51
|
Misra JR, Irvine KD. Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 2016; 39:254-266. [PMID: 27746048 DOI: 10.1016/j.devcel.2016.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA.
| |
Collapse
|
52
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
53
|
Gokhale RH, Hayashi T, Mirque CD, Shingleton AW. Intra-organ growth coordination in Drosophila is mediated by systemic ecdysone signaling. Dev Biol 2016; 418:135-145. [DOI: 10.1016/j.ydbio.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
|
54
|
Dowling A, Doroba C, Maier JA, Cohen L, VandeBerg J, Sears KE. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica. Dev Genes Evol 2016; 226:235-43. [PMID: 27194412 DOI: 10.1007/s00427-016-0549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs.
Collapse
Affiliation(s)
- Anna Dowling
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Carolyn Doroba
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Maier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Lorna Cohen
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - John VandeBerg
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Karen E Sears
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
55
|
Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. Bioessays 2016; 38:644-53. [PMID: 27173018 PMCID: PMC5031209 DOI: 10.1002/bies.201600037] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
56
|
Vrabioiu AM, Struhl G. Fat/Dachsous Signaling Promotes Drosophila Wing Growth by Regulating the Conformational State of the NDR Kinase Warts. Dev Cell 2016; 35:737-49. [PMID: 26702832 DOI: 10.1016/j.devcel.2015.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
Abstract
Nuclear Dbf2-related (NDR) kinases play a central role in limiting growth in most animals. Signals that promote growth do so in part by suppressing the activation of NDR kinases by STE20/Hippo kinases. Here, we identify another mechanism for downregulating NDR kinase activity. Specifically, we show that activity of the Drosophila NDR kinase Warts in the developing wing depends on its transition from an inactive, "closed" conformation to a potentially active, "open" conformation mediated by Mats, a conserved Mps1-binder (Mob) protein. Further, we show that signaling interactions between the protocadherins Fat and Dachsous, organized by the morphogens Wingless and Decapentaplegic, suppress Warts by acting via the atypical myosin Dachs to inhibit or reverse this transition. The regulation of Warts conformation by Mats, Fat/Dachsous signaling, and Dachs appears independent of Warts phosphorylation by Hippo kinase, establishing a precedent for the control of NDR kinases, and hence growth, by distinct allosteric and phosphorylation mechanisms.
Collapse
Affiliation(s)
- Alina M Vrabioiu
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
57
|
Saavedra P, Brittle A, Palacios IM, Strutt D, Casal J, Lawrence PA. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila. Biol Open 2016; 5:397-408. [PMID: 26935392 PMCID: PMC4890672 DOI: 10.1242/bio.017152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
The epidermal patterns of all three larval instars (L1-L3) ofDrosophilaare made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Amy Brittle
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - David Strutt
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| |
Collapse
|
58
|
Sharp KA, Axelrod JD. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 2016; 5:229-36. [PMID: 26863941 PMCID: PMC4810745 DOI: 10.1242/bio.016162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
59
|
Pettinati V, Ambrosi D, Ciarletta P, Pezzuto S. Finite element simulations of the active stress in the imaginal disc of the Drosophila Melanogaster. Comput Methods Biomech Biomed Engin 2016; 19:1241-53. [PMID: 26765274 DOI: 10.1080/10255842.2015.1124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
During the larval stages of development, the imaginal disc of Drosphila Melanogaster is composed by a monolayer of epithelial cells, which undergo a strain actively produced by the cells themselves. The well-organized collective contraction produces a stress field that seemingly has a double morphogenetic role: it orchestrates the cellular organization towards the macroscopic shape emergence while simultaneously providing a local information on the organ size. Here we perform numerical simulations of such a mechanical control on morphogenesis at a continuum level, using a three-dimensional finite model that accounts for the active cell contraction. The numerical model is able to reproduce the (few) known qualitative characteristics of the tensional patterns within the imaginal disc of the fruit fly. The computed stress components slightly deviate from planarity, thus confirming the previous theoretical assumptions of a nonlinear elastic analytical model, and enforcing the hypothesis that the spatial variation of the mechanical stress may act as a size regulating signal that locally scales with the global dimension of the domain.
Collapse
Affiliation(s)
- V Pettinati
- a MOX-Politecnico di Milano , Milano , Italy .,b Fondazione CEN , Milano , Italy
| | - D Ambrosi
- a MOX-Politecnico di Milano , Milano , Italy
| | - P Ciarletta
- c Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert , Paris , France
| | - S Pezzuto
- d Faculty of Informatics, Institute of Computational Science , Università della Svizzera italiana , Lugano , Switzerland
| |
Collapse
|
60
|
Oriented cell division: new roles in guiding skin wound repair and regeneration. Biosci Rep 2015; 35:BSR20150225. [PMID: 26582817 PMCID: PMC4708010 DOI: 10.1042/bsr20150225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023] Open
Abstract
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.
Collapse
|
61
|
Decapentaplegic and growth control in the developing Drosophila wing. Nature 2015; 527:375-8. [DOI: 10.1038/nature15730] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/14/2015] [Indexed: 02/01/2023]
|
62
|
Hariharan IK. Organ Size Control: Lessons from Drosophila. Dev Cell 2015; 34:255-65. [PMID: 26267393 DOI: 10.1016/j.devcel.2015.07.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022]
Abstract
Of fundamental interest to biologists is how organs achieve a reproducible size during development. Studies of the developing Drosophila wing have provided many key insights that will help give a conceptual understanding of the process beyond the fly. In the wing, there is evidence for both "top-down" mechanisms, in which signals emanating from small subsets of cells direct global proliferation, and "bottom-up" mechanisms, in which the final size is an emergent property of local cell-cell interactions. Mechanical forces also appear to have an important role along with the Hippo pathway, which may integrate multiple types of inputs to regulate the extent of growth.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
63
|
Critical role for Fat/Hippo and IIS/Akt pathways downstream of Ultrabithorax during haltere specification in Drosophila. Mech Dev 2015; 138 Pt 2:198-209. [DOI: 10.1016/j.mod.2015.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
|
64
|
Ambegaonkar AA, Irvine KD. Coordination of planar cell polarity pathways through Spiny-legs. eLife 2015; 4. [PMID: 26505959 PMCID: PMC4764577 DOI: 10.7554/elife.09946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI:http://dx.doi.org/10.7554/eLife.09946.001 Animals have many asymmetric organs. Wings, for example, are aerodynamically shaped and have a clear front, back, top and bottom, and even additions to these organs, such as feathers on the wing, often need to be oriented in a specific manner. This kind of orientation arises when cells divide and grow asymmetrically in a flat plane. The asymmetry is established at the level of single cells when proteins are not equally spread throughout a cell, but rather asymmetrically distributed. Such cells are said to be ‘planar polarized’; and many experiments addressing this so-called planar cell polarity have been conducted in fruit flies, because they can be genetically altered easily. Previous studies have shown that two signaling pathways—called Frizzled and Dachsous-Fat—regulate how individual cells orient themselves within a flat sheet of cells that forms fruit fly’s wing. The two pathways are not independent, but it is unclear how they are linked. In particular, there has been conflicting evidence as to whether the Dachsous-Fat pathway controls the Frizzled pathway or whether the two act in parallel. Now, Ambegaonkar and Irvine have discovered new roles for a protein that is involved in both pathways, called 'Spiny-legs'. This protein was known to be important in the Frizzled pathway, but, when it was tracked with a fluorescent tag in developing wing cells it also accumulated in areas where two proteins that make up part of the Dachsous-Fat pathway were located. Biochemical experiments showed that both of these proteins (which are called Dachs or Dachsous) could physically interact with Spiny-legs. Ambegaonkar and Irvine therefore deleted the genes for Dachs or Dachsous in fruit flies and observed that Spiny-legs no longer organized itself in the proper way, implying that Dachs and Dachsous control where Spiny-legs goes within cells. When this analysis was extended to other fruit fly organs, such as the eyes, Ambegaonkar and Irvine found that Dachsous was more important than Dachs for the correct localization of Spiny-legs. Additionally, the Frizzled and Dachsous-Fat pathways seemed to compete for interactions with Spiny-legs. This connection between the two pathways helps to explain how cells behave when several different signals reach them. It also shows how different organs can reuse conserved components of the pathways to make different end products. Future studies should aim to work out the number of systems that polarize cells and how they are connected in different tissues. DOI:http://dx.doi.org/10.7554/eLife.09946.002
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
65
|
Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie. PLoS Biol 2015; 13:e1002274. [PMID: 26474042 PMCID: PMC4608745 DOI: 10.1371/journal.pbio.1002274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022] Open
Abstract
Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes—a phenomenon we term “nuclear seclusion.” Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability. From dwarves to giants, scaling is a universal property of animal organs, but its mechanistic basis is poorly understood. Here, the authors identify a molecular circuit underlying scaling of the Drosophila wing. What mechanisms control the sizes of animal organs? It is known that organ growth is the product of two systems: an intrinsic system that coordinates cell proliferation with the specification of cell fate (patterning), and an extrinsic system that synchronizes growth with nutrient levels. Developing organs integrate these two inputs to ensure that properly proportioned structures develop which are of the right scale to match overall body size. However, the mechanisms used to integrate these distinct growth control systems have remained largely mysterious. In this study, we have addressed how intrinsic and extrinsic systems combine to drive growth of the Drosophila wing. Focusing on the Target of Rapamycin (TOR) pathway—a major, nutrient-dependent regulator of organ growth—and Yorkie—the transcriptional activator downstream of the Hippo pathway and a key, organ-intrinsic growth regulator—we have identified a circuit in which TOR activity limits Yorkie’s capacity to promote wing growth, in part through a novel mode of transcription factor regulation that we term “nuclear seclusion.” We find that inhibiting TOR leads to the retention of Yorkie in the nucleus but diminishes its transcriptional activity by diverting it away from target genes. We posit that subjugating Yorkie in this way contributes to how fluctuations in TOR activity scale wing size according to nutrient levels.
Collapse
|
66
|
Gotoh H, Hust JA, Miura T, Niimi T, Emlen DJ, Lavine LC. The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Dev Dyn 2015; 244:1039-1045. [DOI: 10.1002/dvdy.24296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hiroki Gotoh
- Graduate School of Bioagricultural Sciences, Nagoya University; Chikusa Nagoya Japan
| | - James A. Hust
- Department of Entomology; Washington State University; Pullman Washington
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University; Sapporo Hokkaido Japan
| | - Teruyuki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University; Chikusa Nagoya Japan
| | - Douglas J. Emlen
- Division of Biological Sciences; University of Montana-Missoula; Montana
| | - Laura C. Lavine
- Department of Entomology; Washington State University; Pullman Washington
| |
Collapse
|
67
|
Etournay R, Popović M, Merkel M, Nandi A, Blasse C, Aigouy B, Brandl H, Myers G, Salbreux G, Jülicher F, Eaton S. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 2015; 4:e07090. [PMID: 26102528 PMCID: PMC4574473 DOI: 10.7554/elife.07090] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/18/2015] [Indexed: 11/21/2022] Open
Abstract
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing.
Collapse
Affiliation(s)
- Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Amitabha Nandi
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoît Aigouy
- Institut de Biologie du Développement de Marseille, Marseille, France
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Lincoln's Inn Fields Laboratories, The Francis Crick Institute, London, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
68
|
González-Morales N, Géminard C, Lebreton G, Cerezo D, Coutelis JB, Noselli S. The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila. Dev Cell 2015; 33:675-89. [PMID: 26073018 DOI: 10.1016/j.devcel.2015.04.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022]
Abstract
Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry.
Collapse
Affiliation(s)
- Nicanor González-Morales
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Charles Géminard
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Gaëlle Lebreton
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Delphine Cerezo
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Jean-Baptiste Coutelis
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France
| | - Stéphane Noselli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France; Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France; Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France.
| |
Collapse
|
69
|
Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb Perspect Biol 2015; 7:7/6/a019224. [PMID: 26032720 DOI: 10.1101/cshperspect.a019224] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell-cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved.
Collapse
|
70
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
71
|
Galic M, Matis M. Polarized trafficking provides spatial cues for planar cell polarization within a tissue. Bioessays 2015; 37:678-86. [PMID: 25845311 DOI: 10.1002/bies.201400196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Planar cell polarity, the polarization of cells within the plane of the epithelium, orthogonal to the apical-basal axis, is essential for a growing list of developmental events, and - over the last 15 years - has evolved from a little-studied curiosity in Drosophila to the subject of a substantial research enterprise. In that time, it has been recognized that two molecular systems are responsible for polarization of most tissues: Both the "core" Frizzled system and the "global" Fat/Dachsous/Four-jointed system produce molecular asymmetry within cells, and contribute to morphological polarization. In this review, we discuss recent findings on the molecular mechanism that links "global" directional signals with local coordinated polarity.
Collapse
Affiliation(s)
- Milos Galic
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Cell Biology, ZMBE, University of Münster, Germany
| |
Collapse
|
72
|
Matamoro-Vidal A, Salazar-Ciudad I, Houle D. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Dev Dyn 2015; 244:1058-1073. [PMID: 25619644 DOI: 10.1002/dvdy.24255] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. Developmental Dynamics 244:1058-1073, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.,Center of Excellence in Experimental and Computational Developmental Biology, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
73
|
Gokhale RH, Shingleton AW. Size control: the developmental physiology of body and organ size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:335-56. [PMID: 25808999 DOI: 10.1002/wdev.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
Abstract
The developmental regulation of final body and organ size is fundamental to generating a functional and correctly proportioned adult. Research over the last two decades has identified a long list of genes and signaling pathways that, when perturbed, influence final body size. However, body and organ size are ultimately a characteristic of the whole organism, and how these myriad genes and pathways function within a physiological context to control size remains largely unknown. In this review, we first describe the major size-regulatory signaling pathways: the Insulin/IGF-, RAS/RAF/MAPK-, TOR-, Hippo-, and JNK-signaling pathways. We then explore what is known of how these pathways regulate five major aspects of size regulation: growth rate, growth duration, target size, negative growth and growth coordination. While this review is by no means exhaustive, our goal is to provide a conceptual framework for integrating the mechanisms of size control at a molecular-genetic level with the mechanisms of size control at a physiological level.
Collapse
Affiliation(s)
- Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, Lake Forest, IL, USA.,Department of Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
74
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
75
|
Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci U S A 2015; 112:1785-90. [PMID: 25624491 DOI: 10.1073/pnas.1420850112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Collapse
|
76
|
Wang LH, Baker NE. Salvador-Warts-Hippo pathway in a developmental checkpoint monitoring helix-loop-helix proteins. Dev Cell 2015; 32:191-202. [PMID: 25579975 DOI: 10.1016/j.devcel.2014.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 10/16/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
The E proteins and Id proteins are, respectively, the positive and negative heterodimer partners for the basic-helix-loop-helix protein family and as such contribute to a remarkably large number of cell-fate decisions. E proteins and Id proteins also function to inhibit or promote cell proliferation and cancer. Using a genetic modifier screen in Drosophila, we show that the Id protein Extramacrochaetae enables growth by suppressing activation of the Salvador-Warts-Hippo pathway of tumor suppressors, activation that requires transcriptional activation of the expanded gene by the E protein Daughterless. Daughterless protein binds to an intronic enhancer in the expanded gene, both activating the SWH pathway independently of the transmembrane protein Crumbs and bypassing the negative feedback regulation that targets the same expanded enhancer. Thus, the Salvador-Warts-Hippo pathway has a cell-autonomous function to prevent inappropriate differentiation due to transcription factor imbalance and monitors the intrinsic developmental status of progenitor cells, distinct from any responses to cell-cell interactions.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
77
|
Tug of war--the influence of opposing physical forces on epithelial cell morphology. Dev Biol 2015; 401:92-102. [PMID: 25576028 DOI: 10.1016/j.ydbio.2014.12.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 01/13/2023]
Abstract
The shape of a single animal cell is determined both by its internal cytoskeleton and through physical interactions with its environment. In a tissue context, this extracellular environment is made up largely of other cells and the extracellular matrix. As a result, the shape of cells residing within an epithelium will be determined both by forces actively generated within the cells themselves and by their deformation in response to forces generated elsewhere in the tissue as they propagate through cell-cell junctions. Together these complex patterns of forces combine to drive epithelial tissue morphogenesis during both development and homeostasis. Here we review the role of both active and passive cell shape changes and mechanical feedback control in tissue morphogenesis in different systems.
Collapse
|
78
|
Zhang H, Li C, Chen H, Wei C, Dai F, Wu H, Dui W, Deng WM, Jiao R. SCF(Slmb) E3 ligase-mediated degradation of Expanded is inhibited by the Hippo pathway in Drosophila. Cell Res 2014; 25:93-109. [PMID: 25522691 DOI: 10.1038/cr.2014.166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/13/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022] Open
Abstract
Deregulation of the evolutionarily conserved Hippo pathway has been implicated in abnormal development of animals and in several types of cancer. One mechanism of Hippo pathway regulation is achieved by controlling the stability of its regulatory components. However, the executive E3 ligases that are involved in this process, and how the process is regulated, remain poorly defined. In this study, we identify, through a genetic candidate screen, the SCF(Slmb) E3 ligase as a novel negative regulator of the Hippo pathway in Drosophila imaginal tissues via mediation of the degradation of Expanded (Ex). Mechanistic study shows that Slmb-mediated degradation of Ex is inhibited by the Hippo signaling. Considering the fact that Hippo signaling suppresses the transcription of ex, we propose that the Hippo pathway employs a double security mechanism to ensure fine-tuned homeostasis during development.
Collapse
Affiliation(s)
- Hongtao Zhang
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Changqing Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | - Hanqing Chen
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Chuanxian Wei
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Fei Dai
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Honggang Wu
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Wen Dui
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida 32304-4295, USA
| | - Renjie Jiao
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, Guangdong 510182, China
| |
Collapse
|
79
|
Rodrigues-Campos M, Thompson BJ. The ubiquitin ligase FbxL7 regulates the Dachsous-Fat-Dachs system in Drosophila. Development 2014; 141:4098-103. [PMID: 25256343 PMCID: PMC4302899 DOI: 10.1242/dev.113498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The atypical cadherins Dachsous (Ds) and Fat (Ft) are required to control the size and shape of tissues and organs in animals. In Drosophila, a key effector of Ds and Ft is the atypical myosin Dachs, which becomes planar polarised along the proximal-distal axis in developing epithelia to regulate tissue size via the Hippo pathway and tissue shape via modulating tension at junctions. How Ds and Ft control Dachs polarisation remains unclear. Here, we identify a ubiquitin ligase, FbxL7, as a novel component of the Ds-Ft-Dachs system that is required to control the level and localisation of Dachs. Loss of FbxL7 results in accumulation of Dachs, similar to loss of Ft. Overexpression of FbxL7 causes downregulation of Dachs, similar to overexpression of the Ft intracellular domain. In addition to regulating Dachs, FbxL7 also influences Ds in a similar manner. GFP-tagged FbxL7 localises to the plasma membrane in a Ft-dependent manner and is planar polarised. We propose that Ft recruits FbxL7 to the proximal side of the cell to help restrict Ds and Dachs to the distal side of the cell.
Collapse
Affiliation(s)
- Mariana Rodrigues-Campos
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK GABBA, ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Barry J Thompson
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
80
|
Buchmann A, Alber M, Zartman JJ. Sizing it up: The mechanical feedback hypothesis of organ growth regulation. Semin Cell Dev Biol 2014; 35:73-81. [DOI: 10.1016/j.semcdb.2014.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/28/2022]
|
81
|
Restrepo S, Zartman JJ, Basler K. Coordination of patterning and growth by the morphogen DPP. Curr Biol 2014; 24:R245-55. [PMID: 24650915 DOI: 10.1016/j.cub.2014.01.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The elegance of animal body plans derives from an intimate connection between function and form, which during organ formation is linked to patterning and growth. Yet, how patterning and growth are coordinated still remains largely a mystery. To study this question the Drosophila wing imaginal disc, an epithelial primordial organ that later forms the adult wing, has proven to be an invaluable and versatile model. Wing disc development is organized around a coordinate system provided by morphogens such as the TGF-β homolog Decapentaplegic (DPP). The function of DPP has been studied at multiple levels: ranging from the kinetics of gradient formation to the establishment and maintenance of target gene domains as well as DPP's role in growth control. Here, we focus on recent publications that both enrich our view of DPP signaling but also highlight outstanding questions of how DPP coordinates patterning and growth during development.
Collapse
Affiliation(s)
- Simon Restrepo
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| |
Collapse
|
82
|
Sadeqzadeh E, de Bock CE, O'Donnell MR, Timofeeva A, Burns GF, Thorne RF. FAT1 cadherin is multiply phosphorylated on its ectodomain but phosphorylation is not catalysed by the four-jointed homologue. FEBS Lett 2014; 588:3511-7. [PMID: 25150169 DOI: 10.1016/j.febslet.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023]
Abstract
The interaction between the Drosophila cadherins fat and dachsous is regulated by phosphorylation of their respective ectodomains, a process catalysed by the atypical kinase four-jointed. Given that many signalling functions are conserved between Drosophila and vertebrate Fat cadherins, we sought to determine whether ectodomain phosphorylation is conserved in FAT1 cadherin, and also whether FJX1, the vertebrate orthologue of four-jointed, was involved in such phosphorylation events. Potential Fj consensus phosphorylation motifs were identified in FAT1 and biochemical experiments revealed the presence of phosphoserine and phosphothreonine residues in its extracellular domain. However, silencing FJX1 did not influence the levels of FAT1 ectodomain phosphorylation, indicating that other mechanisms are likely responsible.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Charles E de Bock
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maureen R O'Donnell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anna Timofeeva
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gordon F Burns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| |
Collapse
|
83
|
Eaton S, Martin-Belmonte F. Cargo sorting in the endocytic pathway: a key regulator of cell polarity and tissue dynamics. Cold Spring Harb Perspect Biol 2014; 6:a016899. [PMID: 25125399 DOI: 10.1101/cshperspect.a016899] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. Epithelial cells polarize along two fundamental axes, the apicobasal and the planar, both depending on finely regulated protein trafficking mechanisms. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network or endosomes. This exocytic trafficking has been identified as essential for proper epithelial polarization. Accumulating evidence now reveals that endocytosis and endocytic recycling play an equally important role in epithelial polarization and the appropriate localization of key polarity proteins. Here, we review recent work in metazoan systems illuminating the connections between endocytosis, postendocytic trafficking, and cell polarity, both apicobasal and planar, in the formation of differentiated epithelial cells, and how these processes regulate tissue dynamics.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
84
|
Matis M, Russler-Germain DA, Hu Q, Tomlin CJ, Axelrod JD. Microtubules provide directional information for core PCP function. eLife 2014; 3:e02893. [PMID: 25124458 PMCID: PMC4151085 DOI: 10.7554/elife.02893] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI:http://dx.doi.org/10.7554/eLife.02893.001 Almost all cells exhibit some sort of polarity: the epithelial cells that line the digestive tract, for example, have an apical domain, which faces out, and a basal domain, which faces the tissue underneath. Some epithelial cells also exhibit planar cell polarity: this involves key structures within the cell being oriented along an axis within the plane of an epithelium. Disruption of planar cell polarity is associated with various developmental defects. It is known that the planar polarity of epithelial cells relies on two molecular complexes—a ‘core’ complex and a signaling complex called the Ft/Ds/Fj system—working together. While each of these complexes contributes to whole tissues having the correct polarity, the way they interact to achieve this is not fully understood. Now, by studying epithelial cells in the wings of fruit flies, Matis et al. have provided evidence for a specific model for this interaction. The process starts with the Ft/Ds/Fj signaling complex, which orients structures called microtubules inside the cell. Microtubules are involved in providing structural support for cells, and also in the transport of organelles within cells. Once the microtubules are oriented in the correct direction, they help to orient the core complex by moving some of the proteins that make up this complex in a specified direction. An important future challenge will be to understand how the proteins in the Ft/Ds/Fj system interact with microtubules to give them their orientation. DOI:http://dx.doi.org/10.7554/eLife.02893.002
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | | | - Qie Hu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Claire J Tomlin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
85
|
Bosch JA, Sumabat TM, Hafezi Y, Pellock BJ, Gandhi KD, Hariharan IK. The Drosophila F-box protein Fbxl7 binds to the protocadherin fat and regulates Dachs localization and Hippo signaling. eLife 2014; 3:e03383. [PMID: 25107277 PMCID: PMC4144329 DOI: 10.7554/elife.03383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization. DOI:http://dx.doi.org/10.7554/eLife.03383.001 Multi-cellular organisms are made up of cells that are organized into tissues and organs that reach a predictable size and shape at the end of their development. To do this, cells must be able to sense their position and orientation within the body and know when to stop growing. Epithelial cells—which make up the outer surface of an animal's body and line the cavities of its internal organs—connect to each other to form flat sheets. These sheets of cells contain structures that are oriented along the plane of the sheet. However, how this so-called ‘planar cell polarity’ coordinates with cell growth in order to build complex tissues and organs remains to be discovered. A protein called Fat is a major player in both planar cell polarity and the Hippo signaling pathway, which controls cell growth. As such, the Fat protein appears to be crucial for controlling the size and shape of organs. Mutations in the Fat protein cause massive tissue overgrowth, prevent planar cell polarity being established correctly, and stop the legs and wings of fruit flies developing normally. The Fat protein also plays a role in distributing another protein called Dachs—which is also part of the Hippo signaling pathway. In epithelial cells of the developing wing, Dachs is mostly located on the side of the cell that is closest to the tip of the developing wing (the so-called ‘distal surface’). How Fat and Dachs work together is not understood, but it is known that they do not bind to each other directly. Now, Bosch et al. show that in the fruit fly Drosophila, the Fat protein binds to another protein called Fbxl7. Flies that cannot produce working Fbxl7 have defects in some aspects of planar cell polarity and a modest increase in tissue growth. Fbxl7 seems to account for part, but not all, of the ability of Fat to restrict tissue growth. Furthermore, a lack of the Fbxl7 protein results in a spreading of Dachs protein across the apical surface—which faces out of the epithelial sheet—of epithelial cells. On the other hand, if Fbxl7 is over-expressed, Dachs is driven to the interior of each cell. Hence, a normal level of Fbxl7 protein restricts the Dachs protein to the correct parts of the cell surface. Together, the findings of Bosch et al. show that the Fbxl7 protein is a key link between the Fat and Dachs proteins. These results also provide an understanding of how growth and planar cell polarity—two processes that are essential for normal development of all multi-cellular organisms—are coordinated. DOI:http://dx.doi.org/10.7554/eLife.03383.002
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Taryn M Sumabat
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yassi Hafezi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Brett J Pellock
- Department of Biology, Providence College, Providence, United States
| | - Kevin D Gandhi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
86
|
Nestor-Bergmann A, Goddard G, Woolner S. Force and the spindle: mechanical cues in mitotic spindle orientation. Semin Cell Dev Biol 2014; 34:133-9. [PMID: 25080021 PMCID: PMC4169662 DOI: 10.1016/j.semcdb.2014.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts.
Collapse
Affiliation(s)
| | - Georgina Goddard
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Sarah Woolner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
87
|
Averbukh I, Ben-Zvi D, Mishra S, Barkai N. Scaling morphogen gradients during tissue growth by a cell division rule. Development 2014; 141:2150-6. [PMID: 24803660 DOI: 10.1242/dev.107011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morphogen gradients guide the patterning of tissues and organs during the development of multicellular organisms. In many cases, morphogen signaling is also required for tissue growth. The consequences of this interplay between growth and patterning are not well understood. In the Drosophila wing imaginal disc, the morphogen Dpp guides patterning and is also required for tissue growth. In particular, it was recently reported that cell division in the disc correlates with the temporal increase in Dpp signaling. Here we mathematically model morphogen gradient formation in a growing tissue, accounting also for morphogen advection and dilution. Our analysis defines a new scaling mechanism, which we term the morphogen-dependent division rule (MDDR): when cell division depends on the temporal increase in morphogen signaling, the morphogen gradient scales with the growing tissue size, tissue growth becomes spatially uniform and the tissue naturally attains a finite size. This model is consistent with many properties of the wing disc. However, we find that the MDDR is not consistent with the phenotype of scaling-defective mutants, supporting the view that temporal increase in Dpp signaling is not the driver of cell division during late phases of disc development. More generally, our results show that local coupling of cell division with morphogen signaling can lead to gradient scaling and uniform growth even in the absence of global feedbacks. The MDDR scaling mechanism might be particularly beneficial during rapid proliferation, when global feedbacks are hard to implement.
Collapse
Affiliation(s)
- Inna Averbukh
- Department of Molecular genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
88
|
Spindle orientation processes in epithelial growth and organisation. Semin Cell Dev Biol 2014; 34:124-32. [PMID: 24997348 DOI: 10.1016/j.semcdb.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/08/2023]
Abstract
This review focuses on the role of orientated cell division (OCD) in two aspects of epithelial growth, namely layer formation and growth in the epithelial plane. Epithelial stratification is invariably associated with fate asymmetric cell divisions. We discuss this through the example of epidermal stratification where cell division plane regulation facilitates concomitant thickening and cell differentiation. Embryonic neuroepithelia are considered as a special case of epithelial stratification. We highlight early ectodermal layer specification, which sets the epidermal versus neuronal fates, as well as later neurogenesis in vertebrates and mammals. We also discuss the heart epicardium as an example of coordinating OCDs with delamination and subsequent differentiation. Epithelial planar growth is examined both in the context of uniform growth, such as in Xenopus epiboly, the Drosophila wing disc and the mammalian intestinal crypt as well as in anisotropic growth, or elongation, such as Drosophila and vertebrate axial elongation and the mouse palate. Coupling between growth perpendicular to and within epithelial planes is recognised, but so are exceptions, as is the often passive role of spindle orientation sometimes hitherto considered to be an active driver of directional growth.
Collapse
|
89
|
Ayukawa T, Akiyama M, Mummery-Widmer JL, Stoeger T, Sasaki J, Knoblich JA, Senoo H, Sasaki T, Yamazaki M. Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep 2014; 8:610-21. [PMID: 24998533 DOI: 10.1016/j.celrep.2014.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/09/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
In Drosophila, planar cell polarity (PCP) molecules such as Dachsous (Ds) may function as global directional cues directing the asymmetrical localization of PCP core proteins such as Frizzled (Fz). However, the relationship between Ds asymmetry and Fz localization in the eye is opposite to that in the wing, thereby causing controversy regarding how these two systems are connected. Here, we show that this relationship is determined by the ratio of two Prickle (Pk) isoforms, Pk and Spiny-legs (Sple). Pk and Sple form different complexes with distinct subcellular localizations. When the amount of Sple is increased in the wing, Sple induces a reversal of PCP using the Ds-Ft system. A mathematical model demonstrates that Sple is the key regulator connecting Ds and the core proteins. Our model explains the previously noted discrepancies in terms of the differing relative amounts of Sple in the eye and wing.
Collapse
Affiliation(s)
- Tomonori Ayukawa
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan; Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Global COE program, Gunma University and Akita University, Akita 010-8543, Japan
| | - Masakazu Akiyama
- Research Institute for Electronic Science, Hokkaido University, Hokkaido 060-0812, Japan
| | - Jennifer L Mummery-Widmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Thomas Stoeger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Junko Sasaki
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takehiko Sasaki
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan; Global COE program, Gunma University and Akita University, Akita 010-8543, Japan; Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Masakazu Yamazaki
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan; Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Global COE program, Gunma University and Akita University, Akita 010-8543, Japan.
| |
Collapse
|
90
|
Olofsson J, Sharp KA, Matis M, Cho B, Axelrod JD. Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity. Development 2014; 141:2866-74. [PMID: 25005476 PMCID: PMC4197621 DOI: 10.1242/dev.105932] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/19/2014] [Indexed: 01/25/2023]
Abstract
Microtubules (MTs) are substrates upon which plus- and minus-end directed motors control the directional movement of cargos that are essential for generating cell polarity. Although centrosomal MTs are organized with plus-ends away from the MT organizing center, the regulation of non-centrosomal MT polarity is poorly understood. Increasing evidence supports the model that directional information for planar polarization is derived from the alignment of a parallel apical network of MTs and the directional MT-dependent trafficking of downstream signaling components. The Fat/Dachsous/Four-jointed (Ft/Ds/Fj) signaling system contributes to orienting those MTs. In addition to previously defined functions in promoting asymmetric subcellular localization of 'core' planar cell polarity (PCP) proteins, we find that alternative Prickle (Pk-Sple) protein isoforms control the polarity of this MT network. This function allows the isoforms of Pk-Sple to differentially determine the direction in which asymmetry is established and therefore, ultimately, the direction of tissue polarity. Oppositely oriented signals that are encoded by oppositely oriented Fj and Ds gradients produce the same polarity outcome in different tissues or compartments, and the tissue-specific activity of alternative Pk-Sple protein isoforms has been observed to rectify the interpretation of opposite upstream directional signals. The control of MT polarity, and thus the directionality of apical vesicle traffic, by Pk-Sple provides a mechanism for this rectification.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Maja Matis
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
91
|
O'Keefe DD, Thomas S, Edgar BA, Buttitta L. Temporal regulation of Dpp signaling output in the Drosophila wing. Dev Dyn 2014; 243:818-32. [PMID: 24591046 DOI: 10.1002/dvdy.24122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The Decapentaplegic (Dpp) signaling pathway is used in many developmental and homeostatic contexts, each time resulting in cellular responses particular to that biological niche. The flexibility of Dpp signaling is clearly evident in epithelial cells of the Drosophila wing imaginal disc. During larval stages of development, Dpp functions as a morphogen, patterning the wing developmental field and stimulating tissue growth. A short time later, however, as wing-epithelial cells exit the cell cycle and begin to differentiate, Dpp is a critical determinant of vein-cell fate. It is likely that the Dpp signaling pathway regulates different sets of target genes at these two developmental time points. RESULTS To identify mechanisms that temporally control the transcriptional output of Dpp signaling in this system, we have taken a gene expression profiling approach. We identified genes affected by Dpp signaling at late larval or early pupal developmental time points, thereby identifying patterning- and differentiation-specific downstream targets, respectively. CONCLUSIONS Analysis of target genes and transcription factor binding sites associated with these groups of genes revealed potential mechanisms by which target-gene specificity of the Dpp signaling pathway is temporally regulated. In addition, this approach revealed novel mechanisms by which Dpp affects the cellular differentiation of wing-veins.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | |
Collapse
|
92
|
Yoshida H, Bando T, Mito T, Ohuchi H, Noji S. An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system. Sci Rep 2014; 4:4335. [PMID: 24613915 PMCID: PMC3949298 DOI: 10.1038/srep04335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| | - Hideyo Ohuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| |
Collapse
|
93
|
Cao Y, White HD, Li XD. Drosophila myosin-XX functions as an actin-binding protein to facilitate the interaction between Zyx102 and actin. Biochemistry 2014; 53:350-60. [PMID: 24393048 DOI: 10.1021/bi401236c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.
Collapse
Affiliation(s)
- Yang Cao
- Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, China
| | | | | |
Collapse
|
94
|
Abstract
In many animals, regenerative processes can replace lost body parts. Organ and tissue regeneration consequently also hold great medical promise. The regulation of regenerative processes is achieved through concerted actions of multiple organizational levels of the organism, from diffusing molecules and cellular gene expression patterns up to tissue mechanics. Our intuition is usually not adapted well to this degree of complexity and the quantitative aspects of the regulation of regenerative processes remain poorly understood. One way out of this dilemma lies in the combination of experimentation and mathematical modeling within an iterative process of model development/refinement, model predictions for novel experimental conditions, quantitative experiments testing these predictions, and subsequent model refinement. This interdisciplinary approach has already provided key insights into smaller scale processes during embryonic development and a so-far limited number of more complex regeneration processes. This review discusses selected theoretical and interdisciplinary studies and is structured along the three phases of regeneration: (1) initiation of a regeneration response, (2) tissue patterning during regenerate growth, (3) arresting the regeneration response. Moreover, we highlight the opportunities provided by extensions of mathematical models from developmental processes toward the study of related regenerative processes.
Collapse
Affiliation(s)
- Osvaldo Chara
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
95
|
Abstract
Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/β-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities.
Collapse
Affiliation(s)
- Gongping Sun
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
96
|
Abstract
Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
97
|
Collective polarization model for gradient sensing via Dachsous-Fat intercellular signaling. Proc Natl Acad Sci U S A 2013; 110:20420-5. [PMID: 24282293 DOI: 10.1073/pnas.1307459110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dachsous-Fat signaling via the Hippo pathway influences proliferation during Drosophila development, and some of its mammalian homologs are tumor suppressors, highlighting its role as a universal growth regulator. The Fat/Hippo pathway responds to morphogen gradients and influences the in-plane polarization of cells and orientation of divisions, linking growth with tissue patterning. Remarkably, the Fat pathway transduces a growth signal through the polarization of transmembrane complexes that responds to both morphogen level and gradient. Dissection of these complex phenotypes requires a quantitative model that provides a systematic characterization of the pathway. In the absence of detailed knowledge of molecular interactions, we take a phenomenological approach that considers a broad class of simple models, which are sufficiently constrained by observations to enable insight into possible mechanisms. We predict two modes of local/cooperative interactions among Fat-Dachsous complexes, which are necessary for the collective polarization of tissues and enhanced sensitivity to weak gradients. Collective polarization convolves level and gradient of input signals, reproducing known phenotypes while generating falsifiable predictions. Our construction of a simplified signal transduction map allows a generalization of the positional value model and emphasizes the important role intercellular interactions play in growth and patterning of tissues.
Collapse
|
98
|
Abstract
The Hippo pathway is a kinase cascade, formed by Hippo, Salvador, Warts, and Mats, that regulates the subcellular distribution and transcriptional activity of Yorkie. Yorkie is a transcriptional coactivator that promotes the expression of genes that inhibit apoptosis and drive cell proliferation. We review recent studies indicating that activity of the Hippo pathway is controlled by cell-cell junctions, cell adhesion molecules, scaffolding proteins, and cytoskeletal proteins, as well as by regulators of apical-basal polarity and extracellular tension.
Collapse
Affiliation(s)
- Leonie Enderle
- 1Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
99
|
Abstract
Wounding, apoptosis, or infection can trigger a proliferative response in neighboring cells to replace damaged tissue. Studies in Drosophila have implicated c-Jun amino-terminal kinase (JNK)-dependent activation of Yorkie (Yki) as essential to regeneration-associated growth, as well as growth associated with neoplastic tumors. Yki is a transcriptional coactivator that is inhibited by Hippo signaling, a conserved pathway that regulates growth. We identified a conserved mechanism by which JNK regulated Hippo signaling. Genetic studies in Drosophila identified Jub (also known as Ajuba LIM protein) as required for JNK-mediated activation of Yki and showed that Jub contributed to wing regeneration after wounding and to tumor growth. Biochemical studies revealed that JNK promoted the phosphorylation of Ajuba family proteins in both Drosophila and mammalian cells. Binding studies in mammalian cells indicated that JNK increased binding between the Ajuba family proteins LIMD1 or WTIP and LATS1, a kinase within the Hippo pathway that inhibits the Yki homolog YAP. Moreover, JNK promoted binding of LIMD1 and LATS1 through direct phosphorylation of LIMD1. These results identify Ajuba family proteins as a conserved link between JNK and Hippo signaling, and imply that JNK increases Yki and YAP activity by promoting the binding of Ajuba family proteins to Warts and LATS.
Collapse
Affiliation(s)
- Gongping Sun
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
100
|
Riquiqui and minibrain are regulators of the hippo pathway downstream of Dachsous. Nat Cell Biol 2013; 15:1176-85. [PMID: 23955303 DOI: 10.1038/ncb2829] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
The atypical cadherins Fat (Ft) and Dachsous (Ds) control tissue growth through the Salvador-Warts-Hippo (SWH) pathway, and also regulate planar cell polarity and morphogenesis. Ft and Ds engage in reciprocal signalling as both proteins can serve as receptor and ligand for each other. The intracellular domains (ICDs) of Ft and Ds regulate the activity of the key SWH pathway transcriptional co-activator protein Yorkie (Yki). Signalling from the FtICD is well characterized and controls tissue growth by regulating the abundance of the Yki-repressive kinase Warts (Wts). Here we identify two regulators of the Drosophila melanogaster SWH pathway that function downstream of the DsICD: the WD40 repeat protein Riquiqui (Riq) and the DYRK-family kinase Minibrain (Mnb). Ds physically interacts with Riq, which binds to both Mnb and Wts. Riq and Mnb promote Yki-dependent tissue growth by stimulating phosphorylation-dependent inhibition of Wts. Thus, we describe a previously unknown branch of the SWH pathway that controls tissue growth downstream of Ds.
Collapse
|