51
|
van der Zee M, Benton MA, Vazquez-Faci T, Lamers GEM, Jacobs CGC, Rabouille C. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum. Development 2015; 142:2173-83. [DOI: 10.1242/dev.097113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2015] [Indexed: 01/24/2023]
Abstract
In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophilamelanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe cellularization in the beetle Tribolium castaneum, the embryos of which exhibit a thin blastoderm of cuboidal cells, like most insects. Using immunohistochemistry, live imaging and transmission electron microscopy, we describe several striking differences to cellularization in Drosophila, including the formation of junctions between the forming basal membrane and the yolk plasmalemma. To identify the nature of this novel junction, we used the parental RNAi technique for a small-scale screen of junction proteins. We find that maternal knockdown of Triboliuminnexin7a (Tc-inx7a), an ortholog of the Drosophila gap junction gene Innexin 7, leads to failure of cellularization. In Inx7a-depleted eggs, the invaginated plasma membrane retracts when basal cell closure normally begins. Furthermore, transiently expressed tagged Inx7a localizes to the nascent basal membrane of the forming cells in wild-type eggs. We propose that Inx7a forms the newly identified junctions that stabilize the forming basal membrane and enable basal cell closure. We put forward Tribolium as a model for studying a more ancestral mode of cellularization in insects.
Collapse
Affiliation(s)
- Maurijn van der Zee
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Matthew A. Benton
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Tania Vazquez-Faci
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Gerda E. M. Lamers
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Chris G. C. Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Department of Cell Biology, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
52
|
Coneva V, Chitwood DH. Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae. FRONTIERS IN PLANT SCIENCE 2015; 6:287. [PMID: 25964794 PMCID: PMC4408836 DOI: 10.3389/fpls.2015.00287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Multicellularity has independently evolved numerous times throughout the major lineages of life. Often, multicellularity can enable complex, macroscopic organismal architectures but it is not required for the elaboration of morphology. Several alternative cellular strategies have arisen as solutions permitting exquisite forms. The green algae class Ulvophyceae, for example, contains truly multicellular organisms, as well as macroscopic siphonous cells harboring one or multiple nuclei, and siphonocladous species, which are multinucleate and multicellular. These diverse cellular organizations raise a number of questions about the evolutionary and molecular mechanisms underlying complex organismal morphology in the green plants. Importantly, how does morphological patterning arise in giant coenocytes, and do nuclei, analogous to cells in multicellular organisms, take on distinct somatic and germline identities? Here, we comparatively explore examples of patterning and differentiation in diverse coenocytic and single-cell organisms and discuss possible mechanisms of development and nuclear differentiation in the siphonous algae.
Collapse
Affiliation(s)
| | - Daniel H. Chitwood
- *Correspondence: Daniel H. Chitwood, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
53
|
Wessel AD, Gumalla M, Grosshans J, Schmidt CF. The mechanical properties of early Drosophila embryos measured by high-speed video microrheology. Biophys J 2015; 108:1899-907. [PMID: 25902430 PMCID: PMC4407248 DOI: 10.1016/j.bpj.2015.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/18/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
In early development, Drosophila melanogaster embryos form a syncytium, i.e., multiplying nuclei are not yet separated by cell membranes, but are interconnected by cytoskeletal polymer networks consisting of actin and microtubules. Between division cycles 9 and 13, nuclei and cytoskeleton form a two-dimensional cortical layer. To probe the mechanical properties and dynamics of this self-organizing pre-tissue, we measured shear moduli in the embryo by high-speed video microrheology. We recorded position fluctuations of injected micron-sized fluorescent beads with kHz sampling frequencies and characterized the viscoelasticity of the embryo in different locations. Thermal fluctuations dominated over nonequilibrium activity for frequencies between 0.3 and 1000 Hz. Between the nuclear layer and the yolk, the cytoplasm was homogeneous and viscously dominated, with a viscosity three orders of magnitude higher than that of water. Within the nuclear layer we found an increase of the elastic and viscous moduli consistent with an increased microtubule density. Drug-interference experiments showed that microtubules contribute to the measured viscoelasticity inside the embryo whereas actin only plays a minor role in the regions outside of the actin caps that are closely associated with the nuclei. Measurements at different stages of the nuclear division cycle showed little variation.
Collapse
Affiliation(s)
- Alok D Wessel
- Drittes Physikalisches Institut-Biophysik, Universitätsmedizin, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Maheshwar Gumalla
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Grosshans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christoph F Schmidt
- Drittes Physikalisches Institut-Biophysik, Universitätsmedizin, Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
54
|
Shahab J, Tiwari MD, Honemann-Capito M, Krahn MP, Wodarz A. Bazooka/PAR3 is dispensable for polarity in Drosophila follicular epithelial cells. Biol Open 2015; 4:528-41. [PMID: 25770183 PMCID: PMC4400595 DOI: 10.1242/bio.201410934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apico-basal polarity is the defining characteristic of epithelial cells. In Drosophila, apical membrane identity is established and regulated through interactions between the highly conserved Par complex (Bazooka/Par3, atypical protein kinase C and Par6), and the Crumbs complex (Crumbs, Stardust and PATJ). It has been proposed that Bazooka operates at the top of a genetic hierarchy in the establishment and maintenance of apico-basal polarity. However, there is still ambiguity over the correct sequence of events and cross-talk with other pathways during this process. In this study, we reassess this issue by comparing the phenotypes of the commonly used baz(4) and baz(815-8) alleles with those of the so far uncharacterized baz(XR11) and baz(EH747) null alleles in different Drosophila epithelia. While all these baz alleles display identical phenotypes during embryonic epithelial development, we observe strong discrepancies in the severity and penetrance of polarity defects in the follicular epithelium: polarity is mostly normal in baz(EH747) and baz(XR11) while baz(4) and baz(815) (-8) show loss of polarity, severe multilayering and loss of epithelial integrity throughout the clones. Further analysis reveals that the chromosomes carrying the baz(4) and baz(815-8) alleles may contain additional mutations that enhance the true baz loss-of-function phenotype in the follicular epithelium. This study clearly shows that Baz is dispensable for the regulation of polarity in the follicular epithelium, and that the requirement for key regulators of cell polarity is highly dependent on developmental context and cell type.
Collapse
Affiliation(s)
- Jaffer Shahab
- Stammzellbiologie, Institut für Anatomie und Zellbiologie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Manu D Tiwari
- Stammzellbiologie, Institut für Anatomie und Zellbiologie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany Molekulare Zellbiologie, Institut I für Anatomie, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany Cluster of Excellence - Cellular Stress Responses in Aging-associated Diseases, Joseph-Stelzmann-Str. 26, 50931 Köln, Germany
| | - Mona Honemann-Capito
- Stammzellbiologie, Institut für Anatomie und Zellbiologie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Michael P Krahn
- Stammzellbiologie, Institut für Anatomie und Zellbiologie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany Institut für Molekulare und Zelluläre Anatomie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Andreas Wodarz
- Stammzellbiologie, Institut für Anatomie und Zellbiologie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany Molekulare Zellbiologie, Institut I für Anatomie, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany Cluster of Excellence - Cellular Stress Responses in Aging-associated Diseases, Joseph-Stelzmann-Str. 26, 50931 Köln, Germany
| |
Collapse
|
55
|
Rikhy R, Mavrakis M, Lippincott-Schwartz J. Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo. Biol Open 2015; 4:301-11. [PMID: 25661871 PMCID: PMC4359736 DOI: 10.1242/bio.20149936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.
Collapse
Affiliation(s)
- Richa Rikhy
- Cell Biology and Metabolism Program, NICHD, NIH, Building 18T, 101, 18 Library Drive, Bethesda, MD, USA. Present address: Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Manos Mavrakis
- Institut de Biologie du Développement de Marseille, CNRS UMR7288, Aix-Marseille Université, 13288 Marseille, France
| | | |
Collapse
|
56
|
Kanca O, Ochoa-Espinosa A, Affolter M. IV. Tools and methods for studying cell migration and cell rearrangement in tissue and organ development. Methods 2014; 68:228-32. [PMID: 24631575 DOI: 10.1016/j.ymeth.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
A vast diversity of biological systems, ranging from prokaryotes to multicellular organisms, show cell migration behavior. Many of the basic cellular and molecular concepts in cell migration apply to diverse model organisms. Drosophila, with its vast repertoire of tools for imaging and for manipulation, is one of the favorite organisms to study cell migration. Moreover, distinct Drosophila tissues and organs offer diverse cell migration models that are amenable to live imaging and genetic manipulations. In this review, we will provide an overview of the fruit fly toolbox that is of particular interest for the analysis of cell migration. We provide examples to highlight how those tools were used in diverse migration systems, with an emphasis on tracheal morphogenesis, a process that combines morphogenesis with cell migration.
Collapse
Affiliation(s)
- Oguz Kanca
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
57
|
Iampietro C, Bergalet J, Wang X, Cody NAL, Chin A, Lefebvre FA, Douziech M, Krause HM, Lécuyer E. Developmentally regulated elimination of damaged nuclei involves a Chk2-dependent mechanism of mRNA nuclear retention. Dev Cell 2014; 29:468-81. [PMID: 24835465 DOI: 10.1016/j.devcel.2014.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/18/2013] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
The faithful execution of embryogenesis relies on the ability of organisms to respond to genotoxic stress and to eliminate defective cells that could otherwise compromise viability. In syncytial-stage Drosophila embryos, nuclei with excessive DNA damage undergo programmed elimination through an as-yet poorly understood process of nuclear fallout at the midblastula transition. We show that this involves a Chk2-dependent mechanism of mRNA nuclear retention that is induced by DNA damage and prevents the translation of specific zygotic mRNAs encoding key mitotic, cytoskeletal, and nuclear proteins required to maintain nuclear viability. For histone messages, we show that nuclear retention involves Chk2-mediated inactivation of the Drosophila stem loop binding protein (SLBP), the levels of which are specifically depleted in damaged nuclei following Chk2 phosphorylation, an event that contributes to nuclear fallout. These results reveal a layer of regulation within the DNA damage surveillance systems that safeguard genome integrity in eukaryotes.
Collapse
Affiliation(s)
- Carole Iampietro
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Julie Bergalet
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Xiaofeng Wang
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Neal A L Cody
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Ashley Chin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Fabio Alexis Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Mélanie Douziech
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
58
|
Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, Kress A, Brasselet S, Koenderink GH, Lecuit T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 2014; 16:322-34. [PMID: 24633326 DOI: 10.1038/ncb2921] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/23/2014] [Indexed: 11/09/2022]
Abstract
Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Yannick Azou-Gros
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Feng-Ching Tsai
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - José Alvarado
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - Aurélie Bertin
- 1] Institut Curie, CNRS UMR 168, 75231 Paris, France [2]
| | - Francois Iv
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Alla Kress
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | - Sophie Brasselet
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | | | - Thomas Lecuit
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| |
Collapse
|
59
|
Tubular endocytosis drives remodelling of the apical surface during epithelial morphogenesis in Drosophila. Nat Commun 2014; 4:2244. [PMID: 23921440 PMCID: PMC3753550 DOI: 10.1038/ncomms3244] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/04/2013] [Indexed: 11/23/2022] Open
Abstract
During morphogenesis, remodelling of cell shape requires the expansion or contraction of plasma membrane domains. Here we identify a mechanism underlying the restructuring of the apical surface during epithelial morphogenesis in Drosophila. We show that the retraction of villous protrusions and subsequent apical plasma membrane flattening is an endocytosis-driven morphogenetic process. Quantitation of endogenously tagged GFP::Rab5 dynamics reveals a massive increase in apical endocytosis that correlates with changes in apical morphology. This increase is accompanied by the formation of tubular plasma membrane invaginations that serve as platforms for the de novo generation of Rab5-positive endosomes. We identify the Rab5-effector Rabankyrin-5 as a regulator of this pathway and demonstrate that blocking dynamin activity results in the complete inhibition of tubular endocytosis, in the disappearance of Rab5 endosomes, and in the inhibition of surface flattening. These data collectively demonstrate a requirement for endocytosis in morphogenetic remodelling during epithelial development. During epithelial morphogenesis in Drosophila, the villous apical cell surface is flattened. Fabrowski et al. show that this flattening depends on a dramatic increase in endocytosis associated with the formation of tubular invaginations, revealing a role for membrane trafficking in morphological remodelling.
Collapse
|
60
|
Adam V. Phototransformable fluorescent proteins: which one for which application? Histochem Cell Biol 2014; 142:19-41. [PMID: 24522394 DOI: 10.1007/s00418-014-1190-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 01/10/2023]
Abstract
In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.
Collapse
Affiliation(s)
- Virgile Adam
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, F-38000, Grenoble, France,
| |
Collapse
|
61
|
Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 2013; 15:1269-81. [PMID: 24121526 PMCID: PMC3840581 DOI: 10.1038/ncb2856] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
Hedgehog (Hh) signalling is important in development, stem cell biology and disease. In a variety of tissues, Hh acts as a morphogen to regulate growth and cell fate specification. Several hypotheses have been proposed to explain morphogen movement, one of which is transport along filopodia-like protrusions called cytonemes. Here, we analyse the mechanism underlying Hh movement in the wing disc and the abdominal epidermis of Drosophila melanogaster. We show that, in both epithelia, cells generate cytonemes in regions of Hh signalling. These protrusions are actin-based and span several cell diameters. Various Hh signalling components localize to cytonemes, as well as to punctate structures that move along cytonemes and are probably exovesicles. Using in vivo imaging, we show that cytonemes are dynamic structures and that Hh gradient establishment correlates with cytoneme formation in space and time. Indeed, mutant conditions that affect cytoneme formation reduce both cytoneme length and Hh gradient length. Our results suggest that cytoneme-mediated Hh transport is the mechanistic basis for Hh gradient formation.
Collapse
Affiliation(s)
- Marcus Bischoff
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Ana-Citlali Gradilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Irene Seijo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Germán Andrés
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Carmen Rodríguez-Navas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Laura González-Méndez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Isabel Guerrero
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
62
|
Anderson CA, Eser U, Korndorf T, Borsuk ME, Skotheim JM, Gladfelter AS. Nuclear repulsion enables division autonomy in a single cytoplasm. Curr Biol 2013; 23:1999-2010. [PMID: 24094857 PMCID: PMC4085259 DOI: 10.1016/j.cub.2013.07.076] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/31/2013] [Accepted: 07/23/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Current models of cell-cycle control, based on classic studies of fused cells, predict that nuclei in a shared cytoplasm respond to the same CDK activities to undergo synchronous cycling. However, synchrony is rarely observed in naturally occurring syncytia, such as the multinucleate fungus Ashbya gossypii. In this system, nuclei divide asynchronously, raising the question of how nuclear timing differences are maintained despite sharing a common milieu. RESULTS We observe that neighboring nuclei are highly variable in division-cycle duration and that neighbors repel one another to space apart and demarcate their own cytoplasmic territories. The size of these territories increases as a nucleus approaches mitosis and can influence cycling rates. This nonrandom nuclear spacing is regulated by microtubules and is required for nuclear asynchrony, as nuclei that transiently come in very close proximity will partially synchronize. Sister nuclei born of the same mitosis are generally not persistent neighbors over their lifetimes yet remarkably retain similar division cycle times. This indicates that nuclei carry a memory of their birth state that influences their division timing and supports that nuclei subdivide a common cytosol into functionally distinct yet mobile compartments. CONCLUSIONS These findings support that nuclei use cytoplasmic microtubules to establish "cells within cells." Individual compartments appear to push against one another to compete for cytoplasmic territory and insulate the division cycle. This provides a mechanism by which syncytial nuclei can spatially organize cell-cycle signaling and suggests size control can act in a system without physical boundaries.
Collapse
Affiliation(s)
- Cori A. Anderson
- Department of Biological Sciences Dartmouth College Hanover, NH 03755
| | - Umut Eser
- Department of Applied Physics Stanford University Stanford, CA 94305
| | - Therese Korndorf
- Department of Biological Sciences Dartmouth College Hanover, NH 03755
| | - Mark E. Borsuk
- Thayer School of Engineering Dartmouth College Hanover, NH 03755
| | - Jan M. Skotheim
- Department of Biology Stanford University Stanford, CA 94305
| | - Amy S. Gladfelter
- Department of Biological Sciences Dartmouth College Hanover, NH 03755
| |
Collapse
|
63
|
Benton MA, Akam M, Pavlopoulos A. Cell and tissue dynamics during Tribolium embryogenesis revealed by versatile fluorescence labeling approaches. Development 2013; 140:3210-20. [PMID: 23861059 PMCID: PMC3930475 DOI: 10.1242/dev.096271] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on new arthropod models such as the beetle Tribolium castaneum are shifting our knowledge of embryonic patterning and morphogenesis beyond the Drosophila paradigm. In contrast to Drosophila, Tribolium embryos exhibit the short-germ type of development and become enveloped by extensive extra-embryonic membranes, the amnion and serosa. The genetic basis of these processes has been the focus of active research. Here, we complement genetic approaches with live fluorescence imaging of Tribolium embryos to make the link between gene function and morphogenetic cell behaviors during blastoderm formation and differentiation, germband condensation and elongation, and extra-embryonic development. We first show that transient labeling methods result in strong, homogeneous and persistent expression of fluorescent markers in Tribolium embryos, labeling the chromatin, membrane, cytoskeleton or combinations thereof. We then use co-injection of fluorescent markers with dsRNA for live imaging of embryos with disrupted caudal gene function caused by RNA interference. Using these approaches, we describe and compare cell and tissue dynamics in Tribolium embryos with wild-type and altered fate maps. We find that Tribolium germband condensation is effected by cell contraction and intercalation, with the latter being dependent on the anterior-posterior patterning system. We propose that germband condensation drives initiation of amnion folding, whereas expansion of the amniotic fold and closure of the amniotic cavity are likely driven by contraction of an actomyosin cable at the boundary between the amnion and serosa. Our methodology provides a comprehensive framework for testing quantitative models of patterning, growth and morphogenetic mechanisms in Tribolium and other arthropod species.
Collapse
Affiliation(s)
- Matthew A Benton
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
64
|
Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. eLife 2013; 2:e00036. [PMID: 24015354 PMCID: PMC3762186 DOI: 10.7554/elife.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001 Stem cells are ‘pluripotent’—in other words, they have the potential to become many other cell types. This ability makes them extremely valuable for research. They also hold substantial promise for medical applications, since they can be used to replace cells lost or damaged by disease or injury. Embryos represent a rich source of stem cells; however, obtaining these cells from human embryos raises obvious ethical and practical concerns, and they have also been difficult to isolate from many species. A recent discovery circumvented these issues for humans and several mammalian species commonly studied in the laboratory. This technique can turn cells from adult mammals into ‘induced pluripotent stem cells’, or iPSCs, by switching on four genes. Nevertheless, no analogous method has yet been established to create similar cell populations in non-mammalian organisms, which are also important models for human development and disease. Now, Rosselló et al. have shown that cells from both invertebrate and non-mammalian vertebrate species—including birds, fish and insects—can be reprogrammed into cells that closely resemble iPSCs. Intriguingly, these cells were created by switching on the same four genes that generate iPSCs in mammals, even though vertebrates and invertebrates are separated by around 550 million years of evolution. Rosselló et al. used a viral vector that carries the four stem-cell genes (from the mouse) into target cells from the different species. The genetically altered cells developed into iPSC-like cells with many of the characteristics of natural mammalian and bird stem cells. To confirm that the cells were pluripotent, Rossello et al. first showed that the cells could develop into primitive early embryos called embryoid bodies. For the vertebrate species tested, the embryoid bodies contained cells from each of the three main vertebrate embryo cell types. Secondly, iPSC-like cells from two organisms—chicks and zebrafish—formed various mature cell types when injected into developing chick or zebrafish embryos. These results have two important implications. They suggest that the genetic mechanisms by which cells can be reprogrammed into a stem-like state have been conserved through 550 million years of evolution; additionally, they demonstrate that stem-like cells can be generated from important experimental organisms, and provide an important tool for both biological and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.00036.002
Collapse
Affiliation(s)
- Ricardo Antonio Rosselló
- Department of Biochemistry , University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico ; Department of Neurobiology , Duke University Medical Center , Durham , United States ; Howard Hughes Medical Institute, Duke University Medical Center , Durham , United States
| | | | | | | | | | | |
Collapse
|
65
|
Lee C, Zhang H, Baker AE, Occhipinti P, Borsuk ME, Gladfelter AS. Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control. Dev Cell 2013; 25:572-84. [PMID: 23769973 DOI: 10.1016/j.devcel.2013.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/28/2013] [Accepted: 05/07/2013] [Indexed: 12/26/2022]
Abstract
Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin transcript is highly clustered in the cytoplasm of large multinucleate cells. This heterogeneous cyclin transcript localization results from aggregation of an RNA-binding protein, and deletion of a polyglutamine stretch in this protein results in random transcript localization. These multinucleate cells are remarkable in that nuclei cycle asynchronously despite sharing a common cytoplasm. Notably, randomization of cyclin transcript localization significantly diminishes nucleus-to-nucleus differences in the number of mRNAs and synchronizes cell-cycle timing. Thus, nonrandom cyclin transcript localization is important for cell-cycle timing control and arises due to polyQ-dependent behavior of an RNA-binding protein. There is a widespread association between polyQ expansions and RNA-binding motifs, suggesting that this is a broadly exploited mechanism to produce spatially variable transcripts and heterogeneous cell behaviors. PAPERCLIP:
Collapse
Affiliation(s)
- Changhwan Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
66
|
Choi W, Harris NJ, Sumigray KD, Peifer M. Rap1 and Canoe/afadin are essential for establishment of apical-basal polarity in the Drosophila embryo. Mol Biol Cell 2013; 24:945-63. [PMID: 23363604 PMCID: PMC3608504 DOI: 10.1091/mbc.e12-10-0736] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small GTPase Rap1 and the actin-junctional linker protein Canoe/afadin are essential for the initial establishment of polarity in Drosophila, acting upstream of Bazooka/Par3 and the adherens junctions. However, feedback and cross-regulation occur, so polarity establishment is regulated by a network of proteins rather than a linear pathway. The establishment and maintenance of apical–basal cell polarity is critical for assembling epithelia and maintaining organ architecture. Drosophila embryos provide a superb model. In the current view, apically positioned Bazooka/Par3 is the initial polarity cue as cells form during cellularization. Bazooka then helps to position both adherens junctions and atypical protein kinase C (aPKC). Although a polarized cytoskeleton is critical for Bazooka positioning, proteins mediating this remained unknown. We found that the small GTPase Rap1 and the actin-junctional linker Canoe/afadin are essential for polarity establishment, as both adherens junctions and Bazooka are mispositioned in their absence. Rap1 and Canoe do not simply organize the cytoskeleton, as actin and microtubules become properly polarized in their absence. Canoe can recruit Bazooka when ectopically expressed, but they do not obligatorily colocalize. Rap1 and Canoe play continuing roles in Bazooka localization during gastrulation, but other polarity cues partially restore apical Bazooka in the absence of Rap1 or Canoe. We next tested the current linear model for polarity establishment. Both Bazooka and aPKC regulate Canoe localization despite being “downstream” of Canoe. Further, Rap1, Bazooka, and aPKC, but not Canoe, regulate columnar cell shape. These data reshape our view, suggesting that polarity establishment is regulated by a protein network rather than a linear pathway.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
67
|
Mavrakis M, Rikhy R, Lippincott-Schwartz J. Cells within a cell: Insights into cellular architecture and polarization from the organization of the early fly embryo. Commun Integr Biol 2013; 2:313-4. [PMID: 19721875 DOI: 10.4161/cib.2.4.8240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/19/2022] Open
Abstract
Drosophila embryogenesis begins with 13 rapid nuclear divisions within a common cytoplasm. These divisions produce approximately 6,000 nuclei that, during the next division cycle, become encased in plasma membrane (PM) and generate the primary embryonic epithelium in the process known as cellularization. Despite the absence of PM boundaries between syncytial nuclei, the secretory membrane system is organized in functionally compartmentalized units around individual nuclei.1 We have recently used in vivo fluorescence imaging to characterize the dynamics of proteins in the PM of the embryonic syncytium. These studies revealed that the PM is polarized already before cellularization. One PM region resides above individual nuclei and has apical-like features, while PM regions lateral to nuclei have basolateral characteristics. Optical highlighting experiments showed that membrane components do not exchange between PM regions that reside above adjacent nuclei. An intact F-actin network was shown to be important for both the PM apicobasallike polarity and the diffusion barriers within the syncytial PM. Our findings, as well as their possible implications, are further discussed in this Addendum.
Collapse
Affiliation(s)
- Manos Mavrakis
- Cell Biology and Metabolism Program; National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
68
|
Abreu-Blanco MT, Verboon JM, Liu R, Watts JJ, Parkhurst SM. Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string. J Cell Sci 2012; 125:5984-97. [PMID: 23038780 DOI: 10.1242/jcs.109066] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The repair of injured tissue must occur rapidly to prevent microbial invasion and maintain tissue integrity. Epithelial tissues in particular, which serve as a barrier against the external environment, must repair efficiently in order to restore their primary function. Here we analyze the effect of different parameters on the epithelial wound repair process in the late stage Drosophila embryo using in vivo wound assays, expression of cytoskeleton and membrane markers, and mutant analysis. We define four distinct phases in the repair process, expansion, coalescence, contraction and closure, and describe the molecular dynamics of each phase. Specifically, we find that myosin, E-cadherin, Echinoid, the plasma membrane, microtubules and the Cdc42 small GTPase respond dynamically during wound repair. We demonstrate that perturbations of each of these components result in specific impairments to the wound healing process. Our results show that embryonic epithelial wound repair is mediated by two simultaneously acting mechanisms: crawling driven by cellular protrusions and actomyosin ring contraction along the leading edge of the wound.
Collapse
|
69
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
70
|
Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm. Proc Natl Acad Sci U S A 2012; 109:8588-93. [PMID: 22592793 DOI: 10.1073/pnas.1204270109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional "compartmentalization" has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients.
Collapse
|
71
|
Chen J, Lippincott-Schwartz J, Liu J. Intracellular spatial localization regulated by the microtubule network. PLoS One 2012; 7:e34919. [PMID: 22532834 PMCID: PMC3330817 DOI: 10.1371/journal.pone.0034919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/06/2012] [Indexed: 11/17/2022] Open
Abstract
The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a "structured cytoplasm", in contrast to a free and fluid environment.
Collapse
Affiliation(s)
- Jing Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | |
Collapse
|
72
|
Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila. Nat Cell Biol 2012; 14:467-76. [PMID: 22504274 DOI: 10.1038/ncb2481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
Understanding how epithelial polarity is established and regulated during tissue morphogenesis is a major issue. Here, we identify a regulatory mechanism important for mesoderm invagination, germ-band extension and transepithelial migration in the Drosophila melanogaster embryo. This mechanism involves the inhibition of the conserved E3 ubiquitin ligase Neuralized by proteins of the Bearded family. First, Bearded mutant embryos exhibited a loss of epithelial polarity associated with an early loss of the apical domain. Bearded regulated epithelial polarity by antagonizing neuralized. Second, repression of Bearded gene expression by Snail was required for the Snail-dependent disassembly of adherens junctions in the mesoderm. Third, neuralized was strictly required to promote the downregulation of the apical domain in the midgut epithelium and to facilitate the transepithelial migration of primordial germ cells across this epithelium. This function of Neuralized was independent of its known role in Notch signalling. Thus, Neuralized has two distinct functions in epithelial cell polarity and Notch signalling.
Collapse
|
73
|
Measurement and perturbation of morphogen lifetime: effects on gradient shape. Biophys J 2012; 101:1807-15. [PMID: 22004733 DOI: 10.1016/j.bpj.2011.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022] Open
Abstract
Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation.
Collapse
|
74
|
McKinley RFA, Yu CG, Harris TJC. Assembly of Bazooka polarity landmarks through a multifaceted membrane-association mechanism. J Cell Sci 2012; 125:1177-90. [PMID: 22303000 DOI: 10.1242/jcs.091884] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cell polarity is essential for animal development. The scaffold protein Bazooka (Baz/PAR-3) forms apical polarity landmarks to organize epithelial cells. However, it is unclear how Baz is recruited to the plasma membrane and how this is coupled with downstream effects. Baz contains an oligomerization domain, three PDZ domains, and binding regions for the protein kinase aPKC and phosphoinositide lipids. With a structure-function approach, we dissected the roles of these domains in the localization and function of Baz in the Drosophila embryonic ectoderm. We found that a multifaceted membrane association mechanism localizes Baz to the apical circumference. Although none of the Baz protein domains are essential for cortical localization, we determined that each contributes to cortical anchorage in a specific manner. We propose that the redundancies involved might provide plasticity and robustness to Baz polarity landmarks. We also identified specific downstream effects, including the promotion of epithelial structure, a positive-feedback loop that recruits aPKC, PAR-6 and Crumbs, and a negative-feedback loop that regulates Baz.
Collapse
Affiliation(s)
- R F Andrew McKinley
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | | |
Collapse
|
75
|
Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells. EUKARYOTIC CELL 2012; 11:353-67. [PMID: 22267774 DOI: 10.1128/ec.05257-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influence the adjacent cytoplasm, we tested whether local mitochondrial morphology and membrane potential in A. gossypii are associated with the division state of a nearby nucleus. We found that mitochondria exhibit substantial heterogeneity in both morphology and membrane potential within a single multinucleated cell. Notably, differences in mitochondrial morphology or potential are not associated with a specific nuclear division state. Heterokaryon mutants with a mixture of nuclei with deletions of and wild type for the mitochondrial fusion/fission genes DNM1 and FZO1 exhibit altered mitochondrial morphology and severe growth and sporulation defects. This dominant effect suggests that the gene products may be required locally near their expression site rather than diffusing widely in the cell. Our results demonstrate that mitochondrial dynamics are essential in these large syncytial cells, yet morphology and membrane potential are independent of nuclear cycle state.
Collapse
|
76
|
Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation? ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1160-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
77
|
Mogilner A, Odde D. Modeling cellular processes in 3D. Trends Cell Biol 2011; 21:692-700. [PMID: 22036197 DOI: 10.1016/j.tcb.2011.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 10/15/2022]
Abstract
Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.
Collapse
Affiliation(s)
- Alex Mogilner
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
78
|
Laprise P, Tepass U. Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol 2011; 21:401-8. [DOI: 10.1016/j.tcb.2011.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 01/04/2023]
|
79
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
80
|
Rauzi M, Lenne PF, Lecuit T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 2010; 468:1110-4. [PMID: 21068726 DOI: 10.1038/nature09566] [Citation(s) in RCA: 484] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 10/08/2010] [Indexed: 01/01/2023]
Abstract
Force generation by Myosin-II motors on actin filaments drives cell and tissue morphogenesis. In epithelia, contractile forces are resisted at apical junctions by adhesive forces dependent on E-cadherin, which also transmits tension. During Drosophila embryonic germband extension, tissue elongation is driven by cell intercalation, which requires an irreversible and planar polarized remodelling of epithelial cell junctions. We investigate how cell deformations emerge from the interplay between force generation and cortical force transmission during this remodelling in Drosophila melanogaster. The shrinkage of dorsal-ventral-oriented ('vertical') junctions during this process is known to require planar polarized junctional contractility by Myosin II (refs 4, 5, 7, 12). Here we show that this shrinkage is not produced by junctional Myosin II itself, but by the polarized flow of medial actomyosin pulses towards 'vertical' junctions. This anisotropic flow is oriented by the planar polarized distribution of E-cadherin complexes, in that medial Myosin II flows towards 'vertical' junctions, which have relatively less E-cadherin than transverse junctions. Our evidence suggests that the medial flow pattern reflects equilibrium properties of force transmission and coupling to E-cadherin by α-Catenin. Thus, epithelial morphogenesis is not properly reflected by Myosin II steady state distribution but by polarized contractile actomyosin flows that emerge from interactions between E-cadherin and actomyosin networks.
Collapse
Affiliation(s)
- Matteo Rauzi
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
81
|
Nair DR, D'Ausilio CA, Occhipinti P, Borsuk ME, Gladfelter AS. A conserved G₁ regulatory circuit promotes asynchronous behavior of nuclei sharing a common cytoplasm. Cell Cycle 2010; 9:3771-9. [PMID: 20930528 DOI: 10.4161/cc.9.18.12999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthesis and accumulation of conserved cell cycle regulators such as cyclins are thought to promote G₁/S and G₂/M transitions in most eukaryotes. When cells at different stages of the cell cycle are fused to form heterokaryons, the shared complement of regulators in the cytoplasm induces the nuclei to become synchronized. However, multinucleate fungi often display asynchronous nuclear division cycles, even though the nuclei inhabit a shared cytoplasm. Similarly, checkpoints can induce nuclear asynchrony in multinucleate cells by arresting only the nucleus that receives damage. The cell biological basis for nuclear autonomy in a common cytoplasm is not known. Here we show that in the filamentous fungus Ashbya gossypii, sister nuclei born from one mitosis immediately lose synchrony in the subsequent G₁ interval. A conserved G₁ transcriptional regulatory circuit involving the Rb-analogue Whi5p promotes the asynchronous behavior yet Whi5 protein is uniformly distributed among nuclei throughout the cell cycle. The homologous Whi5p circuit in S. cerevisiae employs positive feedback to promote robust and coherent entry into the cell cycle. We propose that positive feedback in this same circuit generates timing variability in a multinucleate cell. These unexpected findings indicate that a regulatory program whose products (mRNA transcripts) are translated in a common cytoplasm can nevertheless promote variability in the individual behavior of sister nuclei.
Collapse
|
82
|
Abstract
Morphogen gradients provide embryonic tissues with positional information by inducing target genes at different concentration thresholds and thus at different positions. The Bicoid morphogen gradient in Drosophila melanogaster embryos has recently been analysed quantitatively, yet how it forms remains a matter of controversy. Several biophysical models that rely on production, diffusion and degradation have been formulated to account for the observed dynamics of the Bicoid gradient, but no one model can account for all its characteristics. Here, we discuss how existing data on this gradient fit the various proposed models and what aspects of gradient formation these models fail to explain. We suggest that knowing a few additional parameters, such as the lifetime of Bicoid, would help to identify and develop better models of Bicoid gradient formation.
Collapse
Affiliation(s)
- Oliver Grimm
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mathieu Coppey
- Laboratoire Kastler Brossel, Ecole normale supérieure, 46, rue d'Ulm, 75005 Paris, France
| | - Eric Wieschaus
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
83
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
84
|
Baker SM, Buckheit RW, Falk MM. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 2010; 11:15. [PMID: 20175925 PMCID: PMC2838829 DOI: 10.1186/1471-2121-11-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 02/22/2010] [Indexed: 01/28/2023] Open
Abstract
Background Green fluorescent protein (GFP) and other FP fusions have been extensively utilized to track protein dynamics in living cells. Recently, development of photoactivatable, photoswitchable and photoconvertible fluorescent proteins (PAFPs) has made it possible to investigate the fate of discrete subpopulations of tagged proteins. Initial limitations to their use (due to their tetrameric nature) were overcome when monomeric variants, such as Dendra, mEos, and mKikGR were cloned/engineered. Results Here, we report that by closing the field diaphragm, selective, precise and irreversible green-to-red photoconversion (330-380 nm illumination) of discrete subcellular protein pools was achieved on a wide-field fluorescence microscope equipped with standard DAPI, Fluorescein, and Rhodamine filter sets and mercury arc illumination within 5-10 seconds. Use of a DAPI-filter cube with long-pass emission filter (LP420) allowed the observation and control of the photoconversion process in real time. Following photoconversion, living cells were imaged for up to 5 hours often without detectable phototoxicity or photobleaching. Conclusions We demonstrate the practicability of this technique using Dendra2 and mEos2 as monomeric, photoconvertible PAFP representatives fused to proteins with low (histone H2B), medium (gap junction channel protein connexin 43), and high (α-tubulin; clathrin light chain) dynamic cellular mobility as examples. Comparable efficient, irreversible green-to-red photoconversion of selected portions of cell nuclei, gap junctions, microtubules and clathrin-coated vesicles was achieved. Tracking over time allowed elucidation of the dynamic live-cycle of these subcellular structures. The advantage of this technique is that it can be performed on a standard, relatively inexpensive wide-field fluorescence microscope with mercury arc illumination. Together with previously described laser scanning confocal microscope-based photoconversion methods, this technique promises to further increase the general usability of photoconvertible PAFPs to track the dynamic movement of cells and proteins over time.
Collapse
Affiliation(s)
- Susan M Baker
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|
85
|
Mavrakis M, Pourquié O, Lecuit T. Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 2010; 137:373-87. [DOI: 10.1242/dev.031690] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Embryology and genetics have given rise to a mechanistic framework that explains the architecture of a developing organism. Until recently, however, such studies suffered from a lack of quantification and real-time visualization at the subcellular level, limiting their ability to monitor the dynamics of developmental processes. Live imaging using fluorescent proteins has overcome these limitations, uncovering unprecedented insights that call many established models into question. We review how the study of patterning, cell polarization and morphogenesis has benefited from this technology and discuss the possibilities offered by fluorescence imaging and by the contributions of quantitative disciplines.
Collapse
Affiliation(s)
- Manos Mavrakis
- IBDML (Institut de Biologie du Développement de Marseille Luminy), UMR6216 CNRS—Université de la Méditerranée, Parc Scientifique de Luminy BP 907, 13009 Marseille, France
| | - Olivier Pourquié
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) / Inserm U964 / CNRS UMR7104, 67400 Illkirch, France; and Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas Lecuit
- IBDML (Institut de Biologie du Développement de Marseille Luminy), UMR6216 CNRS—Université de la Méditerranée, Parc Scientifique de Luminy BP 907, 13009 Marseille, France
| |
Collapse
|
86
|
Webb RL, Rozov O, Watkins SC, McCartney BM. Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the Drosophila syncytial embryo. Dev Dyn 2010; 238:2622-32. [PMID: 19718762 DOI: 10.1002/dvdy.22076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Drosophila syncytial embryo is a powerful developmental model system for studying dynamic coordinated cytoskeletal rearrangements. Confocal microscopy has begun to reveal more about the cytoskeletal changes that occur during embryogenesis. Total internal reflection fluorescence (TIRF) microscopy provides a promising new approach for the visualization of cortical events with heightened axial resolution. We have applied TIRF microscopy to the Drosophila embryo to visualize cortical microtubule and actin dynamics in the syncytial blastoderm. Here, we describe the details of this technique, and report qualitative assessments of cortical microtubules and actin in the Drosophila syncytial embryo. In addition, we identified a peak of cortical microtubules during anaphase of each nuclear cycle in the syncytial blastoderm, and using images generated by TIRF microscopy, we quantitatively analyzed microtubule dynamics during this time.
Collapse
Affiliation(s)
- Rebecca L Webb
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
87
|
Lippincott-Schwartz J, Patterson GH. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 2009; 19:555-65. [PMID: 19836954 PMCID: PMC3663713 DOI: 10.1016/j.tcb.2009.09.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 11/17/2022]
Abstract
Photoactivatable fluorescent proteins (PA-FPs) are molecules that switch to a new fluorescent state in response to activation to generate a high level of contrast. Over the past eight years, several types of PA-FPs have been developed. The PA-FPs fluoresce green or red, or convert from green to red in response to activating light. Others reversibly switch between 'off' and 'on' in response to light. The optical "highlighting" capability of PA-FPs has led to the rise of novel imaging techniques providing important new biological insights. These range from in cellulo pulse-chase labeling for tracking subpopulations of cells, organelles or proteins under physiological settings, to super-resolution imaging of single molecules for determining intracellular protein distributions at nanometer precision. This review surveys the expanding array of PA-FPs, including their advantages and disadvantages, and highlights their use in novel imaging methodologies.
Collapse
|
88
|
Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol 2009; 341:34-55. [PMID: 19778532 DOI: 10.1016/j.ydbio.2009.09.024] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
89
|
Yurt, Coracle, Neurexin IV and the Na(+),K(+)-ATPase form a novel group of epithelial polarity proteins. Nature 2009; 459:1141-5. [PMID: 19553998 DOI: 10.1038/nature08067] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 04/05/2009] [Indexed: 11/09/2022]
Abstract
The integrity of polarized epithelia is critical for development and human health. Many questions remain concerning the full complement and the function of the proteins that regulate cell polarity. Here we report that the Drosophila FERM proteins Yurt (Yrt) and Coracle (Cora) and the membrane proteins Neurexin IV (Nrx-IV) and Na(+),K(+)-ATPase are a new group of functionally cooperating epithelial polarity proteins. This 'Yrt/Cora group' promotes basolateral membrane stability and shows negative regulatory interactions with the apical determinant Crumbs (Crb). Genetic analyses indicate that Nrx-IV and Na(+),K(+)-ATPase act together with Cora in one pathway, whereas Yrt acts in a second redundant pathway. Moreover, we show that the Yrt/Cora group is essential for epithelial polarity during organogenesis but not when epithelial polarity is first established or during terminal differentiation. This property of Yrt/Cora group proteins explains the recovery of polarity in embryos lacking the function of the Lethal giant larvae (Lgl) group of basolateral polarity proteins. We also find that the mammalian Yrt orthologue EPB41L5 (also known as YMO1 and Limulus) is required for lateral membrane formation, indicating a conserved function of Yrt proteins in epithelial polarity.
Collapse
|
90
|
Berezhkovskii AM, Coppey M, Shvartsman SY. Signaling gradients in cascades of two-state reaction-diffusion systems. Proc Natl Acad Sci U S A 2009; 106:1087-92. [PMID: 19147842 PMCID: PMC2633552 DOI: 10.1073/pnas.0811807106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Indexed: 12/23/2022] Open
Abstract
Biological networks frequently use cascades, generally defined as chain-like arrangements of similar modules. Spatially lumped cascades can serve as noise filters, time-delay, or thresholding elements. The operation and functional capabilities of spatially distributed cascades are much less understood. Motivated by studies of pattern formation in the early Drosophila embryo, we analyze cascades of 2-state reaction-diffusion systems. At each stage within such as a cascade, a diffusible particle is reversibly bound by immobile traps and can be annihilated in both mobile and immobile states. When trapped, these particles drive the next stage by converting mobile particles of a different type from a passive to active form. The cascade initiated by injection of mobile particles into the first stage. We derive analytical expressions for the steady-state concentration profiles of mobile and immobile particles and analyze how the output of a cascade is controlled by properties of the constituent stages.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892; and
| | - Mathieu Coppey
- Lewis–Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, NJ 08540
| | - Stanislav Y. Shvartsman
- Lewis–Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, NJ 08540
| |
Collapse
|
91
|
Abstract
The Extracellularly Regulated Kinase/Mitogen Activated Protein Kinase (ERK/MAPK) signaling pathway is a critical regulator of cellular processes in adult and developing tissues. Depending on the cellular context, MAPK cascade can act as a rheostat, a switch, or an oscillator. The highly conserved structure of the cascade does not imply a rigid function, as was suggested by the early mathematical models of MAPK signaling, and can instead produce a wide range of input-output maps. Given a large number of pathway components and modes of regulation, it is essential to establish experimental systems that will allow both manipulating the MAPK cascade and monitoring its dynamics. The terminal patterning system in the Drosophila embryo appears to be ideally suited for this purpose. Our recent experiments characterized dynamics of the MAPK phosphorylation gradient in the terminal system and proposed that it is regulated by a cascade of diffusion-trapping modules. Here we discuss a biophysical model that can describe the observed dynamics and guide future experiments for exploring the relative importance of multiple layers of MAPK cascade regulation.
Collapse
Affiliation(s)
- Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, New Jersey, USA.
| | | | | |
Collapse
|