51
|
Aw WY, Heck BW, Joyce B, Devenport D. Transient Tissue-Scale Deformation Coordinates Alignment of Planar Cell Polarity Junctions in the Mammalian Skin. Curr Biol 2016; 26:2090-100. [PMID: 27451904 DOI: 10.1016/j.cub.2016.06.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Abstract
Planar cell polarity (PCP) refers to the collective alignment of polarity along the tissue plane. In skin, the largest mammalian organ, PCP aligns over extremely long distances, but the global cues that orient tissue polarity are unknown. Here, we show that Celsr1 asymmetry arises concomitant with a gradient of tissue deformation oriented along the medial-lateral axis. This uniaxial tissue tension, whose origin remains unknown, transiently transforms basal epithelial cells from initially isotropic and disordered states into highly elongated and aligned morphologies. Reorienting tissue deformation is sufficient to shift the global axis of polarity, suggesting that uniaxial tissue strain can act as a long-range polarizing cue. Observations both in vivo and in vitro suggest that the effect of tissue anisotropy on Celsr1 polarity is not a direct consequence of cell shape but rather reflects the restructuring of cell-cell interfaces during oriented cell divisions and cell rearrangements that serve to relax tissue strain. We demonstrate that cell intercalations remodel intercellular junctions predominantly between the mediolateral interfaces of neighboring cells. This restructuring of the cell surface polarizes Celsr1, which is slow to accumulate at nascent junctions yet stably associates with persistent junctions. We propose that tissue anisotropy globally aligns Celsr1 polarity by creating a directional bias in the formation of new cell interfaces while simultaneously aligning the persistent interfaces at which Celsr1 prefers to accumulate.
Collapse
Affiliation(s)
- Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bryan W Heck
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
52
|
Ohata S, Alvarez-Buylla A. Planar Organization of Multiciliated Ependymal (E1) Cells in the Brain Ventricular Epithelium. Trends Neurosci 2016; 39:543-551. [PMID: 27311928 DOI: 10.1016/j.tins.2016.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023]
Abstract
Cerebrospinal fluid (CSF) continuously flows through the cerebral ventricles, a process essential for brain homeostasis. Multiciliated ependymal (E1) cells line the walls of the ventricles and contribute importantly to CSF flow through ciliary beating. Key to this function is the rotational and translational planar cell polarity (PCP) of E1 cells. Defects in the PCP of E1 cells can result in abnormal CSF accumulation and hydrocephalus. Here, we integrate recent data on the roles of early CSF flow in the embryonic ventricles, PCP regulators (e.g., Vangl2 and Dishevelled), and cytoskeletal networks in the establishment, refinement, and maintenance of E1 cells' PCP. The planar organization mechanisms of E1 cells could explain how CSF flow contributes to brain function and may help in the diagnosis and prevention of hydrocephalus.
Collapse
Affiliation(s)
- Shinya Ohata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
53
|
Shi D, Usami F, Komatsu K, Oka S, Abe T, Uemura T, Fujimori T. Dynamics of planar cell polarity protein Vangl2 in the mouse oviduct epithelium. Mech Dev 2016; 141:78-89. [PMID: 27155041 DOI: 10.1016/j.mod.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
The planar cell polarity (PCP) pathway regulates morphogenesis in various organs. The polarized localization is a key feature of core PCP factors for orchestrating cell polarity in an epithelial sheet. Several studies using Drosophila melanogaster have investigated the mechanism of the polarized localization. However, to what extent these mechanisms are conserved and how the polarization of core PCP factors is maintained in mature vertebrates are still open questions. Here, we addressed these questions by analyzing the dynamics of Vangl2, a member of core PCP factors, in the mouse oviduct epithelium. Multiple core PCP factors including Vangl2 were expressed in the mouse oviduct in postnatal stages. Vangl1, Vangl2 and Frizzled6 had polarized localization in the oviduct epithelium. Exogenously introduced expression of green fluorescent protein (GFP)-tagged core PCP factors by electroporation revealed that Vangl1, Vangl2 and Prickle2 are localized on the ovarian side of the cell periphery in the oviduct. To visualize the Vangl2 dynamics, we generated the R26-Vangl2-EGFP transgenic mice. In these mice, Vangl2-EGFP was ubiquitously expressed and showed polarized localization in multiple organs including the oviduct, the trachea, the lateral ventricle and the uterus. Fluorescence recovery after photobleaching (FRAP) analysis in the mature oviduct revealed that Vangl2 in the enriched subdomain of cell periphery (cellular edge) was more stable than Vangl2 in the less-enriched cellular edge. Furthermore, when a subregion of a Vangl2-enriched cellular edge was bleached, the Vangl2-enriched subregion neighboring the bleached region in the same cellular edge tended to decrease more intensities than the neighboring sub-region in the next Vangl2-enriched cellular edge. Finally, the polarization of Vangl2 was observed in nocodazole treated mouse viduct, suggesting the maintenance of Vangl2 asymmetry is independent of microtubule formation. Taken together, we revealed the characteristics of Vangl2 dynamics in the oviduct epithelium, and found that Vangl2 forms stable complex at the enriched cellular edge and forms compartments. Our data collectively suggest that the mechanism for maintenance of Vangl2 asymmetry in mature mouse oviduct is different from the microtubule dependent polarized transport model, which has been proposed for the reinforcement of the asymmetry of two core PCP proteins, Flamingo and Dishevelled, in the developing fly.
Collapse
Affiliation(s)
- Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| | - Fumiko Usami
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Japan
| | - Kouji Komatsu
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan.
| |
Collapse
|
54
|
Chen DY, Lipari KR, Dehghan Y, Streichan SJ, Bilder D. Symmetry Breaking in an Edgeless Epithelium by Fat2-Regulated Microtubule Polarity. Cell Rep 2016; 15:1125-33. [PMID: 27134170 DOI: 10.1016/j.celrep.2016.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
Planar cell polarity (PCP) information is a critical determinant of organ morphogenesis. While PCP in bounded epithelial sheets is increasingly well understood, how PCP is organized in tubular and acinar tissues is not. Drosophila egg chambers (follicles) are an acinus-like "edgeless epithelium" and exhibit a continuous, circumferential PCP that does not depend on pathways active in bounded epithelia; this follicle PCP directs formation of an ellipsoid rather than a spherical egg. Here, we apply an imaging algorithm to "unroll" the entire 3D tissue surface and comprehensively analyze PCP onset. This approach traces chiral symmetry breaking to plus-end polarity of microtubules in the germarium, well before follicles form and rotate. PCP germarial microtubules provide chiral information that predicts the direction of whole-tissue rotation as soon as independent follicles form. Concordant microtubule polarity, but not microtubule alignment, requires the atypical cadherin Fat2, which acts at an early stage to translate plus-end bias into coordinated actin-mediated collective cell migration. Because microtubules are not required for PCP or migration after follicle rotation initiates, while dynamic actin and extracellular matrix are, polarized microtubules lie at the beginning of a handoff mechanism that passes early chiral PCP of the cytoskeleton to a supracellular planar polarized extracellular matrix and elongates the organ.
Collapse
Affiliation(s)
- Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Katherine R Lipari
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Yalda Dehghan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Sebastian J Streichan
- Kavli Institute of Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
55
|
Krol A, Henle SJ, Goodrich LV. Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. Development 2016; 143:2172-82. [PMID: 27122175 DOI: 10.1242/dev.133678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
Neurons exhibit asymmetric morphologies throughout development - from migration to the elaboration of axons and dendrites - that are correctly oriented for the flow of information. For instance, retinal amacrine cells migrate towards the inner plexiform layer (IPL) and then retract their trailing processes, thereby acquiring a unipolar morphology with a single dendritic arbor restricted to the IPL. Here, we provide evidence that the Fat-like cadherin Fat3 acts during multiple stages of amacrine cell development in mice to orient overall changes in cell shape towards the IPL. Using a time-lapse imaging assay, we found that developing amacrine cells are less directed towards the IPL in the absence of Fat3, during both migration and retraction. Consistent with its predicted role as a cell-surface receptor, Fat3 functions cell-autonomously and is able to influence the cytoskeleton directly through its intracellular domain, which can bind and localize Ena/VASP family actin regulators. Indeed, a change in Ena/VASP protein distribution is sufficient to recapitulate the Fat3 mutant amacrine cell phenotype. Thus, Fat-like proteins might control the polarized development of tissues by sculpting the cytoskeleton of individual cells.
Collapse
Affiliation(s)
- Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
56
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
57
|
Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling. Nat Commun 2016; 7:11135. [PMID: 27021213 PMCID: PMC4820615 DOI: 10.1038/ncomms11135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 12/28/2022] Open
Abstract
Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. Planar cell polarity (PCP) contributes to cellular orientation during development but how this is regulated in Drosophila is unclear. Here, the authors identify Frizzled-PCP signalling as regulating polarised centriole positioning in the wing disc.
Collapse
|
58
|
Sharp KA, Axelrod JD. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 2016; 5:229-36. [PMID: 26863941 PMCID: PMC4810745 DOI: 10.1242/bio.016162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
59
|
Mao Q, Lecuit T. Mechanochemical Interplay Drives Polarization in Cellular and Developmental Systems. Curr Top Dev Biol 2016; 116:633-57. [DOI: 10.1016/bs.ctdb.2015.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
60
|
Toya M, Takeichi M. Organization of Non-centrosomal Microtubules in Epithelial Cells. Cell Struct Funct 2016; 41:127-135. [DOI: 10.1247/csf.16015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mika Toya
- RIKEN Center for Developmental Biology
| | | |
Collapse
|
61
|
Collu GM, Mlodzik M. Planar polarity: converting a morphogen gradient into cellular polarity. Curr Biol 2015; 25:R372-4. [PMID: 25942551 DOI: 10.1016/j.cub.2015.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epithelial cells are polarized within the apico-basal and planar axes. The latter - planar cell polarity - requires long-range regulation of orientation as well as short-range, cell-to-cell realignment through feedback loops. New insights into the long-range, gradient-type regulation reveal how a kinase translates the morphogen gradient input into cellular orientation.
Collapse
Affiliation(s)
- Giovanna M Collu
- Department of Developmental & Regenerative Biology, and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Developmental & Regenerative Biology, and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
62
|
Transcriptional analysis of the dachsous gene uncovers novel isoforms expressed during development in Drosophila. FEBS Lett 2015; 589:3595-603. [PMID: 26497083 DOI: 10.1016/j.febslet.2015.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
Abstract
The Drosophila cadherin-related protein Dachsous (Ds) plays a prominent role in planar cell polarity (PCP) and growth. The regulation of these two processes is based on the interaction between Ds and Fat proteins, generating an intracellular response required for tissue polarization and modulation of Hippo pathway activity. Here we have performed a comprehensive molecular study of the ds gene during larval development that has shown an unexpected complexity in its transcriptional regulation and revealed the expression of hitherto unsuspected transcripts. Also, knockdown of several isoforms provides new evidence on the importance of the cytoplasmic domain in the mechanism of action of Ds during development.
Collapse
|
63
|
Hale R, Strutt D. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annu Rev Genet 2015; 49:529-51. [DOI: 10.1146/annurev-genet-112414-055224] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalind Hale
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - David Strutt
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
64
|
Ambegaonkar AA, Irvine KD. Coordination of planar cell polarity pathways through Spiny-legs. eLife 2015; 4. [PMID: 26505959 PMCID: PMC4764577 DOI: 10.7554/elife.09946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI:http://dx.doi.org/10.7554/eLife.09946.001 Animals have many asymmetric organs. Wings, for example, are aerodynamically shaped and have a clear front, back, top and bottom, and even additions to these organs, such as feathers on the wing, often need to be oriented in a specific manner. This kind of orientation arises when cells divide and grow asymmetrically in a flat plane. The asymmetry is established at the level of single cells when proteins are not equally spread throughout a cell, but rather asymmetrically distributed. Such cells are said to be ‘planar polarized’; and many experiments addressing this so-called planar cell polarity have been conducted in fruit flies, because they can be genetically altered easily. Previous studies have shown that two signaling pathways—called Frizzled and Dachsous-Fat—regulate how individual cells orient themselves within a flat sheet of cells that forms fruit fly’s wing. The two pathways are not independent, but it is unclear how they are linked. In particular, there has been conflicting evidence as to whether the Dachsous-Fat pathway controls the Frizzled pathway or whether the two act in parallel. Now, Ambegaonkar and Irvine have discovered new roles for a protein that is involved in both pathways, called 'Spiny-legs'. This protein was known to be important in the Frizzled pathway, but, when it was tracked with a fluorescent tag in developing wing cells it also accumulated in areas where two proteins that make up part of the Dachsous-Fat pathway were located. Biochemical experiments showed that both of these proteins (which are called Dachs or Dachsous) could physically interact with Spiny-legs. Ambegaonkar and Irvine therefore deleted the genes for Dachs or Dachsous in fruit flies and observed that Spiny-legs no longer organized itself in the proper way, implying that Dachs and Dachsous control where Spiny-legs goes within cells. When this analysis was extended to other fruit fly organs, such as the eyes, Ambegaonkar and Irvine found that Dachsous was more important than Dachs for the correct localization of Spiny-legs. Additionally, the Frizzled and Dachsous-Fat pathways seemed to compete for interactions with Spiny-legs. This connection between the two pathways helps to explain how cells behave when several different signals reach them. It also shows how different organs can reuse conserved components of the pathways to make different end products. Future studies should aim to work out the number of systems that polarize cells and how they are connected in different tissues. DOI:http://dx.doi.org/10.7554/eLife.09946.002
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
65
|
Chien YH, Keller R, Kintner C, Shook DR. Mechanical strain determines the axis of planar polarity in ciliated epithelia. Curr Biol 2015; 25:2774-2784. [PMID: 26441348 DOI: 10.1016/j.cub.2015.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Epithelia containing multiciliated cells align beating cilia along a common planar axis specified by the conserved planar cell polarity (PCP) pathway. Specification of the planar axis is also thought to require a long-range cue to align the axis globally, but the nature of this cue in ciliated and other epithelia remains poorly understood. We examined this issue using the Xenopus larval skin, where ciliary flow aligns to the anterior-posterior (A-P) axis. We first show that a planar axis initially arises in the developing skin during gastrulation, based on the appearance of polarized apical microtubules and cell junctions with increased levels of stable PCP components. This axis also arises in severely ventralized embryos, despite their deficient embryonic patterning. Because ventralized embryos still gastrulate, producing a mechanical force that strains the developing skin along the A-P axis, we asked whether this strain alone drives global planar patterning. Isolated skin explanted before gastrulation lacks strain and fails to acquire a global planar axis but responds to exogenous strain by undergoing cell elongation, forming polarized apical microtubules, and aligning stable components of the PCP pathway orthogonal to the axis of strain. The planar axis in embryos can be redirected by applying exogenous strain during a critical period around gastrulation. Finally, we provide evidence that apical microtubules and the PCP pathway interact to align the planar axis. These results indicate that oriented tissue strain generated by the gastrulating mesoderm plays a major role in determining the global axis of planar polarity of the developing skin.
Collapse
Affiliation(s)
- Yuan-Hung Chien
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - David R Shook
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
66
|
Li-Villarreal N, Forbes MM, Loza AJ, Chen J, Ma T, Helde K, Moens CB, Shin J, Sawada A, Hindes AE, Dubrulle J, Schier AF, Longmore GD, Marlow FL, Solnica-Krezel L. Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development 2015; 142:2704-18. [PMID: 26160902 DOI: 10.1242/dev.119800] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 01/04/2023]
Abstract
Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meredyth M Forbes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Andrew J Loza
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Taylur Ma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kathryn Helde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna E Hindes
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory D Longmore
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
67
|
Lu Q, Schafer DA, Adler PN. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton. Development 2015; 142:2478-86. [PMID: 26153232 DOI: 10.1242/dev.122119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023]
Abstract
The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.
Collapse
Affiliation(s)
- Qiuheng Lu
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Paul N Adler
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
68
|
Abstract
The core and Fat-Dachsous signaling systems locally align planar cell polarities in Drosophila epithelia. Three recent papers address how coupling between these systems can be altered and reversed by the products of the gene prickle.
Collapse
Affiliation(s)
- Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706 USA.
| |
Collapse
|
69
|
Cho B, Pierre-Louis G, Sagner A, Eaton S, Axelrod JD. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle. PLoS Genet 2015; 11:e1005259. [PMID: 25996914 PMCID: PMC4440771 DOI: 10.1371/journal.pgen.1005259] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling. Many epithelial cells display a level of organization in which cellular structures or appendages are positioned asymmetrically within the cell along an axis perpendicular to the apical-basal axis of the cell. When the direction of this polarization is coordinated within the plane of the epithelium, this phenomenon is referred to as planar cell polarity (PCP). PCP is organized, at least in part, by a group of molecules that interact across cell-cell junctions and segregate into two groups that localize on opposite sides of each cell. Their asymmetric localization is thought to both produce molecular asymmetry, and to mark polarized domains within the cell for subsequent morphological polarization. In segregating to produce molecular asymmetry, these proteins participate in both positive and negative feedback, much like ferromagnets, to align their localization within and between neighboring cells. In this work, we identify a mechanism for negative feedback that utilizes the protein Prickle, one of the PCP signaling components. Levels of Prickle are precisely regulated, in part by a ubiquitinylation mechanism that targets excess protein for degradation. Prickle mediates internalization and removal of one class of PCP proteins, thereby causing repulsion of opposite ‘poles.’ Excess Prickle disrupts this mechanism and interferes with establishing polarity.
Collapse
Affiliation(s)
- Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gandhy Pierre-Louis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andreas Sagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
70
|
Newman-Smith E, Kourakis MJ, Reeves W, Veeman M, Smith WC. Reciprocal and dynamic polarization of planar cell polarity core components and myosin. eLife 2015; 4:e05361. [PMID: 25866928 PMCID: PMC4417934 DOI: 10.7554/elife.05361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/10/2015] [Indexed: 12/05/2022] Open
Abstract
The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI:http://dx.doi.org/10.7554/eLife.05361.001 Animal cells that form flat layers of a tissue, such as the skin or the lining of internal cavities, are often orientated in the same direction. The same is true for structures such as hairs or feathers, which are attached to the skin. This phenomenon is known as ‘planar cell polarity’ (or ‘PCP’ for short). Many different organisms use similar mechanisms to establish this kind of tissue pattern. The best-studied mechanism involves the so-called ‘core PCP pathway’. Signaling proteins in this pathway coordinate the polarity of neighboring cells. Other ‘global signaling pathways’ are thought to first ensure that tissues are correctly orientated within the embryo as a whole, and to do this, the global pathways are thought to align a network of filament-like structures within the cells in a particular direction. Once correctly orientated, these filaments—known as microtubules—have been proposed to help position the components of the core PCP pathway such that they can correctly orientate the rest of the cell. Now Newman-Smith, Kourakis et al. have identified another network of filaments within cells that interacts with components of the core PCP pathway in a sea squirt called Ciona savignyi. This organism begins life as a tadpole-like larva that has a flexible rod-shaped structure, called a ‘notochord’, running along the length of its body. The cells of the notochord become polarized as they develop. When microtubules are disrupted, their planar polarity remains unaffected. However, when another network of filaments—called the actomyosin network––is chemically disrupted, the polarity of certain core PCP components is lost. The findings of Newman-Smith, Kourakis et al. reveal that the core PCP components and the actomyosin network in this sea squirt reinforce each other's polarity. This represents an alternative to the previously described models of planar polarity in which the core PCP components are thought to drive the polarization of the actomyosin network. Whether this model extends to planar cell polarity mechanisms in other organisms, such humans and other animals with backbones, remains a question for future work. DOI:http://dx.doi.org/10.7554/eLife.05361.002
Collapse
Affiliation(s)
- Erin Newman-Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Matthew J Kourakis
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Wendy Reeves
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Michael Veeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
71
|
Galic M, Matis M. Polarized trafficking provides spatial cues for planar cell polarization within a tissue. Bioessays 2015; 37:678-86. [PMID: 25845311 DOI: 10.1002/bies.201400196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Planar cell polarity, the polarization of cells within the plane of the epithelium, orthogonal to the apical-basal axis, is essential for a growing list of developmental events, and - over the last 15 years - has evolved from a little-studied curiosity in Drosophila to the subject of a substantial research enterprise. In that time, it has been recognized that two molecular systems are responsible for polarization of most tissues: Both the "core" Frizzled system and the "global" Fat/Dachsous/Four-jointed system produce molecular asymmetry within cells, and contribute to morphological polarization. In this review, we discuss recent findings on the molecular mechanism that links "global" directional signals with local coordinated polarity.
Collapse
Affiliation(s)
- Milos Galic
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.,Institute of Cell Biology, ZMBE, University of Münster, Germany
| |
Collapse
|
72
|
Lu Q, Adler PN. The diaphanous gene of Drosophila interacts antagonistically with multiple wing hairs and plays a key role in wing hair morphogenesis. PLoS One 2015; 10:e0115623. [PMID: 25730111 PMCID: PMC4346269 DOI: 10.1371/journal.pone.0115623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
The Drosophila wing is covered by an array of distally pointing hairs that has served as a key model system for studying planar cell polarity (PCP). The adult cuticular hairs are formed in the pupae from cell extensions that contain extensive actin filaments and microtubules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin proteins promote the formation of long actin filaments of the sort thought to be important for hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role in hair morphogenesis. Both loss of function mutations and the expression of a constitutively active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and activation of the cytoskeleton to the distal most part of wing cells. It also ensures the formation of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may be part of this mechanism. We found the expression of constitutively active Dia greatly expands the region for activation of the cytoskeleton and that dia functions antagonistically with multiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Further we established that purified fragments of Dia and Mwh could be co-immunoprecipitated suggesting the genetic interaction could reflect a direct physical interaction.
Collapse
Affiliation(s)
- Qiuheng Lu
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul N. Adler
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- Cell Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
73
|
Rovira M, Saavedra P, Casal J, Lawrence PA. Regions within a single epidermal cell of Drosophila can be planar polarised independently. eLife 2015; 4:e06303. [PMID: 25671242 PMCID: PMC4341236 DOI: 10.7554/elife.06303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/07/2015] [Indexed: 12/20/2022] Open
Abstract
Planar cell polarity (PCP), the coordinated and consistent orientation of cells in the plane of epithelial sheets, is a fundamental and conserved property of animals and plants. Up to now, the smallest unit expressing PCP has been considered to be an entire single cell. We report that, in the larval epidermis of Drosophila, different subdomains of one cell can have opposite polarities. In larvae, PCP is driven by the Dachsous/Fat system; we show that the polarity of a subdomain within one cell is its response to levels of Dachsous/Fat in the membranes of contacting cells. During larval development, cells rearrange (Saavedra et al., 2014) and when two subdomains of a single cell have different types of neighbouring cells, then these subdomains can become polarised in opposite directions. We conclude that polarisation depends on a local comparison of the amounts of Dachsous and Fat within opposing regions of a cell's membrane.
Collapse
Affiliation(s)
- Miguel Rovira
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pedro Saavedra
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - José Casal
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
74
|
Abstract
Planar cell polarity (PCP) refers to the coordinated alignment of cell polarity across the tissue plane. Key to the establishment of PCP is asymmetric partitioning of cortical PCP components and intercellular communication to coordinate polarity between neighboring cells. Recent progress has been made toward understanding how protein transport, endocytosis, and intercellular interactions contribute to asymmetric PCP protein localization. Additionally, the functions of gradients and mechanical forces as global cues that bias PCP orientation are beginning to be elucidated. Together, these findings are shedding light on how global cues integrate with local cell interactions to organize cellular polarity at the tissue level.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
75
|
Measuring microtubule polarity in spindles with second-harmonic generation. Biophys J 2014; 106:1578-87. [PMID: 24739157 DOI: 10.1016/j.bpj.2014.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
The spatial organization of microtubule polarity, and the interplay between microtubule polarity and protein localization, is thought to be crucial for spindle assembly, anaphase, and cytokinesis, but these phenomena remain poorly understood, in part due to the difficulty of measuring microtubule polarity in spindles. We develop and implement a method to nonperturbatively and quantitatively measure microtubule polarity throughout spindles using a combination of second-harmonic generation and two-photon fluorescence. We validate this method using computer simulations and by comparison to structural data on spindles obtained from electron tomography and laser ablation. This method should provide a powerful tool for studying spindle organization and function, and may be applicable for investigating microtubule polarity in other systems.
Collapse
|
76
|
Carvajal-Gonzalez JM, Mlodzik M. Mechanisms of planar cell polarity establishment in Drosophila. F1000PRIME REPORTS 2014; 6:98. [PMID: 25580252 PMCID: PMC4229721 DOI: 10.12703/p6-98] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Correct patterning and polarization of epithelial and mesenchymal cells are essential for morphogenesis and function of all organs and organisms. Epithelial cells are generally polarized in two axes: (a) the ubiquitous apical-basal axis and (b) polarity within the plane of the epithelium. The latter is generally referred to as planar cell polarity (PCP) and also is found in several contexts of mesenchymal cell patterning. In Drosophila, all adult structures display PCP features, and two conserved molecular systems (the Fat [Ft]/Dachsous [Ds] system and the Frizzled [Fz]/PCP pathway) that regulate this process have been identified. Although significant progress has been made in dissecting aspects of PCP signaling within cells, much remains to be discovered about the mechanisms of long-range and local PCP cell-cell interactions. Here, we discuss the current models based on Drosophila studies and incorporate recent insights into this long-standing cell and developmental biology problem.
Collapse
|
77
|
Rodrigues-Campos M, Thompson BJ. The ubiquitin ligase FbxL7 regulates the Dachsous-Fat-Dachs system in Drosophila. Development 2014; 141:4098-103. [PMID: 25256343 PMCID: PMC4302899 DOI: 10.1242/dev.113498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The atypical cadherins Dachsous (Ds) and Fat (Ft) are required to control the size and shape of tissues and organs in animals. In Drosophila, a key effector of Ds and Ft is the atypical myosin Dachs, which becomes planar polarised along the proximal-distal axis in developing epithelia to regulate tissue size via the Hippo pathway and tissue shape via modulating tension at junctions. How Ds and Ft control Dachs polarisation remains unclear. Here, we identify a ubiquitin ligase, FbxL7, as a novel component of the Ds-Ft-Dachs system that is required to control the level and localisation of Dachs. Loss of FbxL7 results in accumulation of Dachs, similar to loss of Ft. Overexpression of FbxL7 causes downregulation of Dachs, similar to overexpression of the Ft intracellular domain. In addition to regulating Dachs, FbxL7 also influences Ds in a similar manner. GFP-tagged FbxL7 localises to the plasma membrane in a Ft-dependent manner and is planar polarised. We propose that Ft recruits FbxL7 to the proximal side of the cell to help restrict Ds and Dachs to the distal side of the cell.
Collapse
Affiliation(s)
- Mariana Rodrigues-Campos
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK GABBA, ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Barry J Thompson
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
78
|
Merkel M, Sagner A, Gruber FS, Etournay R, Blasse C, Myers E, Eaton S, Jülicher F. The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems. Curr Biol 2014; 24:2111-2123. [PMID: 25201685 DOI: 10.1016/j.cub.2014.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/25/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The conserved Fat and Core planar cell polarity (PCP) pathways work together to specify tissue-wide orientation of hairs and ridges in the Drosophila wing. Their components form intracellularly polarized complexes at adherens junctions that couple the polarity of adjacent cells and form global patterns. How Fat and Core PCP systems interact is not understood. Some studies suggest that Fat PCP directly orients patterns formed by Core PCP components. Others implicate oriented tissue remodeling in specifying Core PCP patterns. RESULTS We use genetics, quantitative image analysis, and physical modeling to study Fat and Core PCP interactions during wing development. We show their patterns change during morphogenesis, undergoing phases of coupling and uncoupling that are regulated by antagonistic Core PCP protein isoforms Prickle and Spiny-legs. Evolving patterns of Core PCP are hysteretic: the early Core PCP pattern is modified by tissue flows and then by coupling to Fat PCP, producing sequential patterns that guide hairs and then ridges. Our data quantitatively account for altered hair and ridge polarity patterns in PCP mutants. Premature coupling between Fat and Core PCP explains altered polarity patterns in pk mutants. In other Core PCP mutants, hair polarity patterns are guided directly by Fat PCP. When both systems fail, hairs still align locally and obey signals associated with veins. CONCLUSIONS Temporally regulated coupling between the Fat and Core PCP systems enables a single tissue to develop sequential polarity patterns that orient distinct morphological structures.
Collapse
Affiliation(s)
- Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Andreas Sagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Franz Sebastian Gruber
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphael Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
| |
Collapse
|
79
|
Eaton S, Martin-Belmonte F. Cargo sorting in the endocytic pathway: a key regulator of cell polarity and tissue dynamics. Cold Spring Harb Perspect Biol 2014; 6:a016899. [PMID: 25125399 DOI: 10.1101/cshperspect.a016899] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. Epithelial cells polarize along two fundamental axes, the apicobasal and the planar, both depending on finely regulated protein trafficking mechanisms. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network or endosomes. This exocytic trafficking has been identified as essential for proper epithelial polarization. Accumulating evidence now reveals that endocytosis and endocytic recycling play an equally important role in epithelial polarization and the appropriate localization of key polarity proteins. Here, we review recent work in metazoan systems illuminating the connections between endocytosis, postendocytic trafficking, and cell polarity, both apicobasal and planar, in the formation of differentiated epithelial cells, and how these processes regulate tissue dynamics.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
80
|
Matis M, Russler-Germain DA, Hu Q, Tomlin CJ, Axelrod JD. Microtubules provide directional information for core PCP function. eLife 2014; 3:e02893. [PMID: 25124458 PMCID: PMC4151085 DOI: 10.7554/elife.02893] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI:http://dx.doi.org/10.7554/eLife.02893.001 Almost all cells exhibit some sort of polarity: the epithelial cells that line the digestive tract, for example, have an apical domain, which faces out, and a basal domain, which faces the tissue underneath. Some epithelial cells also exhibit planar cell polarity: this involves key structures within the cell being oriented along an axis within the plane of an epithelium. Disruption of planar cell polarity is associated with various developmental defects. It is known that the planar polarity of epithelial cells relies on two molecular complexes—a ‘core’ complex and a signaling complex called the Ft/Ds/Fj system—working together. While each of these complexes contributes to whole tissues having the correct polarity, the way they interact to achieve this is not fully understood. Now, by studying epithelial cells in the wings of fruit flies, Matis et al. have provided evidence for a specific model for this interaction. The process starts with the Ft/Ds/Fj signaling complex, which orients structures called microtubules inside the cell. Microtubules are involved in providing structural support for cells, and also in the transport of organelles within cells. Once the microtubules are oriented in the correct direction, they help to orient the core complex by moving some of the proteins that make up this complex in a specified direction. An important future challenge will be to understand how the proteins in the Ft/Ds/Fj system interact with microtubules to give them their orientation. DOI:http://dx.doi.org/10.7554/eLife.02893.002
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | | | - Qie Hu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Claire J Tomlin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
81
|
Ayukawa T, Akiyama M, Mummery-Widmer JL, Stoeger T, Sasaki J, Knoblich JA, Senoo H, Sasaki T, Yamazaki M. Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep 2014; 8:610-21. [PMID: 24998533 DOI: 10.1016/j.celrep.2014.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/09/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
In Drosophila, planar cell polarity (PCP) molecules such as Dachsous (Ds) may function as global directional cues directing the asymmetrical localization of PCP core proteins such as Frizzled (Fz). However, the relationship between Ds asymmetry and Fz localization in the eye is opposite to that in the wing, thereby causing controversy regarding how these two systems are connected. Here, we show that this relationship is determined by the ratio of two Prickle (Pk) isoforms, Pk and Spiny-legs (Sple). Pk and Sple form different complexes with distinct subcellular localizations. When the amount of Sple is increased in the wing, Sple induces a reversal of PCP using the Ds-Ft system. A mathematical model demonstrates that Sple is the key regulator connecting Ds and the core proteins. Our model explains the previously noted discrepancies in terms of the differing relative amounts of Sple in the eye and wing.
Collapse
Affiliation(s)
- Tomonori Ayukawa
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan; Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Global COE program, Gunma University and Akita University, Akita 010-8543, Japan
| | - Masakazu Akiyama
- Research Institute for Electronic Science, Hokkaido University, Hokkaido 060-0812, Japan
| | - Jennifer L Mummery-Widmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Thomas Stoeger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Junko Sasaki
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takehiko Sasaki
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan; Global COE program, Gunma University and Akita University, Akita 010-8543, Japan; Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Masakazu Yamazaki
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan; Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Global COE program, Gunma University and Akita University, Akita 010-8543, Japan.
| |
Collapse
|
82
|
Olofsson J, Sharp KA, Matis M, Cho B, Axelrod JD. Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity. Development 2014; 141:2866-74. [PMID: 25005476 PMCID: PMC4197621 DOI: 10.1242/dev.105932] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/19/2014] [Indexed: 01/25/2023]
Abstract
Microtubules (MTs) are substrates upon which plus- and minus-end directed motors control the directional movement of cargos that are essential for generating cell polarity. Although centrosomal MTs are organized with plus-ends away from the MT organizing center, the regulation of non-centrosomal MT polarity is poorly understood. Increasing evidence supports the model that directional information for planar polarization is derived from the alignment of a parallel apical network of MTs and the directional MT-dependent trafficking of downstream signaling components. The Fat/Dachsous/Four-jointed (Ft/Ds/Fj) signaling system contributes to orienting those MTs. In addition to previously defined functions in promoting asymmetric subcellular localization of 'core' planar cell polarity (PCP) proteins, we find that alternative Prickle (Pk-Sple) protein isoforms control the polarity of this MT network. This function allows the isoforms of Pk-Sple to differentially determine the direction in which asymmetry is established and therefore, ultimately, the direction of tissue polarity. Oppositely oriented signals that are encoded by oppositely oriented Fj and Ds gradients produce the same polarity outcome in different tissues or compartments, and the tissue-specific activity of alternative Pk-Sple protein isoforms has been observed to rectify the interpretation of opposite upstream directional signals. The control of MT polarity, and thus the directionality of apical vesicle traffic, by Pk-Sple provides a mechanism for this rectification.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Maja Matis
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
83
|
Olofsson J, Axelrod JD. Methods for studying planar cell polarity. Methods 2014; 68:97-104. [PMID: 24680701 DOI: 10.1016/j.ymeth.2014.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/03/2023] Open
Abstract
Planar cell polarity (PCP) is the polarity of epithelial cells in the plane orthogonal to the apical-basal axis, and is controlled by a partially defined signaling system. PCP related signaling also plays roles in cell migration, tissue re-organization and stem cell differentiation during embryonic development, and later, in regeneration and repair. Aberrant signaling has been linked to a broad range of pathophysiologies including cancer, developmental defects, and neurological disorders. The deepest mechanistic insights have come from studies of PCP in Drosophila. In this chapter we review tools and methods to study PCP signaling in Drosophila epithelia, where it was found to involve asymmetric protein localization that is coordinated between adjacent cells. Such signaling has been most extensively studied in wing, eye, and abdomen, but also in other tissues such as leg and notum. In the adult fly, PCP is manifested in the coordinated direction of hairs and bristles, as well as the organization of ommatidia in the eye. The polarity of these structures is preceded by asymmetric localization of PCP signaling proteins at the apical junctions of epithelial cells. Based on genetic and molecular criteria, the proteins that govern PCP can be divided into distinct modules, including the core module, the Fat/Dachsous/Four-jointed (Fat/Ds/Fj) module (often referred to as the 'global' module) as well as tissue specific effector modules. Different tissues and tissue regions differ in their sensitivity to disturbances in the various modules of the PCP signaling system, leading to controversies about the interactions among the modules, and emphasizing the value of studying PCP in multiple contexts. Here, we review methods including those generally applicable, as well as some that are selectively useful for analyses of PCP in eye (including eye discs), wing (including wing discs), pupal and adult abdomen, and the cuticle of larvae and embryos.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA.
| |
Collapse
|
84
|
Mouri K, Nishino Y, Arata M, Shi D, Horiuchi SY, Uemura T. A novel planar polarity genepepsinogen-likeregulateswinglessexpression in a posttranscriptional manner. Dev Dyn 2014; 243:791-9. [DOI: 10.1002/dvdy.24112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/28/2013] [Accepted: 12/28/2013] [Indexed: 11/07/2022] Open
Affiliation(s)
- Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Li Y, Naveed H, Kachalo S, Xu LX, Liang J. Mechanisms of regulating tissue elongation in Drosophila wing: impact of oriented cell divisions, oriented mechanical forces, and reduced cell size. PLoS One 2014; 9:e86725. [PMID: 24504016 PMCID: PMC3913577 DOI: 10.1371/journal.pone.0086725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation.
Collapse
Affiliation(s)
- Yingzi Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| | - Sema Kachalo
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Medical Equipment and Technology, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- * E-mail: (LXX); (JL)
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
- * E-mail: (LXX); (JL)
| |
Collapse
|
86
|
Singh J, Mlodzik M. Planar cell polarity signaling: coordination of cellular orientation across tissues. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:479-99. [PMID: 23066429 DOI: 10.1002/wdev.32] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundant manner. Recent advances in vertebrate PCP studies have added novel factors of PCP regulation and also new cellular features requiring PCP-signaling input, including the positioning and orientation of the primary cilium of many epithelial cells. This review focuses mostly on several recent advances made in the Drosophila and vertebrate PCP field and integrates these within the existing PCP-signaling framework.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
87
|
Abstract
Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
88
|
Sharma P, McNeill H. Regulation of long-range planar cell polarity by Fat-Dachsous signaling. Development 2013; 140:3869-81. [PMID: 23946440 DOI: 10.1242/dev.094730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fat (Ft) and Dachsous (Ds) are large cadherins that bind each other and have conserved roles in regulating planar cell polarity (PCP). We quantitatively analyzed Ft-Ds pathway mutant clones for their effects on ommatidial polarity in the Drosophila eye. Our findings suggest that the Ft-Ds pathway regulates PCP propagation independently of asymmetric cellular accumulation of Ft or Ds. We find that the Ft effector Atrophin has a position-specific role in regulating polarity in the eye, and that asymmetric accumulation of the atypical myosin Dachs is not essential for production and propagation of a long-range PCP signal. Our observations suggest that Ft and Ds interact to modulate a secondary signal that regulates long-range polarity, that signaling by the Ds intracellular domain is dependent on Ft, and that ommatidial fate specification is genetically separable from long-range signaling.
Collapse
Affiliation(s)
- Praveer Sharma
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
89
|
Viktorinová I, Dahmann C. Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr Biol 2013; 23:1472-7. [PMID: 23831293 DOI: 10.1016/j.cub.2013.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/08/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Whole-tissue rotations have recently been recognized as a widespread morphogenetic process important for tissue elongation [1-4]. In Drosophila ovaries, elongation of the egg chamber involves a global rotation of the follicle epithelium along the anterior-posterior axis [5]. Individual egg chambers rotate either in a clockwise or counterclockwise direction; however, how the symmetry of egg chambers is broken to allow rotation remains unknown. Here we show that at the basal side of follicle cells, microtubules are preferentially aligned perpendicular to the anterior-posterior axis of the egg chamber. Microtubule depolymerization stalls egg chamber rotation and egg chamber elongation. The preferential alignment of microtubules and egg chamber rotation depend on the atypical cadherin Fat2 and the planar polarized Fat2 localization depends on intact microtubules. Moreover, by tracking microtubule plus-end growth in vivo using EB1::GFP, we find that microtubules are highly polarized in the plane of the follicle epithelium. Polarization of microtubules precedes the onset of egg chamber rotation and predicts the direction of rotation. Our data suggest a feedback amplification mechanism between Fat2 localization and microtubule polarity involved in breaking symmetry and directing egg chamber rotation.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
90
|
Caruso N, Herberth B, Bartoli M, Puppo F, Dumonceaux J, Zimmermann A, Denadai S, Lebossé M, Roche S, Geng L, Magdinier F, Attarian S, Bernard R, Maina F, Levy N, Helmbacher F. Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy. PLoS Genet 2013; 9:e1003550. [PMID: 23785297 PMCID: PMC3681729 DOI: 10.1371/journal.pgen.1003550] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.
Collapse
Affiliation(s)
- Nathalie Caruso
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Balàzs Herberth
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marc Bartoli
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Francesca Puppo
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Julie Dumonceaux
- INSERM U974, UMR 7215 CNRS, Institut de Myologie, UM 76 Université Pierre et Marie Curie, Paris, France
| | - Angela Zimmermann
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Simon Denadai
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marie Lebossé
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Stephane Roche
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Linda Geng
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederique Magdinier
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Shahram Attarian
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Neurologie, maladies neuro-musculaires, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Nicolas Levy
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| |
Collapse
|
91
|
Bardet PL, Guirao B, Paoletti C, Serman F, Léopold V, Bosveld F, Goya Y, Mirouse V, Graner F, Bellaïche Y. PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 2013; 25:534-46. [PMID: 23707736 DOI: 10.1016/j.devcel.2013.04.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022]
Abstract
Planar cell rearrangements control epithelial tissue morphogenesis and cellular pattern formation. They lead to the formation of new junctions whose length and stability determine the cellular pattern of tissues. Here, we show that during Drosophila wing development the loss of the tumor suppressor PTEN disrupts cell rearrangements by preventing the lengthening of newly formed junctions that become unstable and keep on rearranging. We demonstrate that the failure to lengthen and to stabilize is caused by the lack of a decrease of Myosin II and Rho-kinase concentration at the newly formed junctions. This defect results in a heterogeneous cortical contractility at cell junctions that disrupts regular hexagonal pattern formation. By identifying PTEN as a specific regulator of junction lengthening and stability, our results uncover how a homogenous distribution of cortical contractility along the cell cortex is restored during cell rearrangement to control the formation of epithelial cellular pattern.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Polarity Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Marcinkevicius E, Zallen JA. Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat. Development 2013; 140:433-43. [PMID: 23250217 DOI: 10.1242/dev.083949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The atypical cadherin Fat is a conserved regulator of planar cell polarity, but the mechanisms by which Fat controls cell shape and tissue structure are not well understood. Here, we show that Fat is required for the planar polarized organization of actin denticle precursors, adherens junction proteins and microtubules in the epidermis of the late Drosophila embryo. In wild-type embryos, spatially regulated cell-shape changes and rearrangements organize cells into highly aligned columns. Junctional remodeling is suppressed at dorsal and ventral cell boundaries, where adherens junction proteins accumulate. By contrast, adherens junction proteins fail to accumulate to the wild-type extent and all cell boundaries are equally engaged in junctional remodeling in fat mutants. The effects of loss of Fat on cell shape and junctional localization, but not its role in denticle organization, are recapitulated by mutations in Expanded, an upstream regulator of the conserved Hippo pathway, and mutations in Hippo and Warts, two kinases in the Hippo kinase cascade. However, the cell shape and planar polarity defects in fat mutants are not suppressed by removing the transcriptional co-activator Yorkie, suggesting that these roles of Fat are independent of Yorkie-mediated transcription. The effects of Fat on cell shape, junctional remodeling and microtubule localization are recapitulated by expression of activated Notch. These results demonstrate that cell shape, junctional localization and cytoskeletal planar polarity in the Drosophila embryo are regulated by a common signal provided by the atypical cadherin Fat and suggest that Fat influences tissue organization through its role in polarized junctional remodeling.
Collapse
Affiliation(s)
- Emily Marcinkevicius
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
93
|
Hermle T, Guida MC, Beck S, Helmstädter S, Simons M. Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J 2013; 32:245-59. [PMID: 23292348 DOI: 10.1038/emboj.2012.323] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/07/2012] [Indexed: 11/09/2022] Open
Abstract
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V-ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co-localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E-Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V-ATPase subunits. By contrast, the V-ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.
Collapse
Affiliation(s)
- Tobias Hermle
- Center for Systems Biology (ZBSA), University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
94
|
Sharma P, McNeill H. Fat and Dachsous cadherins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:215-35. [PMID: 23481197 DOI: 10.1016/b978-0-12-394311-8.00010-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fat and Dachsous (Ds) are very large cell adhesion molecules. They bind each other and have important, highly conserved roles in planar cell polarity (PCP) and growth control. PCP is defined as the directionally coordinated development of cellular structures or behavior. Cellular and tissue growth needs to be modulated in terms of rate and final size, and the Hippo pathway regulates growth in a variety of developmental contexts. Fat and Ds are important upstream regulators of these pathways. There are two Fat proteins in Drosophila, Fat and Fat2, and four in vertebrates, Fat1-4. There is one Ds protein in Drosophila and two in vertebrates, Dachsous1-2. In this chapter, we discuss the roles of Fat and Ds family members, focusing on Drosophila and mouse development.
Collapse
|
95
|
Satoh D, Suyama R, Kimura KI, Uemura T. High-resolution in vivo imaging of regenerating dendrites of Drosophila sensory neurons during metamorphosis: local filopodial degeneration and heterotypic dendrite-dendrite contacts. Genes Cells 2012; 17:939-51. [PMID: 23157286 PMCID: PMC3549480 DOI: 10.1111/gtc.12008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
Abstract
Neuronal circuits that are formed in early development are reorganized at later developmental stages to support a wide range of adult behaviors. At Drosophila pupal stages, one example of this reorganization is dendritic remodeling of multidendritic neurons, which is accomplished by pruning and subsequent regeneration of branches in environments quite distinct from those in larval life. Here, we used long-term in vivo time-lapse recordings at high spatiotemporal resolution and analyzed the dynamics of two adjacent cell types that remodel dendritic arbors, which eventually innervate the lateral plate of the adult abdomen. These neurons initially exhibited dynamic extension, withdrawal and local degeneration of filopodia that sprouted from all along the length of regenerating branches. At a midpupal stage, branches extending from the two cell types started fasciculating with each other, which prompted us to test the hypothesis that this heterotypic contact may serve as a guiding scaffold for shaping dendritic arbors. Unexpectedly, our cell ablation study gave only marginal effects on the branch length and the arbor shape. This result suggests that the arbor morphology of the adult neurons in this study can be specified mostly in the absence of the dendrite–dendrite contact.
Collapse
Affiliation(s)
- Daisuke Satoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
96
|
Microtubules enable the planar cell polarity of airway cilia. Curr Biol 2012; 22:2203-12. [PMID: 23122850 DOI: 10.1016/j.cub.2012.09.046] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. RESULTS We show that planar cell polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells, a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; nonautonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established and are polarized nearly simultaneously, and that refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. CONCLUSIONS A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin-based network of ciliary basal bodies below the apical surface.
Collapse
|
97
|
Nishimura Y, Applegate K, Davidson MW, Danuser G, Waterman CM. Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells. PLoS One 2012; 7:e41413. [PMID: 22848487 PMCID: PMC3404095 DOI: 10.1371/journal.pone.0041413] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022] Open
Abstract
Polarized microtubule (MT) growth in the leading edge is critical to directed cell migration, and is mediated by Rac1 GTPase. To find downstream targets of Rac1 that affect MT assembly dynamics, we performed an RNAi screen of 23 MT binding and regulatory factors and identified RNAi treatments that suppressed changes in MT dynamics induced by constitutively activated Rac1. By analyzing fluorescent EB3 dynamics with automated tracking, we found that RNAi treatments targeting p150glued, APC2, spastin, EB1, Op18, or MARK2 blocked Rac1-mediated MT growth in lamellipodia. MARK2 was the only protein whose RNAi targeting additionally suppressed Rac1 effects on MT orientation in lamellipodia, and thus became the focus of further study. We show that GFP-MARK2 rescued effects of MARK2 depletion on MT growth lifetime and orientation, and GFP-MARK2 localized in lamellipodia in a Rac1-activity-dependent manner. In a wound-edge motility assay, MARK2-depleted cells failed to polarize their centrosomes or exhibit oriented MT growth in the leading edge, and displayed defects in directional cell migration. Thus, automated image analysis of MT assembly dynamics identified MARK2 as a target regulated downstream of Rac1 that promotes oriented MT growth in the leading edge to mediate directed cell migration.
Collapse
Affiliation(s)
- Yukako Nishimura
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathryn Applegate
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael W. Davidson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida, United States of America
| | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Clare M. Waterman
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
98
|
Gault WJ, Olguin P, Weber U, Mlodzik M. Drosophila CK1-γ, gilgamesh, controls PCP-mediated morphogenesis through regulation of vesicle trafficking. ACTA ACUST UNITED AC 2012; 196:605-21. [PMID: 22391037 PMCID: PMC3307696 DOI: 10.1083/jcb.201107137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CK1-γ/gilgamesh spatially limits the planar cell polarity–regulated process of trichome formation in Drosophila through its effect on polarized vesicle recycling. Cellular morphogenesis, including polarized outgrowth, promotes tissue shape and function. Polarized vesicle trafficking has emerged as a fundamental mechanism by which protein and membrane can be targeted to discrete subcellular domains to promote localized protrusions. Frizzled (Fz)/planar cell polarity (PCP) signaling orchestrates cytoskeletal polarization and drives morphogenetic changes in such contexts as the vertebrate body axis and external Drosophila melanogaster tissues. Although regulation of Fz/PCP signaling via vesicle trafficking has been identified, the interplay between the vesicle trafficking machinery and downstream terminal PCP-directed processes is less established. In this paper, we show that Drosophila CK1-γ/gilgamesh (gish) regulates the PCP-associated process of trichome formation through effects on Rab11-mediated vesicle recycling. Although the core Fz/PCP proteins dictate prehair formation broadly, CK1-γ/gish restricts nucleation to a single site. Moreover, CK1-γ/gish works in parallel with the Fz/PCP effector multiple wing hairs, which restricts prehair formation along the perpendicular axis to Gish. Our findings suggest that polarized Rab11-mediated vesicle trafficking regulated by CK1-γ is required for PCP-directed processes.
Collapse
Affiliation(s)
- William J Gault
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
99
|
Mouri K, Horiuchi SY, Uemura T. Cohesin controls planar cell polarity by regulating the level of the seven-pass transmembrane cadherin Flamingo. Genes Cells 2012; 17:509-24. [PMID: 22563761 DOI: 10.1111/j.1365-2443.2012.01604.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planar cell polarity (PCP) refers to the coordination of global organ axes and individual cell polarity in vertebrate and invertebrate epithelia. Mechanisms of PCP have been best studied in the Drosophila wing, in which each epidermal cell produces a single wing hair at the distal cell edge, and this spatial specification is mediated by redistribution of the core group proteins, including the seven-pass transmembrane cadherin Flamingo/Starry night (Fmi/Stan), to selective plasma membrane domains. Through genetic screening, we found that a mutation of the SMC3 gene caused dramatic misspecification of wing hair positions. SMC3 protein is one subunit of the cohesin complex, which regulates sister chromatid cohesion and also plays a role in transcriptional control of gene expression. In the SMC3 mutant cells, Fmi appeared to be upregulated by a posttranscriptional mechanism(s), and this elevation of Fmi was at least one cause of the PCP defect. In addition to the PCP phenotype, the loss of the cohesin function affected wing morphogenesis at multiple levels: one malformation was loss of the wing margin, and this was most likely a result of downregulation of the homeodomain protein Cut. At the cellular level, apical cell size and hexagonal packing were affected in the mutant wing. Dysfunction of cohesin in humans results in Cornelia de Lange syndrome (CdLS), which is characterized by various developmental abnormalities and mental retardation. Our analysis of cohesin in epithelia may provide new insight into cellular and molecular mechanisms of CdLS.
Collapse
Affiliation(s)
- Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
100
|
Brittle A, Thomas C, Strutt D. Planar polarity specification through asymmetric subcellular localization of Fat and Dachsous. Curr Biol 2012; 22:907-14. [PMID: 22503504 PMCID: PMC3362735 DOI: 10.1016/j.cub.2012.03.053] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/07/2012] [Accepted: 03/15/2012] [Indexed: 11/28/2022]
Abstract
Two pathways regulate planar polarity: the core proteins and the Fat-Dachsous-Four-jointed (Ft-Ds-Fj) system. Morphogens specify complementary expression patterns of Ds and Fj that potentially act as polarizing cues. It has been suggested that Ft-Ds-Fj-mediated cues are weak and that the core proteins amplify them. Another view is that the two pathways act independently to generate and propagate polarity: if correct, this raises the question of how gradients of Ft and Ds expression or activity might be interpreted to provide strong cellular polarizing cues and how such cues are propagated from cell to cell. Here, we demonstrate that the complementary expression of Ds and Fj results in biased Ft and Ds protein distribution across cells, with Ft and Ds accumulating on opposite edges. Furthermore, boundaries of Ft and Ds expression result in subcellular asymmetries in protein distribution that are transmitted to neighboring cells, and asymmetric Ds localization results in a corresponding asymmetric distribution of the myosin Dachs. We show that the generation of subcellular asymmetries of Ft and Ds and the core proteins is largely independent in the wing disc and additionally that ommatidial polarity in the eye can be determined without input from the Ft-Ds-Fj system, consistent with the two pathways acting in parallel.
Collapse
Affiliation(s)
- Amy Brittle
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, UK
| | | | | |
Collapse
|