51
|
Ma J, Huang X. Research progress in role of Hippo signaling pathway in diagnosis and treatment for hepatocellular carcinoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:637-643. [PMID: 34275933 PMCID: PMC10930194 DOI: 10.11817/j.issn.1672-7347.2021.200243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumor worldwide, with high incidence and mortality. However, the exact mechanisms leading to HCC development remain unclear. The cores of the Hippo signaling pathway consist of a kinase cascade to transmit signals, which inhibits the transcriptional coactivator translocate into the nucleus and reduces the transcription of downstream proliferation-related genes. Hippo signaling pathway regulates liver development and regeneration after liver resection, and it is also related to the occurrence of HCC. The Hippo pathway regulates proliferation, apoptosis, metastasis, autophagy, metabolic reprogramming of HCC cells, affects the tumor immune microenvironment, and participates multiple-drug resistance. Further study on the role of Hippo signaling pathway in HCC is important to develop new therapeutic targets.
Collapse
Affiliation(s)
- Jiamei Ma
- Department of Gastroenterology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - Xiaoxi Huang
- Department of Gastroenterology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China.
| |
Collapse
|
52
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
53
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
54
|
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett 2021; 507:112-123. [PMID: 33737002 PMCID: PMC10370464 DOI: 10.1016/j.canlet.2021.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Hippo pathway is a master regulator of development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size control. Hippo pathway relays signals from different extracellular and intracellular events to regulate cell behavior and functions. Hippo pathway is conserved from Protista to eukaryotes. Deregulation of the Hippo pathway is associated with numerous cancers. Alteration of the Hippo pathway results in cell invasion, migration, disease progression, and therapy resistance in cancers. However, the function of the various components of the mammalian Hippo pathway is yet to be elucidated in detail especially concerning tumor biology. In the present review, we focused on the Hippo pathway in different model organisms, its regulation and deregulation, and possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, LSUHSC, Shreveport, USA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Mousa Vatanmakarian
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | | | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Sweaty Koul
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Urology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA.
| |
Collapse
|
55
|
New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis. Pharmacol Res 2021; 169:105635. [PMID: 33930530 DOI: 10.1016/j.phrs.2021.105635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterised by an inexorable decline in lung function. The development of IPF involves multiple positive feedback loops; and a strong support role of the Hippo/YAP signalling pathway, which is essential for regulating cell proliferation and organ size, in IPF pathogenesis has been unveiled recently in cell and animal models. YAP/TAZ contributes to both pulmonary fibrosis and alveolar regeneration via the conventional Hippo/YAP signalling pathway, G protein-coupled receptor signalling, and mechanotransduction. Selectively inhibiting YAP/TAZ in lung fibroblasts may inhibit fibroblast proliferation and extracellular matrix deposition, while activating YAP/TAZ in alveolar epithelial cells may promote alveolar regeneration. In this review, we explore, for the first time, the bidirectional and cell-specific regulation of the Hippo/YAP pathway in IPF pathogenesis and discuss recent research progress and future prospects of IPF treatment based on Hippo/YAP signalling, thus providing a basis for the development of new therapeutic strategies to alleviate or even reverse IPF.
Collapse
|
56
|
Cho YS, Jiang J. Hippo-Independent Regulation of Yki/Yap/Taz: A Non-canonical View. Front Cell Dev Biol 2021; 9:658481. [PMID: 33869224 PMCID: PMC8047194 DOI: 10.3389/fcell.2021.658481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Initially identified in Drosophila, the Hippo signaling pathway has emerged as an evolutionarily conserved tumor suppressor pathway that controls tissue growth and organ size by simultaneously inhibiting cell proliferation and promoting cell death. Deregulation of Hippo pathway activity has been implicated in a wide range of human cancers. The core Hippo pathway consists of a kinase cascade: an upstream kinase Hippo (Hpo)/MST1/2 phosphorylates and activates a downstream kinase Warts (Wts)/Lats1/2, leading to phosphorylation and inactivation of a transcriptional coactivator Yki/YAP/Taz. Many upstream signals, including cell adhesion, polarity, mechanical stress, and soluble factors, regulate Hippo signaling through the kinase cascade, leading to change in the cytoplasmic/nuclear localization of Yki/YAP/Taz. However, recent studies have uncovered other mechanisms that regulate Yki/YAP/Taz subcellular localization, stability, and activity independent of the Hpo kinase cascade. These mechanisms provide additional layers of pathway regulation, nodes for pathway crosstalk, and opportunities for pathway intervention in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
57
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
58
|
YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming. Metabolites 2021; 11:metabo11030154. [PMID: 33800464 PMCID: PMC7999074 DOI: 10.3390/metabo11030154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the metabolic switch upon cellular reprogramming.
Collapse
|
59
|
Braga L, Ali H, Secco I, Giacca M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res 2021; 117:674-693. [PMID: 32215566 PMCID: PMC7898953 DOI: 10.1093/cvr/cvaa071] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.
Collapse
Affiliation(s)
- Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ilaria Secco
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
60
|
Pennarossa G, Gandolfi F, Brevini TAL. "Biomechanical Signaling in Oocytes and Parthenogenetic Cells". Front Cell Dev Biol 2021; 9:646945. [PMID: 33644079 PMCID: PMC7905081 DOI: 10.3389/fcell.2021.646945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Oocyte-specific competence remains one of the major targets of current research in the field of reproduction. Several mechanisms are involved in meiotic maturation and the molecular signature of an oocyte is considered to reflect its quality and to predict its subsequent developmental and functional capabilities. In the present minireview, we focus on the possible role of mechanotransduction and mechanosensor signaling pathways, namely the Hippo and the RhoGTPase, in the maturing oocyte. Due to the limited access to female gametes, we propose the use of cells isolated from parthenogenetic embryos as a promising model to characterize and dissect the oocyte distinctive molecular signatures, given their exclusive maternal origin. The brief overview here reported suggests a role of the mechanosensing related pathways in oocyte quality and developmental competence and supports the use of uniparental cells as a useful tool for oocyte molecular signature characterization.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
61
|
MEKK2 and MEKK3 orchestrate multiple signals to regulate Hippo pathway. J Biol Chem 2021; 296:100400. [PMID: 33571521 PMCID: PMC7948509 DOI: 10.1016/j.jbc.2021.100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved signaling pathway that controls organ size in animals via the regulation of cell proliferation and apoptosis. It consists of a kinase cascade, in which MST1/2 and MAP4Ks phosphorylate and activate LATS1/2, which in turn phosphorylate and inhibit YAP/TAZ activity. A variety of signals can modulate LATS1/2 kinase activity to regulate Hippo pathway. However, the full mechanistic details of kinase-mediated regulation of Hippo pathway signaling remain elusive. Here, we report that TNF activates LATS1/2 and inhibits YAP/TAZ activity through MEKK2/3. Furthermore, MEKK2/3 act in parallel to MST1/2 and MAP4Ks to regulate LATS1/2 and YAP/TAZ in response to various signals, such as serum and actin dynamics. Mechanistically, we show that MEKK2/3 interact with LATS1/2 and YAP/TAZ and phosphorylate them. In addition, Striatin-interacting phosphatase and kinase (STRIPAK) complex associates with MEKK3 via CCM2 and CCM3 to inactivate MEKK3 kinase activity. Upstream signals of Hippo pathway trigger the dissociation of MEKK3 from STRIPAK complex to release MEKK3 activity. Our work has uncovered a previous unrecognized regulation of Hippo pathway via MEKK2/3 and provides new insights into molecular mechanisms for the interplay between Hippo-YAP and NF-κB signaling and the pathogenesis of cerebral cavernous malformations.
Collapse
|
62
|
Tokamov SA, Su T, Ullyot A, Fehon RG. Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription. eLife 2021; 10:62326. [PMID: 33555257 PMCID: PMC7895526 DOI: 10.7554/elife.62326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
The Hippo (Hpo) pathway regulates tissue growth in many animals. Multiple upstream components promote Hpo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra (Kib) activates the Hpo pathway by recruiting the core Hpo kinase cassette to the apical cortex. Here, we show that the Hpo pathway downregulates Drosophila Kib levels independently of Yorkie-mediated transcription. We find that Hpo signaling complex formation promotes Kib degradation via SCFSlimb-mediated ubiquitination, that this effect requires Merlin, Salvador, Hpo, and Warts, and that this mechanism functions independently of other upstream Hpo pathway activators. Moreover, Kib degradation appears patterned by differences in mechanical tension across the wing. We propose that Kib degradation mediated by Hpo pathway components and regulated by cytoskeletal tension serves to control Kib-driven Hpo pathway activation and ensure optimally scaled and patterned tissue growth.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
63
|
Zhou R, Wu Q, Wang M, Irani S, Li X, Zhang Q, Meng F, Liu S, Zhang F, Wu L, Lin X, Wang X, Zou J, Song H, Qin J, Liang T, Feng XH, Zhang YJ, Xu P. The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biol 2021; 19:e3001122. [PMID: 33630828 PMCID: PMC7978383 DOI: 10.1371/journal.pbio.3001122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/19/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
The Hippo-YAP pathway responds to diverse environmental cues to manage tissue homeostasis, organ regeneration, tumorigenesis, and immunity. However, how phosphatase(s) directly target Yes-associated protein (YAP) and determine its physiological activity are still inconclusive. Here, we utilized an unbiased phosphatome screening and identified protein phosphatase magnesium-dependent 1A (PPM1A/PP2Cα) as the bona fide and physiological YAP phosphatase. We found that PPM1A was associated with YAP/TAZ in both the cytoplasm and the nucleus to directly eliminate phospho-S127 on YAP, which conferring YAP the nuclear distribution and transcription potency. Accordingly, genetic ablation or depletion of PPM1A in cells, organoids, and mice elicited an enhanced YAP/TAZ cytoplasmic retention and resulted in the diminished cell proliferation, severe gut regeneration defects in colitis, and impeded liver regeneration upon injury. These regeneration defects in murine model were largely rescued via a genetic large tumor suppressor kinase 1 (LATS1) deficiency or the pharmacological inhibition of Hippo-YAP signaling. Therefore, we identify a physiological phosphatase of YAP/TAZ, describe its critical effects in YAP/TAZ cellular distribution, and demonstrate its physiological roles in mammalian organ regeneration.
Collapse
Affiliation(s)
- Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qirou Wu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mengqiu Wang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Seema Irani
- Department of Molecular Biosciences; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Xiao Li
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fansen Meng
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaojian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yan Jessie Zhang
- Department of Molecular Biosciences; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
64
|
Xie Z, Wang Y, Yang G, Han J, Zhu L, Li L, Zhang S. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis 2021; 12:79. [PMID: 33436549 PMCID: PMC7804279 DOI: 10.1038/s41419-021-03395-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder that primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Owing to its increasing prevalence in Eastern countries and the intractable challenges faced during IBD treatment, extensive research on IBD has been carried out over the last few years. Although the precise aetiology of IBD is undefined, the currently accepted hypothesis for IBD pathogenesis considers it to be a combination of environment, genetic predisposition, gut microbiota, and abnormal immunity. A recently emerged signalling pathway, the Hippo pathway, acts as a key regulator of cell growth, tissue homoeostasis, organ size, and has been implicated in several human cancers. In the past few years, studies have revealed the importance of the Hippo pathway in gastrointestinal tract physiology and gastrointestinal diseases, such as colorectal cancer and IBD. However, the role of the Hippo pathway and its exact impact in IBD remains to be elucidated. This review summarises the latest scientific literature on the involvement of this pathway in IBD from the following perspectives that account for the IBD pathogenesis: intestinal epithelial cell regeneration, immune regulation, gut microbiota, and angiogenesis. A comprehensive understanding of the specific role of the Hippo pathway in IBD will provide novel insights into future research directions and clinical implications of the Hippo pathway.
Collapse
Affiliation(s)
- Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guang Yang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liguo Zhu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
65
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
66
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78:497-512. [PMID: 32748155 PMCID: PMC11071991 DOI: 10.1007/s00018-020-03579-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Dominique Aubel
- IUTA, Departement Genie Biologique, Universite, Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
67
|
Mao W, Mai J, Peng H, Wan J, Sun T. YAP in pancreatic cancer: oncogenic role and therapeutic strategy. Theranostics 2021; 11:1753-1762. [PMID: 33408779 PMCID: PMC7778590 DOI: 10.7150/thno.53438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), remains a fatal disease with few efficacious treatments. The Hippo signaling pathway, an evolutionarily conserved signaling module, plays critical roles in tissue homeostasis, organ size control and tumorigenesis. The transcriptional coactivator yes-associated protein (YAP), a major downstream effector of the Hippo pathway, is associated with various human cancers including PDAC. Considering its importance in cancer, YAP is emerging as a promising therapeutic target. In this review, we summarize the current understanding of the oncogenic role and regulatory mechanism of YAP in PDAC, and the potential therapeutic strategies targeting YAP.
Collapse
|
68
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
69
|
Driskill JH, Pan D. The Hippo Pathway in Liver Homeostasis and Pathophysiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:299-322. [PMID: 33234023 DOI: 10.1146/annurev-pathol-030420-105050] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of the regenerative capacity of the liver have converged on the Hippo pathway, a serine/threonine kinase cascade discovered in Drosophila and conserved from unicellular organisms to mammals. Genetic studies of mouse and rat livers have revealed that the Hippo pathway is a key regulator of liver size, regeneration, development, metabolism, and homeostasis and that perturbations in the Hippo pathway can lead to the development of common liver diseases, such as fatty liver disease and liver cancer. In turn, pharmacological targeting of the Hippo pathway may be utilized to boost regeneration and to prevent the development and progression of liver diseases. We review current insights provided by the Hippo pathway into liver pathophysiology. Furthermore, we present a path forward for future studies to understand how newly identified components of the Hippo pathway may control liver physiology and how the Hippo pathway is regulated in the liver.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , .,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ,
| |
Collapse
|
70
|
Abstract
The Hippo pathway is an evolutionarily conserved regulator of organ growth and tumorigenesis. In Drosophila, oncogenic RasV12 cooperates with loss-of-cell polarity to promote Hippo pathway-dependent tumor growth. To identify additional factors that modulate this signaling, we performed a genetic screen utilizing the Drosophila Ras V12 /lgl -/- in vivo tumor model and identified Rox8, a RNA-binding protein (RBP), as a positive regulator of the Hippo pathway. We found that Rox8 overexpression suppresses whereas Rox8 depletion potentiates Hippo-dependent tissue overgrowth, accompanied by altered Yki protein level and target gene expression. Mechanistically, Rox8 directly binds to a target site located in the yki 3' UTR, recruits and stabilizes the targeting of miR-8-loaded RISC, which accelerates the decay of yki messenger RNA (mRNA). Moreover, TIAR, the human ortholog of Rox8, is able to promote the degradation of yki mRNA when introduced into Drosophila and destabilizes YAP mRNA in human cells. Thus, our study provides in vivo evidence that the Hippo pathway is posttranscriptionally regulated by the collaborative action of RBP and microRNA (miRNA), which may provide an approach for modulating Hippo pathway-mediated tumorigenesis.
Collapse
|
71
|
Drexler R, Küchler M, Wagner KC, Reese T, Feyerabend B, Kleine M, Oldhafer KJ. The clinical relevance of the Hippo pathway in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2020; 147:373-391. [PMID: 33098447 PMCID: PMC7817599 DOI: 10.1007/s00432-020-03427-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 11/20/2022]
Abstract
Purpose The Hippo pathway has broadened in cancer research in the past decade and revealed itself to be an important driver for tumorigenesis and metastatic spread. In this study, we investigated the clinical relevance of the Hippo pathway with regard to metastatic invasion, patients’ outcome and histopathological features. Methods Protein expression of components of the Hippo pathway were analyzed by immunohistochemistry (IHC) using paraffin-embedded tissue from 103 patients who had been diagnosed with pancreatic ductal adenocarcinoma and had undergone surgery. Results were correlated with clinicopathological data, disease-free and overall survival. Results Immunohistochemistry studies in pancreatic tumour tissues revealed a significant upregulation of MST1, MST2, pLATS, pYAP and 14-3-3, representing the active Hippo pathway, in non-metastasized patients (p < 0.01). In turn, the pathway is more inactive in metastasized patients and relating liver metastases as LATS1, LATS2, YAP, transcriptional factors TEAD2 and TEAD3 were upregulated in these patients (p < 0.01). A higher pYAP expression was associated with a favorable OS and DFS. Conclusion The Hippo pathway is inactive in metastasized patients releasing the pro-metastatic and proliferative potential of the pathway. Furthermore, our study underlines the prognostic relevance of the Hippo pathway as a shift in the balance towards the inactive pathway predicts an unfavorable OS and DFS.
Collapse
Affiliation(s)
- Richard Drexler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany. .,Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| | - Mirco Küchler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany.,Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Kim C Wagner
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany.,Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Tim Reese
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany.,Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | | | - Moritz Kleine
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karl J Oldhafer
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany. .,Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
72
|
Fang CY, Lai TC, Hsiao M, Chang YC. The Diverse Roles of TAO Kinases in Health and Diseases. Int J Mol Sci 2020; 21:E7463. [PMID: 33050415 PMCID: PMC7589832 DOI: 10.3390/ijms21207463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Thousand and one kinases (TAOKs) are members of the MAP kinase kinase kinase (MAP3K) family. Three members of this subfamily, TAOK1, 2, and 3, have been identified in mammals. It has been shown that TAOK1, 2 and 3 regulate the p38 MAPK and Hippo signaling pathways, while TAOK 1 and 2 modulate the SAPK/JNK cascade. Furthermore, TAOKs are involved in additional interactions with other cellular proteins and all of these pathways modulate vital physiological and pathophysiological responses in cells and tissues. Dysregulation of TAOK-related pathways is implicated in the development of diseases including inflammatory and immune disorders, cancer and drug resistance, and autism and Alzheimer's diseases. This review collates current knowledge concerning the roles of TAOKs in protein-protein interaction, signal transduction, physiological regulation, and pathogenesis and summarizes the recent development of TAOK-specific inhibitors that have the potential to ameliorate TAOKs' effects in pathological situations.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
73
|
Tran T, Mitra J, Ha T, Kavran JM. Increasing kinase domain proximity promotes MST2 autophosphorylation during Hippo signaling. J Biol Chem 2020; 295:16166-16179. [PMID: 32994222 DOI: 10.1074/jbc.ra120.015723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo pathway plays an important role in developmental biology, mediating organ size by controlling cell proliferation through the activity of a core kinase cassette. Multiple upstream events activate the pathway, but how each controls this core kinase cassette is not fully understood. Activation of the core kinase cassette begins with phosphorylation of the kinase MST1/2 (also known as STK3/4). Here, using a combination of in vitro biochemistry and cell-based assays, including chemically induced dimerization and single-molecule pulldown, we revealed that increasing the proximity of adjacent kinase domains, rather than formation of a specific protein assembly, is sufficient to trigger autophosphorylation. We validate this mechanism in cells and demonstrate that multiple events associated with the active pathway, including SARAH domain-mediated homodimerization, membrane recruitment, and complex formation with the effector protein SAV1, each increase the kinase domain proximity and autophosphorylation of MST2. Together, our results reveal that multiple and distinct upstream signals each utilize the same common molecular mechanism to stimulate MST2 autophosphorylation. This mechanism is likely conserved among MST2 homologs. Our work also highlights potential differences in Hippo signal propagation between each activating event owing to differences in the dynamics and regulation of each protein ensemble that triggers MST2 autophosphorylation and possible redundancy in activation.
Collapse
Affiliation(s)
- Thao Tran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; T. C. Jenkins Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
74
|
Zhong Y, Qi H, Li X, An M, Shi Q, Qi J. Tumor supernatant derived from hepatocellular carcinoma cells treated with vincristine sulfate have therapeutic activity. Eur J Pharm Sci 2020; 155:105557. [PMID: 32946955 DOI: 10.1016/j.ejps.2020.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Vincristine sulfate (VCR), a commonly used chemotherapeutic agent, kills cancer cells as well as the normal cells for its cytotoxicity. But it is still unclear whether it can exert therapeutic effect on untreated cancer cells by changing the supernatant of cancer cells. Here, we explored the subsequent cascade effects of the supernatant of cancer cells that were transiently treated with VCR on untreated tumor cells and its responsible mechanisms. VCR and three different hepatocellular carcinoma (HCC) cell lines were used for an experiment. The experiment was conducted in vitro to eliminate the body's internal factors and the effects of the immune system. The results suggested that drug-free tumor supernatant (TSN) could promote the differentiation, repress the transcription of liver cancer stem cell's markers and the proliferation in SMMC-7721, Bel-7402 and Huh7 cells. Furthermore, we found that the TSN could abolish YAP1 transcriptional activity to inhibit the proliferation and increase the transcriptional activity of HNF4α to promote the differentiation in SMMC-7721 and Bel-7402 cells. In conclusion, the TSN could inhibit the proliferation and induce differentiation in different HCC cells.
Collapse
Affiliation(s)
- Yan Zhong
- School of Pharmaceutical Sciences, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Huanli Qi
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuejiao Li
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyang An
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Qingwen Shi
- School of Pharmaceutical Sciences, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China.
| | - Jinsheng Qi
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
75
|
Netrin1 deficiency activates MST1 via UNC5B receptor, promoting dopaminergic apoptosis in Parkinson's disease. Proc Natl Acad Sci U S A 2020; 117:24503-24513. [PMID: 32929029 DOI: 10.1073/pnas.2004087117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo (MST1/2) pathway plays a critical role in restricting tissue growth in adults and modulating cell proliferation, differentiation, and migration in developing organs. Netrin1, a secreted laminin-related protein, is essential for nervous system development. However, the mechanisms underlying MST1 regulation by the extrinsic signals remain unclear. Here, we demonstrate that Netrin1 reduction in Parkinson's disease (PD) activates MST1, which selectively binds and phosphorylates netrin receptor UNC5B on T428 residue, promoting its apoptotic activation and dopaminergic neuronal loss. Netrin1 deprivation stimulates MST1 activation and interaction with UNC5B, diminishing YAP levels and escalating cell deaths. Knockout of UNC5B abolishes netrin depletion-induced dopaminergic loss, whereas blockade of MST1 phosphorylating UNC5B suppresses neuronal apoptosis. Remarkably, Netrin1 is reduced in PD patient brains, associated with MST1 activation and UNC5B T428 phosphorylation, which is accompanied by YAP reduction and apoptotic activation. Hence, Netrin1 regulates Hippo (MST1) pathway in dopaminergic neuronal loss in PD via UNC5B receptor.
Collapse
|
76
|
Wu Z, Guan KL. Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci 2020; 46:51-63. [PMID: 32928629 DOI: 10.1016/j.tibs.2020.08.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Hippo pathway components are structurally and functionally conserved and are notable for their role in controlling organ size. More diverse functions of the Hippo pathway have been recognized, including development, tissue homeostasis, wound healing and regeneration, immunity, and tumorigenesis. During embryogenesis, different signaling pathways are repeatedly and cooperatively activated, leading to differential gene expression in specific developmental contexts. In this article, we present an overview on the regulation and function of the Hippo pathway in mammalian early development. We introduce the Hippo pathway components and major upstream signals that act through this pathway to influence embryogenesis. We also discuss the roles of Hippo pathway in tissue specification and organ development during organogenesis.
Collapse
Affiliation(s)
- Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
77
|
Zhang Q, Zhou R, Xu P. The Hippo Pathway in Innate Anti-microbial Immunity and Anti-tumor Immunity. Front Immunol 2020; 11:1473. [PMID: 32849504 PMCID: PMC7417304 DOI: 10.3389/fimmu.2020.01473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway responds to diverse environmental cues and plays key roles in cell fate determination, tissue homeostasis, and organ regeneration. Aberrant Hippo signaling, on the other hand, has frequently been implicated in diversified pathologies such as cancer and immune dysfunction. Here, we summarize the recent but rapid progress in understanding the involvement of the Hippo pathway in innate immunity, with a special focus on the intrinsic mechanisms and mutual interactions between Hippo-YAP signaling and the innate immune response and its physiological impacts on anti-microbial immunity and anti-tumor immunity. Moving forward, we believe that systematic investigations under the physiological setting are needed to draw a clearer picture of the actions of Hippo in innate immunity.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
78
|
Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115:52. [PMID: 32748089 PMCID: PMC7398957 DOI: 10.1007/s00395-020-0816-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.
Collapse
|
79
|
Common Regulatory Pathways Mediate Activity of MicroRNAs Inducing Cardiomyocyte Proliferation. Cell Rep 2020; 27:2759-2771.e5. [PMID: 31141697 PMCID: PMC6547019 DOI: 10.1016/j.celrep.2019.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/03/2018] [Accepted: 04/30/2019] [Indexed: 01/04/2023] Open
Abstract
Loss of functional cardiomyocytes is a major determinant of heart failure after myocardial infarction. Previous high throughput screening studies have identified a few microRNAs (miRNAs) that can induce cardiomyocyte proliferation and stimulate cardiac regeneration in mice. Here, we show that all of the most effective of these miRNAs activate nuclear localization of the master transcriptional cofactor Yes-associated protein (YAP) and induce expression of YAP-responsive genes. In particular, miR-199a-3p directly targets two mRNAs coding for proteins impinging on the Hippo pathway, the upstream YAP inhibitory kinase TAOK1, and the E3 ubiquitin ligase β-TrCP, which leads to YAP degradation. Several of the pro-proliferative miRNAs (including miR-199a-3p) also inhibit filamentous actin depolymerization by targeting Cofilin2, a process that by itself activates YAP nuclear translocation. Thus, activation of YAP and modulation of the actin cytoskeleton are major components of the pro-proliferative action of miR-199a-3p and other miRNAs that induce cardiomyocyte proliferation. A few microRNAs can stimulate cardiac myocyte proliferation The most effective of these microRNAs activate YAP Several pro-proliferative microRNAs also inhibit actin depolymerization miR-199a-3p directly targets TAOK1, b-TrCP, and Cofilin2 to achieve its effects
Collapse
|
80
|
Zheng M, Jacob J, Hung SH, Wang J. The Hippo Pathway in Cardiac Regeneration and Homeostasis: New Perspectives for Cell-Free Therapy in the Injured Heart. Biomolecules 2020; 10:biom10071024. [PMID: 32664346 PMCID: PMC7407108 DOI: 10.3390/biom10071024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Intractable cardiovascular diseases are leading causes of mortality around the world. Adult mammalian hearts have poor regenerative capacity and are not capable of self-repair after injury. Recent studies of cell-free therapeutics such as those designed to stimulate endogenous cardiac regeneration have uncovered new feasible therapeutic avenues for cardiac repair. The Hippo pathway, a fundamental pathway with pivotal roles in cell proliferation, survival and differentiation, has tremendous potential for therapeutic manipulation in cardiac regeneration. In this review, we summarize the most recent studies that have revealed the function of the Hippo pathway in heart regeneration and homeostasis. In particular, we discuss the molecular mechanisms of how the Hippo pathway maintains cardiac homeostasis by directing cardiomyocyte chromatin remodeling and regulating the cell-cell communication between cardiomyocytes and non-cardiomyocytes in the heart.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA;
| | - Joan Jacob
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; (J.J.); (S.-H.H.)
| | - Shao-Hsi Hung
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; (J.J.); (S.-H.H.)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-7135-005-723
| |
Collapse
|
81
|
Chai TF, Manu KA, Casey PJ, Wang M. Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal. Oncogene 2020; 39:5373-5389. [PMID: 32561852 PMCID: PMC7391290 DOI: 10.1038/s41388-020-1364-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Cancer stem cells possess the capacity for self-renewal and resistance to chemotherapy. It is therefore crucial to understand the molecular regulators of stemness in the quest to develop effective cancer therapies. TAZ is a transcription activator that promotes stem cell functions in post-development mammalian cells; suppression of TAZ activity reduces or eliminates cancer stemness in select cancers. Isoprenylcysteine carboxylmethyltransferase (ICMT) is the unique enzyme of the last step of posttranslational prenylation processing pathway that modifies several oncogenic proteins, including RAS. We found that suppression of ICMT results in reduced self-renewal/stemness in KRAS-driven pancreatic and breast cancer cells. Silencing of ICMT led to significant reduction of TAZ protein levels and loss of self-renewal ability, which could be reversed by overexpressing mutant KRAS, demonstrating the functional impact of ICMT modification on the ability of KRAS to control TAZ stability and function. Contrary to expectation, YAP protein levels appear to be much less susceptible than TAZ to the regulation by ICMT and KRAS, and YAP is less consequential in regulating stemness characteristics in these cells. Further, we found that the ICMT-dependent KRAS regulation of TAZ was mediated through RAF, but not PI3K, signaling. Functionally, we demonstrate that a signaling cascade from ICMT modification of KRAS to TAZ protein stability supports cancer cell self-renewal abilities in both in vitro and in vivo settings. In addition, studies using the proof-of-concept small molecule inhibitors of ICMT confirmed its role in regulating TAZ and self-renewal, demonstrating the potential utility of targeting ICMT to control aggressive KRAS-driven cancers.
Collapse
Affiliation(s)
- Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
82
|
Abstract
The Hippo pathway plays a crucial role in maintaining tissue homeostasis. Generally, activated Hippo pathway effectors, YAP/TAZ, induce the transcription of their negative regulators, NF2 and LATS2, and this negative feedback loop maintains homeostasis of the Hippo pathway. However, YAP and TAZ are consistently hyperactivated in various cancer cells, enhancing tumor growth. Our study found that LATS2, a direct-inhibiting kinase of YAP/TAZ and a core component of the negative feedback loop in the Hippo pathway, is modified with O-GlcNAc. LATS2 O-GlcNAcylation inhibited its activity by interrupting the interaction with the MOB1 adaptor protein, thereby activating YAP and TAZ to promote cell proliferation. Thus, our study suggests that LATS2 O-GlcNAcylation is deeply involved in Hippo pathway dysregulation in cancer cells. The Hippo pathway controls organ size and tissue homeostasis by regulating cell proliferation and apoptosis. The LATS-mediated negative feedback loop prevents excessive activation of the effectors YAP/TAZ, maintaining homeostasis of the Hippo pathway. YAP and TAZ are hyperactivated in various cancer cells which lead to tumor growth. Aberrantly increased O-GlcNAcylation has recently emerged as a cause of hyperactivation of YAP in cancer cells. However, the mechanism, which induces hyperactivation of TAZ and blocks LATS-mediated negative feedback, remains to be elucidated in cancer cells. This study found that in breast cancer cells, abnormally increased O-GlcNAcylation hyperactivates YAP/TAZ and inhibits LATS2, a direct negative regulator of YAP/TAZ. LATS2 is one of the newly identified O-GlcNAcylated components in the MST-LATS kinase cascade. Here, we found that O-GlcNAcylation at LATS2 Thr436 interrupted its interaction with the MOB1 adaptor protein, which connects MST to LATS2, leading to activation of YAP/TAZ by suppressing LATS2 kinase activity. LATS2 is a core component in the LATS-mediated negative feedback loop. Thus, this study suggests that LATS2 O-GlcNAcylation is deeply involved in tumor growth by playing a critical role in dysregulation of the Hippo pathway in cancer cells.
Collapse
|
83
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
84
|
Manning SA, Kroeger B, Harvey KF. The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development 2020; 147:147/8/dev179069. [PMID: 32341025 DOI: 10.1242/dev.179069] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Hippo pathway is a highly conserved signalling pathway that regulates multiple biological processes, including organ size control and cell fate. Since its discovery, genetic and biochemical studies have elucidated several key signalling steps important for pathway activation and deactivation. In recent years, technical advances in microscopy and genome modification have allowed new insights into Hippo signalling to be revealed. These studies have highlighted that the nuclear-cytoplasmic shuttling behaviour of the Hippo pathway transcriptional co-activators Yorkie, YAP and TAZ is far more dynamic than previously appreciated, and YAP and TAZ are also regulated by liquid-liquid phase separation. Here, we review our current understanding of Yorkie, YAP and TAZ regulation, with a focus on recent microscopy-based studies.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800 .,Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia 3000.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia 3010
| |
Collapse
|
85
|
Dokla EME, Fang CS, Chu PC, Chang CS, Abouzid KAM, Chen CS. Targeting YAP Degradation by a Novel 1,2,4-Oxadiazole Derivative via Restoration of the Function of the Hippo Pathway. ACS Med Chem Lett 2020; 11:426-432. [PMID: 32292545 DOI: 10.1021/acsmedchemlett.9b00501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has linked the dysregulation of the Hippo pathway to tumorigenesis and cancer progression due to its pivotal role in regulating the stability of the oncoprotein YAP. Based on an unexpected finding from the SAR study of a recently reported oxadiazole-based EGFR/c-Met dual inhibitor (compound 1), we identified a closely related derivative, compound 2, which exhibited cogent antitumor activities while devoid of compound 1's ability to promote EGFR/c-Met degradation. Compound 2 acted, in part, by facilitating YAP degradation through activation of its upstream kinase LATS1. However, it did not alter the phosphorylation status of MST1/2, a LATS1 kinase, suggesting an alternative mechanism for LATS1 activation. Orally administered compound 2 was effective in suppressing MDA-MB-231 xenograft tumor growth while exhibiting a satisfactory safety profile. From a therapeutic perspective, compound 2 might help foster new therapeutic strategies for cancer treatment by restoring the Hippo pathway regulatory function to facilitate YAP degradation.
Collapse
Affiliation(s)
- Eman M. E. Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Chun-Sheng Fang
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Khaled A. M. Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Ching S. Chen
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
86
|
Cairns L, Patterson A, Weingartner KA, Koehler TJ, DeAngelis DR, Tripp KW, Bothner B, Kavran JM. Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila. J Biol Chem 2020; 295:6202-6213. [PMID: 32213597 DOI: 10.1074/jbc.ra120.012679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Indexed: 11/06/2022] Open
Abstract
Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain-mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain-mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain-mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain-mediated complex formation and provide mechanistic insights into how SARAH domain-mediated interactions influence Hippo pathway activity.
Collapse
Affiliation(s)
- Leah Cairns
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 20215
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717
| | - Kyler A Weingartner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 20215
| | - T J Koehler
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 20215
| | - Daniel R DeAngelis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 20215
| | - Katherine W Tripp
- The T. C. Jenkins Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, 201218
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 20215; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 20215; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 20215.
| |
Collapse
|
87
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
88
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
89
|
Garg R, Koo CY, Infante E, Giacomini C, Ridley AJ, Morris JDH. Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. J Cell Sci 2020; 133:jcs235895. [PMID: 32041905 DOI: 10.1242/jcs.235895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Rnd3 is an atypical Rho family protein that is constitutively GTP bound, and acts on membranes to induce loss of actin stress fibers and cell rounding. Phosphorylation of Rnd3 promotes 14-3-3 binding and its relocation to the cytosol. Here, we show that Rnd3 binds to the thousand-and-one amino acid kinases TAOK1 and TAOK2 in vitro and in cells. TAOK1 and TAOK2 can phosphorylate serine residues 210, 218 and 240 near the C-terminus of Rnd3, and induce Rnd3 translocation from the plasma membrane to the cytosol. TAOKs are activated catalytically during mitosis and Rnd3 phosphorylation on serine 210 increases in dividing cells. Rnd3 depletion by RNAi inhibits mitotic cell rounding and spindle centralization, and delays breakdown of the intercellular bridge between two daughter cells. Our results show that TAOKs bind, phosphorylate and relocate Rnd3 to the cytosol and that Rnd3 contributes to mitotic cell rounding, spindle positioning and cytokinesis. Rnd3 can therefore participate in the regulation of early and late mitosis and may also act downstream of TAOKs to affect the cytoskeleton.
Collapse
Affiliation(s)
- Ritu Garg
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Chuay-Yeng Koo
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Caterina Giacomini
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan D H Morris
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
90
|
Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Cancers (Basel) 2020; 12:cancers12030645. [PMID: 32164350 PMCID: PMC7139637 DOI: 10.3390/cancers12030645] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. Despite intensive basic and medical research studies to discover new therapeutics and to improve current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease. Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance to chemotherapy. Over the past ten years, considerable interest for the Hippo/YAP signaling pathway has taken place within the cancer research community. This signaling pathway operates at different steps of tumor progression: Primary tumor growth, angiogenesis, epithelial to mesenchymal transition, and metastatic dissemination. This review discusses the current knowledge about the involvement of the Hippo signaling pathway in cancer and specifically in paediatric bone sarcoma progression.
Collapse
|
91
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|
92
|
Wang Z, Lu W, Zhang Y, Zou F, Jin Z, Zhao T. The Hippo Pathway and Viral Infections. Front Microbiol 2020; 10:3033. [PMID: 32038526 PMCID: PMC6990114 DOI: 10.3389/fmicb.2019.03033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is a novel tumor suppressor pathway, initially found in Drosophila. Recent studies have discovered that the Hippo signaling pathway plays a critical role in a wide range of biological processes, including organ size control, cell proliferation, cancer development, and virus-induced diseases. In this review, we summarize the current understanding of the biological feature and pathological role of the Hippo pathway, focusing particularly on current findings in the function of the Hippo pathway in virus infection and pathogenesis.
Collapse
Affiliation(s)
- Zhilong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Wanhang Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yiling Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Feng Zou
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
93
|
Jain PB, Guerreiro PS, Canato S, Janody F. The spectraplakin Dystonin antagonizes YAP activity and suppresses tumourigenesis. Sci Rep 2019; 9:19843. [PMID: 31882643 PMCID: PMC6934804 DOI: 10.1038/s41598-019-56296-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023] Open
Abstract
Aberrant expression of the Spectraplakin Dystonin (DST) has been observed in various cancers, including those of the breast. However, little is known about its role in carcinogenesis. In this report, we demonstrate that Dystonin is a candidate tumour suppressor in breast cancer and provide an underlying molecular mechanism. We show that in MCF10A cells, Dystonin is necessary to restrain cell growth, anchorage-independent growth, self-renewal properties and resistance to doxorubicin. Strikingly, while Dystonin maintains focal adhesion integrity, promotes cell spreading and cell-substratum adhesion, it prevents Zyxin accumulation, stabilizes LATS and restricts YAP activation. Moreover, treating DST-depleted MCF10A cells with the YAP inhibitor Verteporfin prevents their growth. In vivo, the Drosophila Dystonin Short stop also restricts tissue growth by limiting Yorkie activity. As the two Dystonin isoforms BPAG1eA and BPAG1e are necessary to inhibit the acquisition of transformed features and are both downregulated in breast tumour samples and in MCF10A cells with conditional induction of the Src proto-oncogene, they could function as the predominant Dystonin tumour suppressor variants in breast epithelial cells. Thus, their loss could deem as promising prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Praachi B Jain
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156, Oeiras, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-393, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal
| | - Patrícia S Guerreiro
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156, Oeiras, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-393, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal
| | - Sara Canato
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156, Oeiras, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-393, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156, Oeiras, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-393, Porto, Portugal. .,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal.
| |
Collapse
|
94
|
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster as a key regulator of tissue growth. It is an evolutionarily conserved signaling cascade regulating numerous biological processes, including cell growth and fate decision, organ size control, and regeneration. The core of the Hippo pathway in mammals consists of a kinase cascade, MST1/2 and LATS1/2, as well as downstream effectors, transcriptional coactivators YAP and TAZ. These core components of the Hippo pathway control transcriptional programs involved in cell proliferation, survival, mobility, stemness, and differentiation. The Hippo pathway is tightly regulated by both intrinsic and extrinsic signals, such as mechanical force, cell-cell contact, polarity, energy status, stress, and many diffusible hormonal factors, the majority of which act through G protein-coupled receptors. Here, we review the current understanding of molecular mechanisms by which signals regulate the Hippo pathway with an emphasis on mechanotransduction and the effects of this pathway on basic biology and human diseases.
Collapse
Affiliation(s)
- Shenghong Ma
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Rui Chen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| |
Collapse
|
95
|
Abstract
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Collapse
|
96
|
Chen R, Xie R, Meng Z, Ma S, Guan KL. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat Cell Biol 2019; 21:1565-1577. [PMID: 31792377 DOI: 10.1038/s41556-019-0426-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023]
Abstract
The Hippo pathway plays a critical role in development, tissue homeostasis and organ size; its dysregulation contributes to human diseases. Although MST1/2 and the MAP4Ks are well known as the Hippo kinases, a major open question is how these kinases are regulated by upstream signals. Here we report that STRIPAK integrates upstream signals to control the activities of MST1/2 and the MAP4Ks, thus initiating Hippo signalling. STRIPAK also serves as a master regulator for the STE20 family kinases. Following serum or lysophosphatidic acid stimulation, active RhoA binds and dissociates rhophilin and NF2/Kibra from STRIPAK, thereby inducing the association and dephosphorylation of MST1/2 and MAP4Ks by the STRIPAK phosphatase catalytic subunit PP2AC. Rhophilin suppresses cancer cell growth by activating the Hippo pathway. Our study reveals a RhoA-rhophilin-NF2/Kibra-STRIPAK signalling axis in Hippo regulation, thus addressing the key question of how Hippo signalling is initiated and suggesting a broad and active role for STRIPAK in cellular signalling.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ruiling Xie
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Department of Otolaryngology, Head & Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Shenghong Ma
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
97
|
Sahu MR, Mondal AC. The emerging role of Hippo signaling in neurodegeneration. J Neurosci Res 2019; 98:796-814. [PMID: 31705587 DOI: 10.1002/jnr.24551] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegeneration refers to the complex process of progressive degeneration or neuronal apoptosis leading to a set of incurable and debilitating conditions. Physiologically, apoptosis is important in proper growth and development. However, aberrant and unrestricted apoptosis can lead to a variety of degenerative conditions including neurodegenerative diseases. Although dysregulated apoptosis has been implicated in various neurodegenerative disorders, the triggers and molecular mechanisms underlying such untimely and faulty apoptosis are still unknown. Hippo signaling pathway is one such apoptosis-regulating mechanism that has remained evolutionarily conserved from Drosophila to mammals. This pathway has gained a lot of attention for its tumor-suppressing task, but recent studies have emphasized the soaring role of this pathway in inflaming neurodegeneration. In addition, strategies promoting inactivation of this pathway have aided in the rescue of neurons from anomalous apoptosis. So, a thorough understanding of the relationship between the Hippo pathway and neurodegeneration may serve as a guide for the development of therapy for various degenerative diseases. The current review focuses on the mechanism of the Hippo signaling pathway, its upstream and downstream regulatory molecules, and its role in the genesis of numerous neurodegenerative diseases. The recent efforts employing the Hippo pathway components as targets for checking neurodegeneration have also been highlighted.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
98
|
YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis 2019; 10:768. [PMID: 31601778 PMCID: PMC6787001 DOI: 10.1038/s41419-019-2000-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional co-factor involved in many cell processes, including development, proliferation, stemness, differentiation, and tumorigenesis. It has been described as a sensor of mechanical and biochemical stimuli that enables cells to integrate environmental signals. Although in the liver the correlation between extracellular matrix elasticity (greatly increased in the most of chronic hepatic diseases), differentiation/functional state of parenchymal cells and subcellular localization/activation of YAP has been previously reported, its role as regulator of the hepatocyte differentiation remains to be clarified. The aim of this study was to evaluate the role of YAP in the regulation of epithelial/hepatocyte differentiation and to clarify how a transducer of general stimuli can integrate tissue-specific molecular mechanisms determining specific cell outcomes. By means of YAP silencing and overexpression we demonstrated that YAP has a functional role in the repression of epithelial/hepatocyte differentiation by inversely modulating the expression of Snail (master regulator of the epithelial-to-mesenchymal transition and liver stemness) and HNF4α (master regulator of hepatocyte differentiation) at transcriptional level, through the direct occupancy of their promoters. Furthermore, we found that Snail, in turn, is able to positively control YAP expression influencing protein level and subcellular localization and that HNF4α stably represses YAP transcription in differentiated hepatocytes both in cell culture and in adult liver. Overall, our data indicate YAP as a new member of the HNF4/Snail epistatic molecular circuitry previously demonstrated to control liver cell state. In this model, the dynamic balance between three main transcriptional regulators, that are able to control reciprocally their expression/activity, is responsible for the induction/maintenance of different liver cell differentiation states and its modulation could be the aim of therapeutic protocols for several chronic liver diseases.
Collapse
|
99
|
Flinn MA, Link BA, O'Meara CC. Upstream regulation of the Hippo-Yap pathway in cardiomyocyte regeneration. Semin Cell Dev Biol 2019; 100:11-19. [PMID: 31606277 DOI: 10.1016/j.semcdb.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
The response of the adult mammalian heart to injury such as myocardial infarction has long been described as primarily fibrotic scarring and adverse remodeling with little to no regeneration of cardiomyocytes. Emerging studies have challenged this paradigm by demonstrating that, indeed, adult mammalian cardiomyocytes are capable of completing cytokinesis albeit at levels vastly insufficient to compensate for the loss of functional cardiomyocytes following ischemic injury. Thus, there is great interest in identifying mechanisms to guide adult cardiomyocyte cell cycle re-entry and facilitate endogenous heart regeneration. The Hippo signaling pathway is a core kinase cascade that functions to suppress the transcriptional co-activators Yap and Taz by phosphorylation and therefore cytoplasmic retention or phospho-degradation. This pathway has recently sparked interest in the field of cardiac regeneration as inhibition of Hippo kinase signaling or overdriving the transcriptional co-activator, Yap, significantly promotes proliferation of terminally differentiated adult mammalian cardiomyocytes and can restore function in failing mouse hearts. Thus, the Hippo pathway is an attractive therapeutic target for promoting cardiomyocyte renewal and cardiac regeneration. Although the core kinases and transcriptional activators of the Hippo pathway have been studied extensively over the last twenty years, the regulatory inputs of this pathway, particularly in vertebrates, are poorly understood. Recent studies have elucidated several upstream regulatory inputs to the Hippo pathway in adult mammalian cardiomyocytes that influence cell proliferation and heart regeneration. Considering upstream inputs to the Hippo pathway are thought to be context and cell type specific, targeting these various components could serve as a therapeutic approach for refining Hippo-Yap signaling in the heart. Here, we provide an overview of the emerging regulatory inputs to the Hippo pathway as they relate to mammalian cardiomyocytes and heart regeneration.
Collapse
Affiliation(s)
- Michael A Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
100
|
Gobbi G, Donati B, Do Valle IF, Reggiani F, Torricelli F, Remondini D, Castellani G, Ambrosetti DC, Ciarrocchi A, Sancisi V. The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells. Oncogene 2019; 38:6801-6817. [PMID: 31406246 DOI: 10.1038/s41388-019-0924-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.
Collapse
Affiliation(s)
- Giulia Gobbi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Italo Faria Do Valle
- Department of Physics, Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy.
| |
Collapse
|