51
|
Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. eLife 2020; 9:e51529. [PMID: 31934860 PMCID: PMC7025822 DOI: 10.7554/elife.51529] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
The numerous neurons and glia that form the brain originate from tightly controlled growth and division of neural stem cells, regulated systemically by important known stem cell-extrinsic signals. However, the cell-intrinsic mechanisms that control the distinctive proliferation rates of individual neural stem cells are unknown. Here, we show that the size and division rates of Drosophila neural stem cells (neuroblasts) are controlled by the highly conserved RNA binding protein Imp (IGF2BP), via one of its top binding targets in the brain, myc mRNA. We show that Imp stabilises myc mRNA leading to increased Myc protein levels, larger neuroblasts, and faster division rates. Declining Imp levels throughout development limit myc mRNA stability to restrain neuroblast growth and division, and heterogeneous Imp expression correlates with myc mRNA stability between individual neuroblasts in the brain. We propose that Imp-dependent regulation of myc mRNA stability fine-tunes individual neural stem cell proliferation rates.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - Aino I Järvelin
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - David Ish-Horowicz
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
- MRC Laboratory for Molecular Cell BiologyUniversity CollegeLondonUnited Kingdom
| | - Ilan Davis
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| |
Collapse
|
52
|
Blanco J, Cooper JC, Baker NE. Roles of C/EBP class bZip proteins in the growth and cell competition of Rp ('Minute') mutants in Drosophila. eLife 2020; 9:50535. [PMID: 31909714 PMCID: PMC6946401 DOI: 10.7554/elife.50535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
Reduced copy number of ribosomal protein (Rp) genes adversely affects both flies and mammals. Xrp1 encodes a reportedly Drosophila-specific AT-hook, bZIP protein responsible for many of the effects including the elimination of Rp mutant cells by competition with wild type cells. Irbp18, an evolutionarily conserved bZIP gene, heterodimerizes with Xrp1 and with another bZip protein, dATF4. We show that Irbp18 is required for the effects of Xrp1, whereas dATF4 does not share the same phenotype, indicating that Xrp1/Irbp18 is the complex active in Rp mutant cells, independently of other complexes that share Irbp18. Xrp1 and Irbp18 transcripts and proteins are upregulated in Rp mutant cells by auto-regulatory expression that depends on the Xrp1 DNA binding domains and is necessary for cell competition. We show that Xrp1 is conserved beyond Drosophila, although under positive selection for rapid evolution, and that at least one human bZip protein can similarly affect Drosophila development.
Collapse
Affiliation(s)
- Jorge Blanco
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
| | - Jacob C Cooper
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Nicholas E Baker
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
| |
Collapse
|
53
|
Martin P, Wood W, Franz A. Cell migration by swimming: Drosophila adipocytes as a new in vivo model of adhesion-independent motility. Semin Cell Dev Biol 2019; 100:160-166. [PMID: 31812445 DOI: 10.1016/j.semcdb.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022]
Abstract
Several cell lineages migrate through the developing and adult tissues of our bodies utilising a variety of modes of motility to suit the different substrates and environments they encounter en route to their destinations. Here we describe a novel adhesion-independent mode of single cell locomotion utilised by Drosophila fat body cells - the equivalent of vertebrate adipocytes. Like their human counterpart, these large cells were previously presumed to be immotile. However, in the Drosophila pupa fat body cells appear to be motile and migrate in a directed way towards wounds by peristaltic swimming through the hemolymph. The propulsive force is generated from a wave of cortical actomyosin that travels rearwards along the length of the cell. We discuss how this swimming mode of motility overcomes the physical constraints of microscopic objects moving in fluids, how fat body cells switch on other "motility machinery" to plug the wound on arrival, and whether other cell lineages in Drosophila and other organisms may, under certain circumstances, also adopt swimming as an effective mode of migration.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK; School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Anna Franz
- Department of Cell and Developmental Biology, University College London, 21 University Street, London, WC1E 6DE, UK.
| |
Collapse
|
54
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
55
|
Liu Z, Xu J, Ling L, Zhang R, Shang P, Huang Y. CRISPR disruption of TCTP gene impaired normal development in the silkworm Bombyx mori. INSECT SCIENCE 2019; 26:973-982. [PMID: 29316276 PMCID: PMC7380024 DOI: 10.1111/1744-7917.12567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved and multifunctional protein with activities ranging from cytoskeletal regulation to transcription regulation in numerous organisms. In insects, TCTP is essential for cell growth and proliferation. Recently, TCTP has been reported to affect the innate intestinal immune pathway in the Bombyx mori silkworm, a lepidopteran model insect. However, the comprehensive physiological roles of TCTP in the silkworm remain poorly understood. Here, we performed functional analysis of BmTCTP by using a binary transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/RNA-guided CRISPER-associated protein 9 nucleases) system. Disruption of BmTCTP led to developmental arrestment and subsequent lethality in third instar larvae. Histological analysis revealed that growth impairment originated from decreased cell size, and the proliferation and differentiation of intestinal epithelial cells were also affected. RNA-seq analysis revealed that genes involved in carbohydrate metabolism, lipid metabolism and digestive system pathways were significantly affected by BmTCTP depletion. Together, the results demonstrated that BmTCTP plays a key role in controlling larval growth and development.
Collapse
Affiliation(s)
- Zu‐Lian Liu
- Faculty of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Ru Zhang
- Faculty of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Peng Shang
- Faculty of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yong‐Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
56
|
Sanchez JA, Mesquita D, Ingaramo MC, Ariel F, Milán M, Dekanty A. Eiger/TNFα-mediated Dilp8 and ROS production coordinate intra-organ growth in Drosophila. PLoS Genet 2019; 15:e1008133. [PMID: 31425511 PMCID: PMC6715248 DOI: 10.1371/journal.pgen.1008133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/29/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Coordinated intra- and inter-organ growth during animal development is essential to ensure a correctly proportioned individual. The Drosophila wing has been a valuable model system to reveal the existence of a stress response mechanism involved in the coordination of growth between adjacent cell populations and to identify a role of the fly orthologue of p53 (Dmp53) in this process. Here we identify the molecular mechanisms used by Dmp53 to regulate growth and proliferation in a non-autonomous manner. First, Dmp53-mediated transcriptional induction of Eiger, the fly orthologue of TNFα ligand, leads to the cell-autonomous activation of JNK. Second, two distinct signaling events downstream of the Eiger/JNK axis are induced in order to independently regulate tissue size and cell number in adjacent cell populations. Whereas expression of the hormone dILP8 acts systemically to reduce growth rates and tissue size of adjacent cell populations, the production of Reactive Oxygen Species—downstream of Eiger/JNK and as a consequence of apoptosis induction—acts in a non-cell-autonomous manner to reduce proliferation rates. Our results unravel how local and systemic signals act concertedly within a tissue to coordinate growth and proliferation, thereby generating well-proportioned organs and functionally integrated adults. The coordination of growth between the parts of a given developing organ is an absolute requirement for the generation of functionally integrated structures during animal development. Although this question has fascinated biologists for centuries, the molecular mechanisms responsible have remained elusive to date. In this work, we used the developing wing primordium of Drosophila to identify the molecular mechanisms and signaling molecules that mediate communication between adjacent cell populations upon a targeted reduction of growth rate. We first present evidence that the activation of Dmp53 in the growth-depleted territory induces the expression of the fly TNF ligand Eiger, which activates the JNK stress signaling pathway in a cell-autonomous manner. While JNK-dependent expression of the systemic hormone dILP8 reduces the growth and final size of adjacent territories, the production of Reactive Oxygen Species downstream of JNK and the apoptotic machinery act locally to regulate the proliferation of adjacent epithelial cells. Our data reveal how different signals, acting both locally and systemically, can regulate tissue growth and cell proliferation in an independent manner to coordinate the tissue size and cell number of different parts of an organ, ultimately giving rise to well-proportioned adult structures.
Collapse
Affiliation(s)
- Juan A. Sanchez
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
| | - Duarte Mesquita
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María C. Ingaramo
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (MM); (AD)
| | - Andrés Dekanty
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- * E-mail: (MM); (AD)
| |
Collapse
|
57
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
58
|
Toshniwal AG, Gupta S, Mandal L, Mandal S. ROS Inhibits Cell Growth by Regulating 4EBP and S6K, Independent of TOR, during Development. Dev Cell 2019; 49:473-489.e9. [DOI: 10.1016/j.devcel.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
|
59
|
Boulan L, Andersen D, Colombani J, Boone E, Léopold P. Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in Drosophila. Dev Cell 2019; 49:811-818.e4. [PMID: 31006647 DOI: 10.1016/j.devcel.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/14/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
How organs scale with other body parts is not mechanistically understood. We have addressed this question using the Drosophila imaginal disc model. When the growth of one disc domain is perturbed, other parts of the disc and other discs slow down their growth, maintaining proper inter-disc and intra-disc proportions. We show here that the relaxin-like Dilp8 is required for this inter-organ coordination. Our work also reveals that the stress-response transcription factor Xrp1 plays a key role upstream of dilp8 in linking organ growth status with the systemic growth response. In addition, we show that the small ribosomal subunit protein RpS12 is required to trigger Xrp1-dependent non-autonomous response. Our work demonstrates that RpS12, Xrp1, and Dilp8 form an independent regulatory module that ensures intra- and inter-organ growth coordination during development.
Collapse
Affiliation(s)
- Laura Boulan
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005 Paris, France.
| | - Ditte Andersen
- Université Côte d'Azur, CNRS UMR7277, Inserm U1091, iBV, Parc Valrose, 06108 Nice, France
| | - Julien Colombani
- Université Côte d'Azur, CNRS UMR7277, Inserm U1091, iBV, Parc Valrose, 06108 Nice, France
| | - Emilie Boone
- Université Côte d'Azur, CNRS UMR7277, Inserm U1091, iBV, Parc Valrose, 06108 Nice, France
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
60
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
61
|
Abstract
The insect fat body is analogous to vertebrate adipose tissue and liver. In this review, the new and exciting advancements made in fat body biology in the last decade are summarized. Controlled by hormonal and nutritional signals, insect fat body cells undergo mitosis during embryogenesis, endoreplication during the larval stages, and remodeling during metamorphosis and regulate reproduction in adults. Fat body tissues are major sites for nutrient storage, energy metabolism, innate immunity, and detoxification. Recent studies have revealed that the fat body plays a central role in the integration of hormonal and nutritional signals to regulate larval growth, body size, circadian clock, pupal diapause, longevity, feeding behavior, and courtship behavior, partially by releasing fat body signals to remotely control the brain. In addition, the fat body has emerged as a fascinating model for studying metabolic disorders and immune diseases. Potential future directions for fat body biology are also proposed herein.
Collapse
Affiliation(s)
- Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Xiaoqiang Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| |
Collapse
|
62
|
Meschi E, Léopold P, Delanoue R. An EGF-Responsive Neural Circuit Couples Insulin Secretion with Nutrition in Drosophila. Dev Cell 2019; 48:76-86.e5. [DOI: 10.1016/j.devcel.2018.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
|
63
|
Hyun S. Body size regulation by maturation steroid hormones: a Drosophila perspective. Front Zool 2018; 15:44. [PMID: 30479644 PMCID: PMC6247710 DOI: 10.1186/s12983-018-0290-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanism that determines the specific body size of an animal is a fundamental biological question that remains largely unanswered. This aspect is now beginning to be understood in insect models, particularly in Drosophila melanogaster, with studies highlighting the importance of nutrient-responsive growth signaling pathways involving insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) (IIS/TOR). These pathways operate in animals, from insects to mammals, adjusting the growth rate in response to the nutritional condition of the organism. Organismal growth is closely coupled with the process of developmental maturation mediated by maturation steroid hormones, which is influenced greatly by environmental and nutritional conditions. Recent Drosophila studies have been revealing the mechanisms responsible for this phenomenon. In this review, I summarize some important findings about the steroid hormone regulation of Drosophila body growth, calling attention to the influence of developmental nutritional conditions on animal size determination.
Collapse
Affiliation(s)
- Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
64
|
Size matters! Aurora A controls Drosophila larval development. Dev Biol 2018; 440:88-98. [DOI: 10.1016/j.ydbio.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
|
65
|
A role for Lin-28 in growth and metamorphosis in Drosophila melanogaster. Mech Dev 2018; 154:107-115. [PMID: 29908237 DOI: 10.1016/j.mod.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis.
Collapse
|
66
|
Steroid signaling mediates nutritional regulation of juvenile body growth via IGF-binding protein in Drosophila. Proc Natl Acad Sci U S A 2018; 115:5992-5997. [PMID: 29784791 DOI: 10.1073/pnas.1718834115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nutritional condition during the juvenile growth period considerably affects final adult size. The insulin/insulin-like growth factor signaling (IIS)/target of rapamycin (TOR) nutrient-sensing pathway is known to regulate growth and metabolism in response to nutritional conditions. However, there is limited information on how endocrine pathways communicate nutritional information to different metabolic organs to regulate organismal growth. Here, we show that Imaginal morphogenesis protein-Late 2 (Imp-L2), a Drosophila homolog of insulin-like growth factor-binding protein 7 (IGFBP7), plays a key role in the nutritional control of organismal growth. Nutritional restriction during the larval growth period causes undersized adults, which is largely diminished by Imp-L2 mutation. We delineate a pathway in which nutritional restriction increases levels of the steroid hormone ecdysone, which, in turn, triggers ecdysone signaling-dependent Imp-L2 production from the fat body, a fly adipose organ, thereby attenuating peripheral IIS and body growth. Surprisingly, this endocrine pathway operates independent of the fat-body-TOR internal nutrient sensor, long believed to be the control center for nutrition-dependent growth. Our study reveals a previously unrecognized endocrine circuit mediating nutrition-dependent juvenile growth, which could also potentially be related to the insulin resistance frequently observed in puberty.
Collapse
|
67
|
The biology and evolution of the Dilp8-Lgr3 pathway: A relaxin-like pathway coupling tissue growth and developmental timing control. Mech Dev 2018; 154:44-50. [PMID: 29715504 DOI: 10.1016/j.mod.2018.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022]
Abstract
Many insects, like cockroaches, moths, and flies, can regenerate tissues by extending the growth-competent phases of their life cycle. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Dilp8, was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. Dilp8 requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. A review of current data supports a model where imaginal disc-derived Dilp8 acts on four central nervous system Lgr3-positive neurons to activate cyclic-AMP signaling in an Lgr3-dependent manner. This causes a reduction in ecdysone hormone production by the larval endocrine prothoracic gland, which leads to a delay in the onset of metamorphosis and a simultaneous slowing down in the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. We discuss reports indicating that the Dilp8-Lgr3 pathway might have other functions at different life history stages, which remain to be elucidated, and review molecular evolution data on invertebrate genes related to the relaxin-pathway. The strong conservation of the relaxin pathway throughout animal evolution contrasts with instances of its complete loss in some clades, such as lepidopterans, which must coordinate growth and developmental timing using another mechanism. Research into these areas should generate exciting new insights into the biology of growth coordination, the evolution of the relaxin signaling pathway, and likely reveal unforeseen functions in other developmental stages.
Collapse
|
68
|
Jayakumar S, Hasan G. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Front Neural Circuits 2018; 12:25. [PMID: 29674958 PMCID: PMC5895653 DOI: 10.3389/fncir.2018.00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/02/2018] [Indexed: 01/13/2023] Open
Abstract
All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.
Collapse
Affiliation(s)
- Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
69
|
Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc Natl Acad Sci U S A 2018; 115:3960-3965. [PMID: 29567866 DOI: 10.1073/pnas.1800435115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In insects, juvenile hormone (JH) and the steroid hormone ecdysone have opposing effects on regulation of the larval-pupal transition. Although increasing evidence suggests that JH represses ecdysone biosynthesis during larval development, the mechanism underlying this repression is not well understood. Here, we demonstrate that the expression of the Krüppel homolog 1 (Kr-h1), a gene encoding a transcription factor that mediates JH signaling, in ecdysone-producing organ prothoracic gland (PG) represses ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes in both Drosophila and Bombyx Application of a JH mimic on ex vivo cultured PGs from Drosophila and Bombyx larvae induces Kr-h1 expression and inhibits the transcription of steroidogenic enzymes. In addition, PG-specific knockdown of Drosophila Kr-h1 promotes-while overexpression hampers-ecdysone production and pupariation. We further find that Kr-h1 inhibits the transcription of steroidogenic enzymes by directly binding to their promoters to induce promoter DNA methylation. Finally, we show that Kr-h1 does not affect DNA replication in Drosophila PG cells and that the reduction of PG size mediated by Kr-h1 overexpression can be rescued by feeding ecdysone. Taken together, our data indicate direct and conserved Kr-h1 repression of insect ecdysone biosynthesis in response to JH stimulation, providing insights into mechanisms underlying the antagonistic roles of JH and ecdysone.
Collapse
|
70
|
Shingleton AW, Frankino WA. The (ongoing) problem of relative growth. CURRENT OPINION IN INSECT SCIENCE 2018; 25:9-19. [PMID: 29602367 DOI: 10.1016/j.cois.2017.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Differential growth, the phenomenon where parts of the body grow at different rates, is necessary to generate the complex morphologies of most multicellular organisms. Despite this central importance, how differential growth is regulated remains largely unknown. Recent discoveries, particularly in insects, have started to uncover the molecular-genetic and physiological mechanisms that coordinate growth among different tissues throughout the body and regulate relative growth. These discoveries suggest that growth is coordinated by a network of signals that emanate from growing tissues and central endocrine organs. Here we review these findings and discuss their implications for understanding the regulation of relative growth and the evolution of morphology.
Collapse
|
71
|
Koyama T, Mirth CK. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. CURRENT OPINION IN INSECT SCIENCE 2018; 25:1-8. [PMID: 29602355 DOI: 10.1016/j.cois.2017.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 06/08/2023]
Abstract
Insects show impressive diversity in adult body size across species, and within species adult body size is sensitive to numerous environmental conditions, particularly to changes in nutrition. Body size in adult insects correlates with a number of important fitness-related traits such as fecundity, longevity, stress resistance, and mating success. Over the past few decades, the field of insect body size regulation has made impressive progress towards understanding the signalling pathways that regulate body size in response to nutrition. These studies have shown that conserved nutrition-sensitive signalling pathways act in animals from insects to vertebrates to regulate growth. In particular, pathways like the insulin/insulin-like growth factor signalling (IIS) pathway and the Target of rapamycin (TOR) pathway respond to the levels of dietary nutrients to adjust both the rate of growth and the duration of the growth period. They do this not only by regulating organ growth, but also by modifying the rates of synthesis and circulating concentrations of key developmental hormones. Although the mechanisms through which this occurs have been well documented in one insect, the fruit fly Drosophila melanogaster, it is becoming increasingly clear that the downstream mechanisms through which IIS and TOR signalling alter size in response to nutrition differ between organs and across species. In this review, we highlight how understanding the organ-specific effects of IIS/TOR signalling are key to revealing the diversity of size control mechanisms across insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal.
| | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal; School of Biological Sciences, 25 Rainforest Walk, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
72
|
Glaser-Schmitt A, Parsch J. Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth. PLoS Biol 2018; 16:e2004538. [PMID: 29324742 PMCID: PMC5783415 DOI: 10.1371/journal.pbio.2004538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
Gene expression variation is a major contributor to phenotypic diversity within species and is thought to play an important role in adaptation. However, examples of adaptive regulatory polymorphism are rare, especially those that have been characterized at both the molecular genetic level and the organismal level. In this study, we perform a functional analysis of the Drosophila melanogaster CG9509 enhancer, a cis-regulatory element that shows evidence of adaptive evolution in populations outside the species’ ancestral range in sub-Saharan Africa. Using site-directed mutagenesis and transgenic reporter gene assays, we determined that 3 single nucleotide polymorphisms are responsible for the difference in CG9509 expression that is observed between sub-Saharan African and cosmopolitan populations. Interestingly, while 2 of these variants appear to have been the targets of a selective sweep outside of sub-Saharan Africa, the variant with the largest effect on expression remains polymorphic in cosmopolitan populations, suggesting it may be subject to a different mode of selection. To elucidate the function of CG9509, we performed a series of functional and tolerance assays on flies in which CG9509 expression was disrupted. We found that CG9509 plays a role in larval growth and influences adult body and wing size, as well as wing loading. Furthermore, variation in several of these traits was associated with variation within the CG9509 enhancer. The effect on growth appears to result from a modulation of active ecdysone levels and expression of growth factors. Taken together, our findings suggest that selection acted on 3 sites within the CG9509 enhancer to increase CG9509 expression and, as a result, reduce wing loading as D. melanogaster expanded out of sub-Saharan Africa. Much of the phenotypic variation that is observed within species is thought to be caused by variation in gene expression. Variants within cis-regulatory elements, which affect the expression of nearby genes within the same DNA strand, are thought to be an abundant resource upon which natural selection can act. Understanding the functional consequences of adaptive cis-regulatory changes is important, as it can help elucidate the mechanisms underlying phenotypic evolution in general and provide insight into the development and maintenance of biodiversity. However, functional analyses of these types of changes remain rare. Here we present a functional analysis of an adaptively evolving enhancer element of a D. melanogaster gene called CG9509, of previously unknown function. We show that 3 single nucleotide polymorphisms located within the enhancer of this gene are responsible for an increase in CG9509 expression in cosmopolitan populations (outside of south and central Africa) relative to sub-Saharan populations, which include ancestral populations. We further show that CG9509 is involved in the regulation of growth rate and body size determination and propose that the CG9509 enhancer underwent positive selection to reduce wing loading as the species expanded out of sub-Saharan Africa.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| | - John Parsch
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| |
Collapse
|
73
|
Buhler K, Clements J, Winant M, Bolckmans L, Vulsteke V, Callaerts P. Growth control through regulation of insulin-signaling by nutrition-activated steroid hormone in Drosophila. Development 2018; 145:dev.165654. [DOI: 10.1242/dev.165654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Growth and maturation are coordinated processes in all animals. Integration of internal cues, such as signalling pathways, with external cues such as nutritional status is paramount for an orderly progression of development in function of growth. In Drosophila, this involves insulin and steroid signalling, but the underlying mechanisms and their coordination are incompletely understood. We show that bioactive 20-hydroxyecdysone production by the enzyme Shade in the fat body is a nutrient-dependent process. We demonstrate that under fed conditions, Shade plays a role in growth control. We identify the trachea and the insulin-producing cells in the brain as direct targets through which 20-hydroxyecdysone regulates insulin-signaling. The identification of the trachea-dependent regulation of insulin-signaling exposes an important variable that may have been overlooked in other studies focusing on insulin-signaling in Drosophila. Our findings provide a potentially conserved, novel mechanism by which nutrition can modulate steroid hormone bioactivation, reveal an important caveat of a commonly used transgenic tool to study IPC function and yield further insights as to how steroid and insulin signalling are coordinated during development to regulate growth and developmental timing.
Collapse
Affiliation(s)
- Kurt Buhler
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Jason Clements
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Mattias Winant
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Lenz Bolckmans
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Veerle Vulsteke
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| |
Collapse
|
74
|
Thounaojam B, Keshan B. Modulation of gene expression by nutritional state and hormones in Bombyx larvae in relation to its growth period. Gene Expr Patterns 2017; 25-26:175-183. [DOI: 10.1016/j.gep.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/05/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
75
|
Liu Y, Mattila J, Ventelä S, Yadav L, Zhang W, Lamichane N, Sundström J, Kauko O, Grénman R, Varjosalo M, Westermarck J, Hietakangas V. PWP1 Mediates Nutrient-Dependent Growth Control through Nucleolar Regulation of Ribosomal Gene Expression. Dev Cell 2017; 43:240-252.e5. [PMID: 29065309 DOI: 10.1016/j.devcel.2017.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Ribosome biogenesis regulates animal growth and is controlled by nutrient-responsive mTOR signaling. How ribosome biogenesis is regulated during the developmental growth of animals and how nutrient-responsive signaling adjusts ribosome biogenesis in this setting have remained insufficiently understood. We uncover PWP1 as a chromatin-associated regulator of developmental growth with a conserved role in RNA polymerase I (Pol I)-mediated rRNA transcription. We further observed that PWP1 epigenetically maintains the rDNA loci in a transcription-competent state. PWP1 responds to nutrition in Drosophila larvae via mTOR signaling through gene expression and phosphorylation, which controls the nucleolar localization of dPWP1. Our data further imply that dPWP1 acts synergistically with mTOR signaling to regulate the nucleolar localization of TFIIH, a known elongation factor of Pol I. Ribosome biogenesis is often deregulated in cancer, and we demonstrate that high PWP1 levels in human head and neck squamous cell carcinoma tumors are associated with poor prognosis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Jaakko Mattila
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Sami Ventelä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena Yadav
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Wei Zhang
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Nicole Lamichane
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Jari Sundström
- Department of Pathology, University of Turku, 20520 Turku, Finland; Department of Pathology, Turku University Hospital, 20521 Turku, Finland
| | - Otto Kauko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery and Department of Medical Biochemistry and Genetics, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Ville Hietakangas
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
76
|
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 2017; 144:4406-4421. [PMID: 29038308 DOI: 10.1242/dev.155069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Unité de Génétique et Physiologie de l'Audition UMRS 1120, Département de Neurosciences, Institut Pasteur, 75015 Paris, France
| | - Dagmar Kainmüller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Janelia Farm Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany .,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany .,Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01309 Dresden, Germany
| |
Collapse
|
77
|
Brookheart RT, Duncan JG. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster. Reproduction 2017; 152:R79-90. [PMID: 27450801 DOI: 10.1530/rep-15-0595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming.
Collapse
Affiliation(s)
- Rita T Brookheart
- Department of PediatricsWashington University School of Medicine, St Louis, MO, USA
| | - Jennifer G Duncan
- Department of PediatricsWashington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
78
|
Moeller ME, Nagy S, Gerlach SU, Soegaard KC, Danielsen ET, Texada MJ, Rewitz KF. Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone. Curr Biol 2017; 27:1652-1659.e4. [PMID: 28528906 DOI: 10.1016/j.cub.2017.04.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022]
Abstract
Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.
Collapse
Affiliation(s)
- Morten E Moeller
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stephan U Gerlach
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Karen C Soegaard
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - E Thomas Danielsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kim F Rewitz
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
79
|
Zeng B, Huang Y, Xu J, Shiotsuki T, Bai H, Palli SR, Huang Y, Tan A. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori. J Biol Chem 2017; 292:11659-11669. [PMID: 28490635 DOI: 10.1074/jbc.m117.777797] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO (BmFOXO) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development.
Collapse
Affiliation(s)
- Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Takahiro Shiotsuki
- National Agriculture and Food Research Organization, Institute of Agrobiological Sciences, Division of Insect Science, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546-0091
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
80
|
Ng YS, Sorvina A, Bader CA, Weiland F, Lopez AF, Hoffmann P, Shandala T, Brooks DA. Proteome Analysis of Drosophila Mutants Identifies a Regulatory Role for 14-3-3ε in Metabolic Pathways. J Proteome Res 2017; 16:1976-1987. [PMID: 28365999 DOI: 10.1021/acs.jproteome.6b01032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolutionary conserved family of 14-3-3 proteins appears to have a role in integrating numerous intracellular pathways, including signal transduction, intracellular trafficking, and metabolism. However, little is known about how this interactive network might be affected by the direct abrogation of 14-3-3 function. The loss of Drosophila 14-3-3ε resulted in reduced survival of mutants during larval-to-adult transition, which is known to depend on an energy supply coming from the histolysis of fat body tissue. Here we report a differential proteomic analysis of larval fat body tissue at the onset of larval-to-adult transition, with the loss of 14-3-3ε resulting in the altered abundance of 16 proteins. These included proteins linked to protein biosynthesis, glycolysis, tricarboxylic acid cycle, and lipid metabolic pathways. The ecdysone receptor (EcR), which is responsible for initiating the larval-to-adult transition, colocalized with 14-3-3ε in wild-type fat body tissues. The altered protein abundance in 14-3-3ε mutant fat body tissue was associated with transcriptional deregulation of alcohol dehydrogenase, fat body protein 1, and lamin genes, which are known targets of the EcR. This study indicates that 14-3-3ε has a critical role in cellular metabolism involving either molecular crosstalk with the EcR or direct interaction with metabolic proteins.
Collapse
Affiliation(s)
- Yeap S Ng
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Alexandra Sorvina
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Christie A Bader
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Florian Weiland
- Adelaide Proteomics Center, School of Molecular and Biomedical Sciences, University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Angel F Lopez
- Centre for Cancer Biology , Adelaide, South Australia 5000, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Center, School of Molecular and Biomedical Sciences, University of Adelaide , Adelaide, South Australia 5005, Australia
| | | | - Douglas A Brooks
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| |
Collapse
|
81
|
Gáliková M, Klepsatel P, Münch J, Kühnlein RP. Spastic paraplegia-linked phospholipase PAPLA1 is necessary for development, reproduction, and energy metabolism in Drosophila. Sci Rep 2017; 7:46516. [PMID: 28422159 PMCID: PMC5395975 DOI: 10.1038/srep46516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/17/2017] [Indexed: 12/01/2022] Open
Abstract
The human PAPLA1 phospholipase family is associated with hereditary spastic paraplegia (HSP), a neurodegenerative syndrome characterized by progressive spasticity and weakness of the lower limbs. Taking advantage of a new Drosophila PAPLA1 mutant, we describe here novel functions of this phospholipase family in fly development, reproduction, and energy metabolism. Loss of Drosophila PAPLA1 reduces egg hatchability, pre-adult viability, developmental speed, and impairs reproductive functions of both males and females. In addition, our work describes novel metabolic roles of PAPLA1, manifested as decreased food intake, lower energy expenditure, and reduced ATP levels of the mutants. Moreover, PAPLA1 has an important role in the glycogen metabolism, being required for expression of several regulators of carbohydrate metabolism and for glycogen storage. In contrast, global loss of PAPLA1 does not affect fat reserves in adult flies. Interestingly, several of the PAPLA1 phenotypes in fly are reminiscent of symptoms described in some HSP patients, suggesting evolutionary conserved functions of PAPLA1 family in the affected processes. Altogether, this work reveals novel physiological functions of PAPLA1, which are likely evolutionary conserved from flies to humans.
Collapse
Affiliation(s)
- Martina Gáliková
- Max Planck Institute for Biophysical Chemistry, Research Group Molecular Physiology, Am Faßberg 11, D-37077 Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, Am Faßberg 11, D-37077 Göttingen, Germany.,Stockholm University, Department of Zoology, Svante Arrhenius väg 18B, S-106 91 Stockholm, Sweden
| | - Peter Klepsatel
- Max Planck Institute for Biophysical Chemistry, Research Group Molecular Physiology, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Judith Münch
- Max Planck Institute for Biophysical Chemistry, Research Group Molecular Physiology, Am Faßberg 11, D-37077 Göttingen, Germany.,University of Leipzig, Faculty of Chemistry and Mineralogy, Johannisallee 29, D-04103 Leipzig, Germany
| | - Ronald P Kühnlein
- Max Planck Institute for Biophysical Chemistry, Research Group Molecular Physiology, Am Faßberg 11, D-37077 Göttingen, Germany.,University of Graz, Institute of Molecular Biosciences, Humboldtstraße 50/2.OG, A-8010 Graz, Austria
| |
Collapse
|
82
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
83
|
Akitomo S, Egi Y, Nakamura Y, Suetsugu Y, Oishi K, Sakamoto K. Genome-wide microarray screening for Bombyx mori genes related to transmitting the determination outcome of whether to produce diapause or nondiapause eggs. INSECT SCIENCE 2017; 24:187-193. [PMID: 26596800 DOI: 10.1111/1744-7917.12297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
The bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae) exhibits a maternally controlled embryonic diapause. Maternal silkworms decide whether to lay diapause or nondiapause eggs depending on environmental factors such as the temperature and photoperiod during the egg and larval stages, and then induce diapause eggs during the pupal stage. However, little is known about the molecular mechanism that conveys the outcome of whether to produce diapause or nondiapause eggs from the egg or larval stages to the pupal stage. This study used microarray analysis to investigate differentially expressed genes in the larval brains of diapause- and nondiapause-egg producers, to which bivoltine silkworms were destined by thermal or photic stimulation during the egg stage. The cytochrome P450 18a1 and Krüppel homolog 1 genes were upregulated in producers of diapause eggs compared with those of nondiapause eggs under both experimental conditions. Cytochrome P450 18a1 encodes a key enzyme for steroid hormone inactivation and Krüppel homolog 1 is an early juvenile hormone-inducible gene that mediates the repression of metamorphosis. The upregulation of these genes during the larval stage might be involved in the signaling pathway that transmits information about the diapause program from the egg stage to the pupal stage in the silkworm.
Collapse
Affiliation(s)
- Shion Akitomo
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuichi Egi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuki Nakamura
- Insect Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Yoshitaka Suetsugu
- Insect Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | |
Collapse
|
84
|
Keshan B, Thounaojam B, Kh SD. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body. Gen Comp Endocrinol 2017; 241:108-117. [PMID: 27317549 DOI: 10.1016/j.ygcen.2016.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 01/10/2023]
Abstract
Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the expression level of ecdysone receptors (EcRB1 and USP1). 20E treatment showed an up-regulation in expression of ecdysone receptors, but only in fed larvae, whereas insulin treatment showed a down-regulation in the expression of EcRB1 and USP1 in all the experimental larvae studied. Further, the data indicates that an up-regulation of ecdysone receptors is associated with an increase in fat body glycogen content, whereas an up-regulation of insulin receptor expression causes glycogen mobilization. The study, therefore, suggests that the insulin and ecdysone signaling are linked to each other and that both insulin and ecdysone are involved in regulating the carbohydrate reserves in B. mori.
Collapse
Affiliation(s)
- Bela Keshan
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| | - Bembem Thounaojam
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Sanathoibi D Kh
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|
85
|
Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila. Genetics 2017; 205:1215-1228. [PMID: 28064166 PMCID: PMC5340334 DOI: 10.1534/genetics.116.192260] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Drosophila females are larger than males. In this article, we describe how X-chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X-linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X-chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X-chromosome signal elements (XSEs), Sex-lethal (Sxl) is activated in female (XX) but not male (XY) animals. Sxl activates transformer (tra), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X-chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc, was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism.
Collapse
|
86
|
Xie K, Tian L, Guo X, Li K, Li J, Deng X, Li Q, Xia Q, Zhong Y, Huang Z, Liu J, Li S, Yang W, Cao Y. BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation. Autophagy 2016; 12:381-96. [PMID: 26727186 DOI: 10.1080/15548627.2015.1134079] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autophagy and apoptosis, which could be induced by common stimuli, play crucial roles in development and disease. The functional relationship between autophagy and apoptosis is complex, due to the dual effects of autophagy. In the Bombyx Bm-12 cells, 20-hydroxyecdysone (20E) treatment or starvation-induced cell death, with autophagy preceding apoptosis. In response to 20E or starvation, BmATG8 was rapidly cleaved and conjugated with PE to form BmATG8-PE; subsequently, BmATG5 and BmATG6 were cleaved into BmATG5-tN and BmATG6-C, respectively. Reduction of expression of BmAtg5 or BmAtg6 by RNAi decreased the proportion of cells undergoing both autophagy and apoptosis after 20E treatment or starvation. Overexpression of BmAtg5 or BmAtg6 induced autophagy but not apoptosis in the absence of the stimuli, but promoted both autophagy and apoptosis induced by 20E or starvation. Notably, overexpression of cleavage site-deleted BmAtg5 or BmAtg6 increased autophagy but not apoptosis induced by 20E or starvation, whereas overexpression of BmAtg5-tN and BmAtg6-C was able to directly trigger apoptosis or promote the induced apoptosis. In conclusion, being cleaved into BmATG5-tN and BmATG6-C, BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20E or starvation in Bombyx Bm-12 cells, reflecting that autophagy precedes apoptosis in the midgut during Bombyx metamorphosis.
Collapse
Affiliation(s)
- Kun Xie
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China.,b Key Laboratory of Crops with High Quality and Efficient Cultivation and Security Control, Yunnan Higher Education Institutions, College of Life Science and Technology, HongHe University , Mengzi , Yunnan , China
| | - Ling Tian
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China.,c Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Xinyu Guo
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Kang Li
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China.,c Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Jianping Li
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Xiaojuan Deng
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Qingrong Li
- d The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | - Qingyou Xia
- e State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing , China
| | - Yangjin Zhong
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Zhijun Huang
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Jiping Liu
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Sheng Li
- c Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Wanying Yang
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| | - Yang Cao
- a Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University , Guangzhou , China
| |
Collapse
|
87
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
88
|
Gokhale RH, Hayashi T, Mirque CD, Shingleton AW. Intra-organ growth coordination in Drosophila is mediated by systemic ecdysone signaling. Dev Biol 2016; 418:135-145. [DOI: 10.1016/j.ydbio.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
|
89
|
Jaszczak JS, Halme A. Arrested development: coordinating regeneration with development and growth in Drosophila melanogaster. Curr Opin Genet Dev 2016; 40:87-94. [PMID: 27394031 PMCID: PMC5135572 DOI: 10.1016/j.gde.2016.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 01/01/2023]
Abstract
The capacity for tissues to regenerate often varies during development. A better understanding how developmental context regulates regenerative capacity will be an important step towards enhancing the regenerative capacity of tissues to repair disease or damage. Recent work examining the regeneration of imaginal discs in the fruit fly, Drosophila melanogaster, has begun to identify mechanisms by which developmental progress restricts regeneration, and elucidate how Drosophila coordinates regenerative repair with the growth and development of the entire organism. Here we review recent advances in describing the interplay between development and tissue regeneration in Drosophila and identify questions that arise from these findings.
Collapse
Affiliation(s)
- Jacob S Jaszczak
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
90
|
Li YF, Chen XY, Zhang CD, Tang XF, Wang L, Liu TH, Pan MH, Lu C. Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, Bombyx mori. INSECT SCIENCE 2016; 23:569-578. [PMID: 25558018 DOI: 10.1111/1744-7917.12199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self-regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re-activated by re-feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20-hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E-BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E.
Collapse
Affiliation(s)
- Yao-Feng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiang-Yun Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Dong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Xiao-Fang Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|
91
|
Jun JW, Han G, Yun HM, Lee GJ, Hyun S. Torso, a Drosophila receptor tyrosine kinase, plays a novel role in the larval fat body in regulating insulin signaling and body growth. J Comp Physiol B 2016; 186:701-9. [PMID: 27126913 DOI: 10.1007/s00360-016-0992-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
Torso is a receptor tyrosine kinase whose localized activation at the termini of the Drosophila embryo is mediated by its ligand, Trunk. Recent studies have unveiled a second function of Torso in the larval prothoracic gland (PG) as the receptor for the prothoracicotropic hormone, which triggers pupariation. As such, inhibition of Torso in the PG prolongs the larval growth period, thereby increasing the final pupa size. Here, we report that Torso also acts in the larval fat body, regulating body size in a manner opposite from that of Torso in PG. We confirmed the expression of torso mRNA in the larval fat body and its reduction by RNA interference (RNAi). Fat body-specific knockdown of torso, by either of the two independent RNAi transgenes, significantly decreased the final pupal size. We found that torso knockdown suppresses insulin/target of rapamycin (TOR) signaling in the fat body, as confirmed by repression of Akt and S6K. Notably, the decrease in insulin/TOR signaling and decrease of pupal size induced by the knockdown of torso were rescued by the expression of a constitutively active form of the insulin receptor or by the knockdown of FOXO. Our study revealed a novel role for Torso in the fat body with respect to regulation of insulin/TOR signaling and body size. This finding exemplifies the contrasting effects of the same gene expressed in two different organs on organismal physiology.
Collapse
Affiliation(s)
- Jong Woo Jun
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Gangsik Han
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyun Myoung Yun
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Gang Jun Lee
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
92
|
Moriyama M, Osanai K, Ohyoshi T, Wang HB, Iwanaga M, Kawasaki H. Ecdysteroid promotes cell cycle progression in the Bombyx wing disc through activation of c-Myc. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:1-9. [PMID: 26696544 DOI: 10.1016/j.ibmb.2015.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Developmental switching from growth to metamorphosis in imaginal primordia is an essential process of adult body planning in holometabolous insects. Although it is disciplined by a sequential action of the ecdysteroid, molecular mechanisms linking to cell proliferation are poorly understood. In the present study, we investigated the expression control of cell cycle-related genes by the ecdysteroid using the wing disc of the final-instar larvae of the silkworm, Bombyx mori. We found that the expression level of c-myc was remarkably elevated in the post-feeding cell proliferation phase, which coincided with a small increase in ecdysteroid titer. An in vitro wing disc culture showed that supplementation of the moderate level of the ecdysteroid upregulated c-myc expression within an hour and subsequently increased the expression of cell cycle core regulators, including A-, B-, D-, and E-type cyclin genes, Cdc25 and E2F1. We demonstrated that c-myc upregulation by the ecdysteroid was not inhibited in the presence of a protein synthesis inhibitor, suggesting a possibility that the ecdysteroid directly stimulates c-myc expression. Finally, results from the administration of a c-Myc inhibitor demonstrated that c-Myc plays an essential role in 20E-inducible cell proliferation. These findings suggested a novel pathway for ecdysteroid-inducible cell proliferation in insects, and it is likely to be conserved between insects and mammals in terms of steroid hormone regulation.
Collapse
Affiliation(s)
- Minoru Moriyama
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Kohji Osanai
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Tomokazu Ohyoshi
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Masashi Iwanaga
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
93
|
Rideout EJ, Narsaiya MS, Grewal SS. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size. PLoS Genet 2015; 11:e1005683. [PMID: 26710087 PMCID: PMC4692505 DOI: 10.1371/journal.pgen.1005683] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022] Open
Abstract
Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. Female-biased sexual size dimorphism is common in invertebrates, yet the mechanisms underlying increased female body size remain unclear. We uncovered a key role for sex determination gene transformer (tra) in promoting increased growth in females. Interestingly, we found that sex differences in body size are regulated by Tra in a pathway that is separate of the canonical sex determination pathway, and of other aspects of sexual dimorphism. Instead, Tra function in the fat body regulates growth in a non cell-autonomous manner by regulating the secretion of insulin-like peptides from the brain. This novel Tra-insulin link we describe may have implications for other sexually dimorphic phenotypes in Drosophila (eg. lifespan, stress resistance), many of which are also regulated by insulin.
Collapse
Affiliation(s)
- Elizabeth J. Rideout
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (EJR); (SSG)
| | - Marcus S. Narsaiya
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Savraj S. Grewal
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (EJR); (SSG)
| |
Collapse
|
94
|
Colombani J, Andersen DS, Boulan L, Boone E, Romero N, Virolle V, Texada M, Léopold P. Drosophila Lgr3 Couples Organ Growth with Maturation and Ensures Developmental Stability. Curr Biol 2015; 25:2723-9. [PMID: 26441350 DOI: 10.1016/j.cub.2015.09.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022]
Abstract
Early transplantation and grafting experiments suggest that body organs follow autonomous growth programs [1-3], therefore pointing to a need for coordination mechanisms to produce fit individuals with proper proportions. We recently identified Drosophila insulin-like peptide 8 (Dilp8) as a relaxin and insulin-like molecule secreted from growing tissues that plays a central role in coordinating growth between organs and coupling organ growth with animal maturation [4, 5]. Deciphering the function of Dilp8 in growth coordination relies on the identification of the receptor and tissues relaying Dilp8 signaling. We show here that the orphan receptor leucine-rich repeat-containing G protein-coupled receptor 3 (Lgr3), a member of the highly conserved family of relaxin family peptide receptors (RXFPs), mediates the checkpoint function of Dilp8 for entry into maturation. We functionally identify two Lgr3-positive neurons in each brain lobe that are required to induce a developmental delay upon overexpression of Dilp8. These neurons are located in the pars intercerebralis, an important neuroendocrine area in the brain, and make physical contacts with the PTTH neurons that ultimately control the production and release of the molting steroid ecdysone. Reducing Lgr3 levels in these neurons results in adult flies exhibiting increased fluctuating bilateral asymmetry, therefore recapitulating the phenotype of dilp8 mutants. Our work reveals a novel Dilp8/Lgr3 neuronal circuitry involved in a feedback mechanism that ensures coordination between organ growth and developmental transitions and prevents developmental variability.
Collapse
Affiliation(s)
- Julien Colombani
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France
| | - Ditte S Andersen
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France.
| | - Laura Boulan
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France
| | - Emilie Boone
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France
| | - Nuria Romero
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France
| | - Virginie Virolle
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France
| | - Michael Texada
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, 06108 Nice, France.
| |
Collapse
|
95
|
Lavrynenko O, Rodenfels J, Carvalho M, Dye NA, Lafont R, Eaton S, Shevchenko A. The ecdysteroidome of Drosophila: influence of diet and development. Development 2015; 142:3758-68. [PMID: 26395481 DOI: 10.1242/dev.124982] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023]
Abstract
Ecdysteroids are the hormones regulating development, physiology and fertility in arthropods, which synthesize them exclusively from dietary sterols. But how dietary sterol diversity influences the ecdysteroid profile, how animals ensure the production of desired hormones and whether there are functional differences between different ecdysteroids produced in vivo remains unknown. This is because currently there is no analytical technology for unbiased, comprehensive and quantitative assessment of the full complement of endogenous ecdysteroids. We developed a new LC-MS/MS method to screen the entire chemical space of ecdysteroid-related structures and to quantify known and newly discovered hormones and their catabolites. We quantified the ecdysteroidome in Drosophila melanogaster and investigated how the ecdysteroid profile varies with diet and development. We show that Drosophila can produce four different classes of ecdysteroids, which are obligatorily derived from four types of dietary sterol precursors. Drosophila makes makisterone A from plant sterols and epi-makisterone A from ergosterol, the major yeast sterol. However, they prefer to selectively utilize scarce ergosterol precursors to make a novel hormone 24,28-dehydromakisterone A and trace cholesterol to synthesize 20-hydroxyecdysone. Interestingly, epi-makisterone A supports only larval development, whereas all other ecdysteroids allow full adult development. We suggest that evolutionary pressure against producing epi-C-24 ecdysteroids might explain selective utilization of ergosterol precursors and the puzzling preference for cholesterol.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Jonathan Rodenfels
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Maria Carvalho
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Natalie A Dye
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Rene Lafont
- Sorbonne Universités, University Pierre and Marie Curie, Paris 06, IBPS-BIOSIPE, 7 Quai Saint Bernard, Case Courrier 29, Paris Cedex 05 75252, France
| | - Suzanne Eaton
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| |
Collapse
|
96
|
Boulan L, Milán M, Léopold P. The Systemic Control of Growth. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019117. [PMID: 26261282 DOI: 10.1101/cshperspect.a019117] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size.
Collapse
Affiliation(s)
- Laura Boulan
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Marco Milán
- 5ICREA, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| |
Collapse
|
97
|
Herboso L, Oliveira MM, Talamillo A, Pérez C, González M, Martín D, Sutherland JD, Shingleton AW, Mirth CK, Barrio R. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci Rep 2015. [PMID: 26198204 PMCID: PMC4510524 DOI: 10.1038/srep12383] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth.
Collapse
Affiliation(s)
- Leire Herboso
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Marisa M Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Talamillo
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Monika González
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
98
|
Zhang C, Robinson BS, Xu W, Yang L, Yao B, Zhao H, Byun PK, Jin P, Veraksa A, Moberg KH. The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell 2015; 34:168-80. [PMID: 26143992 DOI: 10.1016/j.devcel.2015.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The Hippo pathway is a conserved signaling cascade that modulates tissue growth. Although its core elements are well defined, factors modulating Hippo transcriptional outputs remain elusive. Here we show that components of the steroid-responsive ecdysone (Ec) pathway modulate Hippo transcriptional effects in imaginal disc cells. The Ec receptor coactivator Taiman (Tai) interacts with the Hippo transcriptional coactivator Yorkie (Yki) and promotes expression of canonical Yki-responsive genes. Tai enhances Yki-driven growth, while Tai loss, or a form of Tai unable to bind Yki, suppresses Yki-driven tissue growth. This growth suppression is not correlated with impaired induction of canonical Hippo-responsive genes but with suppression of a distinct pro-growth program of Yki-induced/Tai-dependent genes, including the germline stem cell factors nanos and piwi. These data reveal Hippo/Ec pathway crosstalk in the form a Yki-Tai complex that collaboratively induces germline genes as part of a transcriptional program that is normally repressed in developing somatic epithelia.
Collapse
Affiliation(s)
- Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian S Robinson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenjian Xu
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Liu Yang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
99
|
Nitric Oxide Synthase Regulates Growth Coordination During Drosophila melanogaster Imaginal Disc Regeneration. Genetics 2015; 200:1219-28. [PMID: 26081194 DOI: 10.1534/genetics.115.178053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.
Collapse
|
100
|
Gokhale RH, Shingleton AW. Size control: the developmental physiology of body and organ size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:335-56. [PMID: 25808999 DOI: 10.1002/wdev.181] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
Abstract
The developmental regulation of final body and organ size is fundamental to generating a functional and correctly proportioned adult. Research over the last two decades has identified a long list of genes and signaling pathways that, when perturbed, influence final body size. However, body and organ size are ultimately a characteristic of the whole organism, and how these myriad genes and pathways function within a physiological context to control size remains largely unknown. In this review, we first describe the major size-regulatory signaling pathways: the Insulin/IGF-, RAS/RAF/MAPK-, TOR-, Hippo-, and JNK-signaling pathways. We then explore what is known of how these pathways regulate five major aspects of size regulation: growth rate, growth duration, target size, negative growth and growth coordination. While this review is by no means exhaustive, our goal is to provide a conceptual framework for integrating the mechanisms of size control at a molecular-genetic level with the mechanisms of size control at a physiological level.
Collapse
Affiliation(s)
- Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, Lake Forest, IL, USA.,Department of Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|