tRNA levels and higher charged/total tRNA ratios. While mRNAs enriched in destabilizing codons tend to possess shorter poly(A)-tails, the poly(A)-tail is not required for the codon-mediated mRNA stability. This mechanism depends on translation; however, the number of ribosome loads into a mRNA modulates the codon-mediated effects on gene expression. This work provides definitive evidence that translation strongly affects mRNA stability in a codon-dependent manner in human cells. Proteins are made by joining together building blocks called amino acids into strings. The proteins are ‘translated’ from genetic sequences called mRNA molecules. These sequences can be thought of as series of ‘letters’, which are read in groups of three known as codons. Molecules called tRNAs recognize the codons and add the matching amino acids to the end of the protein. Each tRNA can recognize one or several codons, and the levels of different tRNAs inside the cell vary. There are 61 codons that code for amino acids, but only 20 amino acids. This means that some codons produce the same amino acid. Despite this, there is evidence to suggest that not all of the codons that produce the same amino acid are exactly equivalent. In bacteria, yeast and zebrafish, some codons seem to make the mRNA molecule more stable, and others make it less stable. This might help the cell to control how many proteins it makes. It was not clear whether the same is true for humans. To find out, Wu et al. used three separate methods to examine mRNA stability in four types of human cell. Overall, the results revealed that some codons help to stabilize the mRNA, while others make the mRNA molecule break down faster. The effect seems to depend on the supply of tRNAs that have a charged amino acid; mRNA molecules were more likely to self-destruct in cells that contained codons with low levels of the tRNA molecules. Wu et al. also found that conditions in the cell can alter how strongly the codons affect mRNA stability. For example, a cell that has been infected by a virus reduces translation. Under these conditions, the identity of the codons in the mRNA has less effect on the stability of the mRNA molecule. Changes to protein production happen in many diseases. Understanding what controls these changes could help to reveal more about our fundamental biology, and what happens when it goes wrong.
Collapse
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Gopal Kushawah
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Jacqelyn M Hand
- Stowers Institute for Medical Research, Kansas City, United States
| | - Matthew Wright
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
73
|
Hanyu-Nakamura K, Matsuda K, Cohen SM, Nakamura A. Pgc suppresses the zygotically acting RNA decay pathway to protect germ plasm RNAs in the Drosophila embryo. Development 2019; 146:dev.167056. [PMID: 30890569 DOI: 10.1242/dev.167056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Specification of germ cells is pivotal to ensure continuation of animal species. In many animal embryos, germ cell specification depends on maternally supplied determinants in the germ plasm. Drosophila polar granule component (pgc) mRNA is a component of the germ plasm. pgc encodes a small protein that is transiently expressed in newly formed pole cells, the germline progenitors, where it globally represses mRNA transcription. pgc is also required for pole cell survival, but the mechanism linking transcriptional repression to pole cell survival remains elusive. We report that pole cells lacking pgc show premature loss of germ plasm mRNAs, including the germ cell survival factor nanos, and undergo apoptosis. We found that pgc- pole cells misexpress multiple miRNA genes. Reduction of miRNA pathway activity in pgc- embryos partially suppressed germ plasm mRNA degradation and pole cell death, suggesting that Pgc represses zygotic miRNA transcription in pole cells to protect germ plasm mRNAs. Interestingly, germ plasm mRNAs are protected from miRNA-mediated degradation in vertebrates, albeit by a different mechanism. Thus, independently evolved mechanisms are used to silence miRNAs during germ cell specification.
Collapse
Affiliation(s)
- Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.,Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Kazuki Matsuda
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan .,Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
74
|
Zhang Z, Ahmed-Braimah YH, Goldberg ML, Wolfner MF. Calcineurin-dependent Protein Phosphorylation Changes During Egg Activation in Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S145-S158. [PMID: 30478224 PMCID: PMC6427240 DOI: 10.1074/mcp.ra118.001076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/19/2018] [Indexed: 01/26/2023] Open
Abstract
In almost all animals studied to date, the crucial process of egg activation, by which an arrested mature oocyte transitions into an actively developing embryo, initiates with an increase in Ca2+ in the oocyte's cytoplasm. This Ca2+ rise sets off a series of downstream events, including the completion of meiosis and the dynamic remodeling of the oocyte transcriptome and proteome, which prepares the oocyte for embryogenesis. Calcineurin is a highly conserved phosphatase that is activated by Ca2+ upon egg activation and that is required for the resumption of meiosis in Xenopus,, ascidians, and Drosophila. The molecular mechanisms by which calcineurin transduces the calcium signal to regulate meiosis and other downstream events are still unclear. In this study, we investigate the regulatory role of calcineurin during egg activation in Drosophila melanogaster,. Using mass spectrometry, we quantify the phosphoproteomic and proteomic changes that occur during egg activation, and we examine how these events are affected when calcineurin function is perturbed in female germ cells. Our results show that calcineurin regulates hundreds of phosphosites and also influences the abundance of numerous proteins during egg activation. We find calcineurin-dependent changes in cell cycle regulators including Fizzy (Fzy), Greatwall (Gwl) and Endosulfine (Endos); in protein translation modulators including PNG, NAT, eIF4G, and eIF4B; and in important components of signaling pathways including GSK3β and Akt1. Our results help elucidate the events that occur during the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
75
|
Comparative transcriptome analysis explores maternal to zygotic transition during Eriocheir sinensis early embryogenesis. Gene 2019; 685:12-20. [PMID: 30321661 DOI: 10.1016/j.gene.2018.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
Abstract
The maternal genome directs almost all aspects of early animal development. As development proceeds, the elimination of maternal gene products and zygotic genome activation (ZGA) occur during the maternal to zygotic transition (MZT). To study the molecular mechanisms regulating this developmental event in Eriocheir sinensis, RNA-Seq technology was applied to generate comprehensive information on transcriptome dynamics during early embryonic stages. In total, 32,088 annotated unigenes were obtained from the transcriptomes of fertilized eggs and embryos at the cleavage (2-4 cell) and blastula stage. A total of 566 maternal genes and 1165 zygotic genes were isolated, among which 103 and 266 genes were predicted conserved maternal transcripts (COMATs) and conserved zygotic transcripts (COZYTs), respectively. The COMATs performed housekeeping gene functions and may be essential for initiating early embryogenesis of the Bilateria. Furthermore, 87, 76 and 117 differentially expressed genes associated with the MZT, morphogenesis and immunity were identified when compared the three transcriptomic datasets. We also unmask that the MZT takes place around the cleavage stage, when the genes involved in the clearance of maternal gene products and the ZGA were significantly up-regulated. Taken together, these datasets provide a valuable resource for understanding the mechanisms of early developmental events in E. sinensis, and facilitate further studies on molecular mechanisms of asynchronous development in crabs.
Collapse
|
76
|
Avilés-Pagán EE, Orr-Weaver TL. Activating embryonic development in Drosophila. Semin Cell Dev Biol 2018; 84:100-110. [PMID: 29448071 PMCID: PMC6301029 DOI: 10.1016/j.semcdb.2018.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/21/2017] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
The transition from oocyte to embryo marks the onset of development. This process requires complex regulation to link developmental signals with profound changes in mRNA translation, cell cycle control, and metabolism. This control is beginning to be understood for most organisms, and research in the fruit fly Drosophila melanogaster has generated new insights. Recent findings have increased our understanding of the roles played by hormone and Ca2+ signaling events as well as metabolic remodeling crucial for this transition. Specialized features of the structure and assembly of the meiotic spindle have been identified. The changes in protein levels, mRNA translation, and polyadenylation that occur as the oocyte becomes an embryo have been identified together with key aspects of their regulation. Here we highlight these important developments and the insights they provide on the intricate regulation of this dramatic transition.
Collapse
Affiliation(s)
- Emir E Avilés-Pagán
- Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Terry L Orr-Weaver
- Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
77
|
Hamm DC, Harrison MM. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol 2018; 8:180183. [PMID: 30977698 PMCID: PMC6303782 DOI: 10.1098/rsob.180183] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT). The MZT comprises an intimately connected set of molecular events that mediate degradation of maternally deposited mRNAs and transcriptional activation of the zygotic genome. This essential developmental transition is conserved among metazoans but is perhaps best understood in the fruit fly, Drosophila melanogaster. In this article, we will review our understanding of the events that drive the MZT in Drosophila embryos and highlight parallel mechanisms driving this transition in other animals.
Collapse
Affiliation(s)
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
78
|
Sterzyńska K, Klejewski A, Wojtowicz K, Świerczewska M, Nowicki M, Brązert J, Januchowski R. Myotilin, a New Topotecan Resistant Protein in Ovarian Cancer Cell Lines. J Cancer 2018; 9:4413-4421. [PMID: 30519347 PMCID: PMC6277650 DOI: 10.7150/jca.27342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022] Open
Abstract
Background: Low effectiveness of chemotherapy in ovarian cancer results from development of drug resistance during treatment. Topotecan (TOP) is a chemotherapeutic drug used in second-line chemotherapy of this cancer. Unfortunately, during treatment cancer can develop diverse cellular and tissue specific mechanisms of resistance to cytotoxic drugs. Methods: We analyzed development of TOP resistance in ovarian cancer cell lines (A2780 and W1). On the base of our previous results where a set of “new genes” with different functions that can be related to TOP-resistance was described hereby we performed detailed analysis of MYOT expression. MYOT mRNA level (real time PCR analysis), protein expression in cell lysates and cell culture medium (western blot analysis) and protein expression in cancer cells (immunofluorescence analysis) were determined in this study. Results: We observed increased expression of MYOT in TOP resistant cell lines at both mRNA and protein level. MYOT, together with extracellular matrix molecules like COL1A2 and COL15A1 were also secreted to corresponding cell culture media. Conclusion: Our results suggest that upregulation of MYOT can be related to TOP resistance in ovarian cancer cell lines.
Collapse
Affiliation(s)
- Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Poznań, Poland.,Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Brązert
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
79
|
Sun J, Yan L, Shen W, Meng A. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 2018; 145:dev.166587. [PMID: 30135188 DOI: 10.1242/dev.166587] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
Maternal mRNAs and proteins dictate early embryonic development before zygotic genome activation. In the absence of transcription, elaborate control of maternal mRNA translation is of particular importance for oocyte maturation and early embryogenesis. By analyzing zebrafish ybx1 mutants with a null allele, we demonstrate an essential role of maternal ybx1 in repressing global translation in oocytes and embryos. Loss of maternal Ybx1 leads to impaired oocyte maturation and egg activation. Maternal ybx1 (Mybx1) mutant embryos fail to undergo normal cleavage and the maternal-to-zygotic transition (MZT). Morpholino knockdown of ybx1 also results in MZT loss and epiboly failure, suggesting the postfertilization requirement of Ybx1. In addition, elevated global translation level and the unfolded protein response were found in Ybx1-depleted embryos. Supplementing translational repression by eIF4E inhibition markedly rescues the Mybx1 phenotype. Mechanistically, Ybx1 in embryos may associate with processing body components and repress translation when tethered to target mRNAs. Collectively, our results identify maternal Ybx1 as a global translational repressor required for oocyte maturation and early embryogenesis.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
80
|
Maternal Proteins That Are Phosphoregulated upon Egg Activation Include Crucial Factors for Oogenesis, Egg Activation and Embryogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:3005-3018. [PMID: 30012668 PMCID: PMC6118307 DOI: 10.1534/g3.118.200578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Egg activation is essential for the successful transition from a mature oocyte to a developmentally competent egg. It consists of a series of events including the resumption and completion of meiosis, initiation of translation of some maternal mRNAs and destruction of others, and changes to the vitelline envelope. This major change of cell state is accompanied by large scale alteration in the oocyte’s phosphoproteome. We hypothesize that the cohort of proteins that are subject to phosphoregulation during egg activation are functionally important for processes before, during, or soon after this transition, potentially uniquely or as proteins carrying out essential cellular functions like those they do in other (somatic) cells. In this study, we used germline-specific RNAi to examine the function of 189 maternal proteins that are phosphoregulated during egg activation in Drosophila melanogaster. We identified 53 genes whose knockdown reduced or abolished egg production and caused a range of defects in ovarian morphology, as well as 51 genes whose knockdown led to significant impairment or abolishment of the egg hatchability. We observed different stages of developmental arrest in the embryos and various defects in spindle morphology and aberrant centrosome activities in the early arrested embryos. Our results, validated by the detection of multiple genes with previously-documented maternal effect phenotypes among the proteins we tested, revealed 15 genes with newly discovered roles in egg activation and early embryogenesis in Drosophila. Given that protein phosphoregulation is a conserved characteristic of this developmental transition, we suggest that the phosphoregulated proteins may provide a rich pool of candidates for the identification of important players in the egg-to-embryo transition.
Collapse
|
81
|
Ylla G, Piulachs MD, Belles X. Comparative Transcriptomics in Two Extreme Neopterans Reveals General Trends in the Evolution of Modern Insects. iScience 2018; 4:164-179. [PMID: 30240738 PMCID: PMC6147021 DOI: 10.1016/j.isci.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
The success of neopteran insects, with 1 million species described, is associated with developmental innovations such as holometaboly and the evolution from short to long germband embryogenesis. To unveil the mechanisms underlining these innovations, we compared gene expression during the ontogeny of two extreme neopterans, the cockroach Blattella germanica (polyneopteran, hemimetabolan, and short germband species) and the fly Drosophila melanogaster (endopterygote, holometabolan, and long germband species). Results revealed that genes associated with metamorphosis are predominantly expressed in late nymphal stages in B. germanica and in the early-mid embryo in D. melanogaster. In B. germanica the maternal to zygotic transition (MZT) concentrates early in embryogenesis, when juvenile hormone factors are significantly expressed. In D. melanogaster, the MZT extends throughout embryogenesis, during which time juvenile hormone factors appear to be unimportant. These differences possibly reflect broad trends in the evolution of development within neopterans, related to the germband type and the metamorphosis mode. Transcriptomes of cockroaches and flies show key differences along development Cockroaches and flies express metamorphosis factors with distinct timings in ontogeny Cockroaches methylate DNA in early embryogenesis, whereas flies do not MZT is limited to the early embryo in cockroaches, but it extends until hatching in flies
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
82
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
83
|
Lugowski A, Nicholson B, Rissland OS. DRUID: a pipeline for transcriptome-wide measurements of mRNA stability. RNA (NEW YORK, N.Y.) 2018; 24:623-632. [PMID: 29438994 PMCID: PMC5900561 DOI: 10.1261/rna.062877.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/01/2018] [Indexed: 05/21/2023]
Abstract
Control of messenger RNA (mRNA) stability is an important aspect of gene regulation. The gold standard for measuring mRNA stability transcriptome-wide uses metabolic labeling, biochemical isolation of labeled RNA populations, and high-throughput sequencing. However, difficult normalization procedures have inhibited widespread adoption of this approach. Here, we present DRUID (for determination of rates using intron dynamics), a new computational pipeline that is robust, easy to use, and freely available. Our pipeline uses endogenous introns to normalize time course data and yields reproducible half-lives, even with data sets that were otherwise unusable. DRUID can handle data sets from a variety of organisms, spanning yeast to humans, and we even applied it retroactively on published data sets. We anticipate that DRUID will allow broad application of metabolic labeling for studies of transcript stability.
Collapse
Affiliation(s)
- Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Beth Nicholson
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Olivia S Rissland
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
84
|
Treen N, Heist T, Wang W, Levine M. Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo. Curr Biol 2018; 28:1150-1156.e4. [PMID: 29576477 PMCID: PMC5996753 DOI: 10.1016/j.cub.2018.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/18/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
Most animal embryos display a delay in the activation of zygotic transcription during early embryogenesis [1]. This process is thought to help coordinate rapid increases in cell number during early development [2]. The timing of zygotic genome activation (ZGA) during the maternal-to-zygotic transition (MZT) remains uncertain despite extensive efforts. We explore ZGA in the simple protovertebrate, Ciona intestinalis. Single-cell RNA sequencing (RNA-seq) assays identified Cyclin B3 (Ccnb3) as a putative mediator of ZGA. Maternal Ccnb3 transcripts rapidly diminish in abundance during the onset of zygotic transcription at the 8-cell and 16-cell stages. Disruption of Ccnb3 activity results in precocious activation of zygotic transcription, while overexpression abolishes normal activation. These observations suggest that the depletion of maternal Cyclin B3 products is a critical component of the MZT and ZGA. We discuss evidence that this mechanism might play a conserved role in the MZT of other metazoans, including mice and humans.
Collapse
Affiliation(s)
- Nicholas Treen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Tyler Heist
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
85
|
Wharton TH, Nomie KJ, Wharton RP. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. PLoS One 2018; 13:e0194865. [PMID: 29601592 PMCID: PMC5877865 DOI: 10.1371/journal.pone.0194865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 01/23/2023] Open
Abstract
Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3’-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described—repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3’-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.
Collapse
Affiliation(s)
- Tammy H. Wharton
- Departments of Molecular Genetics & Cancer Biology and Genetics, Center for RNA Biology Ohio State University Columbus, OH
| | - Krystle J. Nomie
- Department of Lymphoma/Myeloma MD Anderson Cancer Center Holcombe Blvd. Houston, TX
| | - Robin P. Wharton
- Departments of Molecular Genetics & Cancer Biology and Genetics, Center for RNA Biology Ohio State University Columbus, OH
- * E-mail:
| |
Collapse
|
86
|
Lefebvre FA, Lécuyer É. Flying the RNA Nest: Drosophila Reveals Novel Insights into the Transcriptome Dynamics of Early Development. J Dev Biol 2018; 6:jdb6010005. [PMID: 29615554 PMCID: PMC5875563 DOI: 10.3390/jdb6010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
Early development is punctuated by a series of pervasive and fast paced transitions. These events reshape a differentiated oocyte into a totipotent embryo and allow it to gradually mount a genetic program of its own, thereby framing a new organism. Specifically, developmental transitions that ensure the maternal to embryonic control of developmental events entail a deep remodeling of transcriptional and transcriptomic landscapes. Drosophila provides an elegant and genetically tractable system to investigate these conserved changes at a dazzling developmental pace. Here, we review recent studies applying emerging technologies such as ribosome profiling, in situ Hi-C chromatin probing and live embryo RNA imaging to investigate the transcriptional dynamics at play during Drosophila embryogenesis. In light of this new literature, we revisit the main models of zygotic genome activation (ZGA). We also review the contributions played by zygotic transcription in shaping embryogenesis and explore emerging concepts of processes such as transcriptional bursting and transcriptional memory.
Collapse
Affiliation(s)
- Fabio Alexis Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada.
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Éric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada.
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
- IRCM, RNA Biology Laboratory, 110 Avenue des Pins, Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
87
|
Hara M, Lourido S, Petrova B, Lou HJ, Von Stetina JR, Kashevsky H, Turk BE, Orr-Weaver TL. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition. eLife 2018; 7:33150. [PMID: 29480805 PMCID: PMC5826265 DOI: 10.7554/elife.33150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors.
Collapse
Affiliation(s)
| | | | | | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | | | | | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
88
|
Abstract
The activation of the zygotic genome and onset of transcription in blastula embryos is linked to changes in cell behavior and remodeling of the cell cycle and constitutes a transition from exclusive maternal to zygotic control of development. This step in development is referred to as mid-blastula transition and has served as a paradigm for the link between developmental program and cell behavior and morphology. Here, we discuss the mechanism and functional relationships between the zygotic genome activation and cell cycle control during mid-blastula transition with a focus on Drosophila embryos.
Collapse
Affiliation(s)
- Boyang Liu
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig-Weg11, Göttingen 37077, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig-Weg11, Göttingen 37077, Germany.
| |
Collapse
|
89
|
Cosacak MI, Yiğit H, Kizil C, Akgül B. Re-Arrangements in the Cytoplasmic Distribution of Small RNAs Following the Maternal-to-Zygotic Transition in Drosophila Embryos. Genes (Basel) 2018; 9:genes9020082. [PMID: 29439397 PMCID: PMC5852578 DOI: 10.3390/genes9020082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
Small ribonucleic acids (RNAs) are known to regulate gene expression during early development. However, the dynamics of interaction between small RNAs and polysomes during this process is largely unknown. To investigate this phenomenon, 0–1 h and 7–8 h Drosophila melanogaster embryos were fractionated on sucrose density gradients into four fractions based on A254 reading (1) translationally inactive messenger ribonucleoprotein (mRNP), (2) 60S, (3) monosome, and (4) polysome. Comparative analysis of deep-sequencing reads from fractionated and un-fractionated 0–1 h and 7–8 h embryos revealed development-specific co-sedimentation pattern of small RNAs with the cellular translation machinery. Although most micro RNAs (miRNAs) did not have a specific preference for any state of the translational machinery, we detected fraction-specific enrichment of a few miRNAs such as dme-miR-1-3p, -184-3p, 5-5p and 263-5p. More interestingly, we observed changes in the subcellular location of a subset of miRNAs in fractionated embryos despite no measurable difference in their amount in unfractionated embryos. Transposon-derived endo small interfering RNAs (siRNAs) were over-expressed in 7–8 h embryos and associated mainly with the mRNP fraction. In contrast, transposon-derived PIWI-interacting RNAs (piRNA), which were more abundant in 0–1 h embryos, co-sedimented primarily with the polysome fractions. These results suggest that there appears to be a complex interplay among the small RNAs with respect to their polysome-cosedimentation pattern during early development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Mehmet Ilyas Cosacak
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Hatice Yiğit
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Bünyamin Akgül
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| |
Collapse
|
90
|
Xie Y, Blankenship JT. Differentially-dimensioned furrow formation by zygotic gene expression and the MBT. PLoS Genet 2018; 14:e1007174. [PMID: 29337989 PMCID: PMC5786337 DOI: 10.1371/journal.pgen.1007174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/26/2018] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis. One of the primary events that must occur repeatedly throughout a complex animal’s lifetime is the ingression of a plasma membrane furrow. Furrow formation and ingression are requisite elements of cell division, and drive the physical separation of one cell into two cells. However, the mechanisms that permit an embryo to change the length and size of a furrow are unclear. Here, we show that a combination of higher ingression rates and longer duration phases drive changes in furrow dimensions through the introduction of a new ingression phase. These changes are driven by the embryo’s own genome, and suggest that zygotic transcription controls organismal form at an earlier time point than previously appreciated. Additionally, the failure to properly lengthen furrows as development proceeds causes defects in chromosome segregation during cell division and results in massive genomic instability. Our data demonstrate the importance of the dynamic regulation of furrow dimensions to organismal form and viability.
Collapse
Affiliation(s)
- Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
- * E-mail:
| |
Collapse
|
91
|
Despic V, Neugebauer KM. RNA tales – how embryos read and discard messages from mom. J Cell Sci 2018; 131:jcs.201996. [DOI: 10.1242/jcs.201996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following fertilization, embryos develop for a substantial amount of time with a transcriptionally silent genome. Thus, early development is maternally programmed, as it solely relies on RNAs and proteins that are provided by the female gamete. However, these maternal instructions are not sufficient to support later steps of embryogenesis and are therefore gradually replaced by novel products synthesized from the zygotic genome. This switch in the origin of molecular players that drive early development is known as the maternal-to-zygotic transition (MZT). MZT is a universal phenomenon among all metazoans and comprises two interconnected processes: maternal mRNA degradation and the transcriptional awakening of the zygotic genome. The recent adaptation of high-throughput methods for use in embryos has deepened our knowledge of the molecular principles underlying MZT. These mechanisms comprise conserved strategies for RNA regulation that operate in many well-studied cellular contexts but that have adapted differently to early development. In this Review, we will discuss advances in our understanding of post-transcriptional regulatory pathways that drive maternal mRNA clearance during MZT, with an emphasis on recent data in zebrafish embryos on codon-mediated mRNA decay, the contributions of microRNAs (miRNAs) and RNA-binding proteins to this process, and the roles of RNA modifications in the stability control of maternal mRNAs.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
92
|
Rabani M, Pieper L, Chew GL, Schier AF. A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Mol Cell 2017; 68:1083-1094.e5. [PMID: 29225039 DOI: 10.1016/j.molcel.2017.11.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
The stability of mRNAs is regulated by signals within their sequences, but a systematic and predictive understanding of the underlying sequence rules remains elusive. Here we introduce UTR-seq, a combination of massively parallel reporter assays and regression models, to survey the dynamics of tens of thousands of 3' UTR sequences during early zebrafish embryogenesis. UTR-seq revealed two temporal degradation programs: a maternally encoded early-onset program and a late-onset program that accelerated degradation after zygotic genome activation. Three signals regulated early-onset rates: stabilizing poly-U and UUAG sequences and destabilizing GC-rich signals. Three signals explained late-onset degradation: miR-430 seeds, AU-rich sequences, and Pumilio recognition sites. Sequence-based regression models translated 3' UTRs into their unique decay patterns and predicted the in vivo effect of sequence signals on mRNA stability. Their application led to the successful design of artificial 3' UTRs that conferred specific mRNA dynamics. UTR-seq provides a general strategy to uncover the rules of RNA cis regulation.
Collapse
Affiliation(s)
- Michal Rabani
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lindsey Pieper
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guo-Liang Chew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; The Broad Institute, Cambridge, MA 02140, USA.
| |
Collapse
|
93
|
Reichardt I, Bonnay F, Steinmann V, Loedige I, Burkard TR, Meister G, Knoblich JA. The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep 2017; 19:102-117. [PMID: 29191977 DOI: 10.15252/embr.201744188] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature-controlled brat RNAi with transcriptome analysis to identify the immediate Brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of Brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit-amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.
Collapse
Affiliation(s)
- Ilka Reichardt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Inga Loedige
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
94
|
Wu Q, Bazzini AA. Systems to study codon effect on post-transcriptional regulation of gene expression. Methods 2017; 137:82-89. [PMID: 29174654 DOI: 10.1016/j.ymeth.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
95
|
Differentially Expressed tRNA-Derived Small RNAs Co-Sediment Primarily with Non-Polysomal Fractions in Drosophila. Genes (Basel) 2017; 8:genes8110333. [PMID: 29156628 PMCID: PMC5704246 DOI: 10.3390/genes8110333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies point to the existence of poorly characterized small regulatory RNAs generated from mRNAs, rRNAs and tRNAs. To explore the subcellular location of tRNA-derived small RNAs, 0–1 and 7–8 h Drosophila embryos were fractionated on sucrose density gradients. Analysis of 12,553,921 deep-sequencing reads from unfractionated and fractionated Drosophila embryos has revealed that tRFs, which are detected mainly from the 5’ends of tRNAs, co-sediment with the non-polysomal fractions. Interestingly, the expression levels of a subset of tRFs change temporally following the maternal-to-zygotic transition in embryos. We detected non-polysomal association of tRFs in S2 cells as well. Differential tRF expression pattern points to developmental significance at the organismal level. These results suggest that tRFs are associated primarily with the non-polysomal complexes in Drosophila embryos and S2 cells.
Collapse
|
96
|
Davidson PL, Koch BJ, Schnitzler CE, Henry JQ, Martindale MQ, Baxevanis AD, Browne WE. The maternal-zygotic transition and zygotic activation of the Mnemiopsis leidyi genome occurs within the first three cleavage cycles. Mol Reprod Dev 2017; 84:1218-1229. [PMID: 29068507 DOI: 10.1002/mrd.22926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022]
Abstract
The maternal-zygotic transition (MZT) describes the developmental reprogramming of gene expression marked by the degradation of maternally supplied gene products and activation of the zygotic genome. While the timing and duration of the MZT vary among taxa, little is known about early-stage transcriptional dynamics in the non-bilaterian phylum Ctenophora. We sought to better understand the extent of maternal mRNA loading and subsequent differential transcript abundance during the earliest stages of development by performing comprehensive RNA-sequencing-based analyses of mRNA abundance in single- and eight-cell stage embryos in the lobate ctenophore Mnemiopsis leidyi. We found 1,908 contigs with significant differential abundance between single- and eight-cell stages, of which 1,208 contigs were more abundant at the single-cell stage and 700 contigs were more abundant at the eight-cell stage. Of the differentially abundant contigs, 267 were exclusively present in the eight-cell samples, providing strong evidence that both the MZT and zygotic genome activation (ZGA) have commenced by the eight-cell stage. Many highly abundant transcripts encode genes involved in molecular mechanisms critical to the MZT, such as maternal transcript degradation, serine/threonine kinase activity, and chromatin remodeling. Our results suggest that chromosomal restructuring, which is critical to ZGA and the initiation of transcriptional regulation necessary for normal development, begins by the third cleavage within 1.5 hr post-fertilization in M. leidyi.
Collapse
Affiliation(s)
| | - Bernard J Koch
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Christine E Schnitzler
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Department of Biology, University of Florida, Gainesville, Florida
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois
| | - Mark Q Martindale
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Department of Biology, University of Florida, Gainesville, Florida
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, Florida
| |
Collapse
|
97
|
Dufourt J, Bontonou G, Chartier A, Jahan C, Meunier AC, Pierson S, Harrison PF, Papin C, Beilharz TH, Simonelig M. piRNAs and Aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nat Commun 2017; 8:1305. [PMID: 29101389 PMCID: PMC5670238 DOI: 10.1038/s41467-017-01431-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and PIWI proteins play a crucial role in germ cells by repressing transposable elements and regulating gene expression. In Drosophila, maternal piRNAs are loaded into the embryo mostly bound to the PIWI protein Aubergine (Aub). Aub targets maternal mRNAs through incomplete base-pairing with piRNAs and can induce their destabilization in the somatic part of the embryo. Paradoxically, these Aub-dependent unstable mRNAs encode germ cell determinants that are selectively stabilized in the germ plasm. Here we show that piRNAs and Aub actively protect germ cell mRNAs in the germ plasm. Aub directly interacts with the germline-specific poly(A) polymerase Wispy, thus leading to mRNA polyadenylation and stabilization in the germ plasm. These results reveal a role for piRNAs in mRNA stabilization and identify Aub as an interactor of Wispy for mRNA polyadenylation. They further highlight the role of Aub and piRNAs in embryonic patterning through two opposite functions.
Collapse
Affiliation(s)
- Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Gwénaëlle Bontonou
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Camille Jahan
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Anne-Cécile Meunier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Catherine Papin
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Traude H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
98
|
Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA (NEW YORK, N.Y.) 2017; 23:1552-1568. [PMID: 28701521 PMCID: PMC5602113 DOI: 10.1261/rna.062208.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 05/10/2023]
Abstract
Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Jérémy Dufourt
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stephanie Pierson
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Nagraj Sambrani
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
99
|
Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Development 2017; 144:2548-2559. [PMID: 28720652 DOI: 10.1242/dev.146613] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) contribute to the progressive changes in gene expression that occur during development. The combined loss of all miRNAs results in embryonic lethality in all animals analyzed, illustrating the crucial role that miRNAs play collectively. However, although the loss of some individual miRNAs also results in severe developmental defects, the roles of many other miRNAs have been challenging to uncover. This has been mostly attributed to their proposed function as tuners of gene expression or providers of robustness. Here, we present a view of miRNAs in the context of development as a hierarchical and canalized series of gene regulatory networks. In this scheme, only a fraction of embryonic miRNAs act at the top of this hierarchy, with their loss resulting in broad developmental defects, whereas most other miRNAs are expressed with high cellular specificity and play roles at the periphery of development, affecting the terminal features of specialized cells. This view could help to shed new light on our understanding of miRNA function in development, disease and evolution.
Collapse
Affiliation(s)
- Chiara Alberti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
100
|
Wang M, Ly M, Lugowski A, Laver JD, Lipshitz HD, Smibert CA, Rissland OS. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition. eLife 2017; 6:27891. [PMID: 28875934 PMCID: PMC5779226 DOI: 10.7554/elife.27891] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.
Collapse
Affiliation(s)
- Miranda Wang
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Ly
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Olivia S Rissland
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|