51
|
Mundorf J, Donohoe CD, McClure CD, Southall TD, Uhlirova M. Ets21c Governs Tissue Renewal, Stress Tolerance, and Aging in the Drosophila Intestine. Cell Rep 2019; 27:3019-3033.e5. [PMID: 31167145 PMCID: PMC6581828 DOI: 10.1016/j.celrep.2019.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Homeostatic renewal and stress-related tissue regeneration rely on stem cell activity, which drives the replacement of damaged cells to maintain tissue integrity and function. The Jun N-terminal kinase (JNK) signaling pathway has been established as a critical regulator of tissue homeostasis both in intestinal stem cells (ISCs) and mature enterocytes (ECs), while its chronic activation has been linked to tissue degeneration and aging. Here, we show that JNK signaling requires the stress-inducible transcription factor Ets21c to promote tissue renewal in Drosophila. We demonstrate that Ets21c controls ISC proliferation as well as EC apoptosis through distinct sets of target genes that orchestrate cellular behaviors via intrinsic and non-autonomous signaling mechanisms. While its loss appears dispensable for development and prevents epithelial aging, ISCs and ECs demand Ets21c function to mount cellular responses to oxidative stress. Ets21c thus emerges as a vital regulator of proliferative homeostasis in the midgut and a determinant of the adult healthspan.
Collapse
Affiliation(s)
- Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Colin D Donohoe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Colin D McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
52
|
Chakraborty D, Felzen V, Hiebel C, Stürner E, Perumal N, Manicam C, Sehn E, Grus F, Wolfrum U, Behl C. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. Redox Biol 2019; 24:101181. [PMID: 30959460 PMCID: PMC6454062 DOI: 10.1016/j.redox.2019.101181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregulated in OxSR cells. The observed adaptive autophagic response was found to be independent of the upstream autophagy regulator mTOR but is accompanied by a significant upregulation of further downstream components of the canonical autophagy network such as Beclin1, WIPI1 and the transmembrane ATG9 proteins. Interestingly, the expression of the HSP70 co-chaperone BAG3, mediator of BAG3-mediated selective macroautophagy and highly relevant for the clearance of aggregated proteins in cells, was found to be increased in OxSR cells that were consequently able to effectively overcome proteotoxic stress. Overexpression of BAG3 in oxidative stress-sensitive HT22 wildtype cells partly established the vesicular phenotype and the enhanced autophagic flux seen in OxSR cells suggesting that BAG3 takes over an important part in the adaptation process. A full proteome analysis demonstrated additional changes in the expression of mitochondrial proteins, metabolic enzymes and different pathway regulators in OxSR cells as consequence of the adaptation to oxidative stress in addition to autophagy-related proteins. Taken together, this analysis revealed a wide variety of pathways and players that act as adaptive response to chronic redox stress in neuronal cells.
Collapse
Affiliation(s)
- Debapriya Chakraborty
- Institute of Pathobiochemistry, University Medical Center Mainz of the Johannes Gutenberg University, 55099, Mainz, Germany.
| | - Vanessa Felzen
- Institute of Pathobiochemistry, University Medical Center Mainz of the Johannes Gutenberg University, 55099, Mainz, Germany.
| | - Christof Hiebel
- Institute of Pathobiochemistry, University Medical Center Mainz of the Johannes Gutenberg University, 55099, Mainz, Germany.
| | - Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center Mainz of the Johannes Gutenberg University, 55099, Mainz, Germany.
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, University Medical Center Mainz, 55131, Mainz, Germany.
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, University Medical Center Mainz, 55131, Mainz, Germany.
| | - Elisabeth Sehn
- Institute for Molecular Physiology, Johannes Gutenberg University, 55128, Mainz, Germany.
| | - Franz Grus
- Experimental and Translational Ophthalmology, University Medical Center Mainz, 55131, Mainz, Germany.
| | - Uwe Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University, 55128, Mainz, Germany.
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center Mainz of the Johannes Gutenberg University, 55099, Mainz, Germany.
| |
Collapse
|
53
|
Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, Sampson L, Wellendorf AM, Chetal K, Choi K, Salomonis N, Choi Y, Zheng Y, Cancelas JA, Levine RL, Starczynowski DT. TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Rep 2019; 22:1250-1262. [PMID: 29386112 PMCID: PMC5971064 DOI: 10.1016/j.celrep.2018.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 11/03/2022] Open
Abstract
Basal nuclear factor κB (NF-κB) activation is required for hematopoietic stem cell (HSC) homeostasis in the absence of inflammation; however, the upstream mediators of basal NF-κB signaling are less well understood. Here, we describe TRAF6 as an essential regulator of HSC homeostasis through basal activation of NF-κB. Hematopoietic-specific deletion of Traf6 resulted in impaired HSC self-renewal and fitness. Gene expression, RNA splicing, and molecular analyses of Traf6-deficient hematopoietic stem/progenitor cells (HSPCs) revealed changes in adaptive immune signaling, innate immune signaling, and NF-κB signaling, indicating that signaling via TRAF6 in the absence of cytokine stimulation and/or infection is required for HSC function. In addition, we established that loss of IκB kinase beta (IKKβ)-mediated NF-κB activation is responsible for the major hematopoietic defects observed in Traf6-deficient HSPC as deletion of IKKβ similarly resulted in impaired HSC self-renewal and fitness. Taken together, TRAF6 is required for HSC homeostasis by maintaining a minimal threshold level of IKKβ/NF-κB signaling.
Collapse
Affiliation(s)
- Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Leesa Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
54
|
Zhang P, Holowatyj AN, Roy T, Pronovost SM, Marchetti M, Liu H, Ulrich CM, Edgar BA. An SH3PX1-Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. Dev Cell 2019; 49:574-589.e5. [PMID: 31006650 DOI: 10.1016/j.devcel.2019.03.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of intracellular vesicle trafficking on stem-cell behavior is largely unexplored. We screened the Drosophila sorting nexins (SNXs) and discovered that one, SH3PX1, profoundly affects gut homeostasis and lifespan. SH3PX1 restrains intestinal stem cell (ISC) division through an endocytosis-autophagy network that includes Dynamin, Rab5, Rab7, Atg1, 5, 6, 7, 8a, 9, 12, 16, and Syx17. Blockages in this network stabilize ligand-activated EGFRs, recycling them via Rab11-dependent endosomes to the plasma membrane. This hyperactivated ERK, calcium signaling, and ER stress, autonomously stimulating ISC proliferation. The excess divisions induced epithelial stress, Yki activity, and Upd3 and Rhomboid production in enterocytes, catalyzing feedforward ISC hyperplasia. Similarly, blocking autophagy increased ERK activity in human cells. Many endocytosis-autophagy genes are mutated in cancers, most notably those enriched in microsatellite instable-high and KRAS-wild-type colorectal cancers. Disruptions in endocytosis and autophagy may provide an alternative route to RAS-ERK activation, resulting in EGFR-dependent cancers.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andreana N Holowatyj
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Taylor Roy
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen M Pronovost
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marco Marchetti
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Hanbin Liu
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
55
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
56
|
Guo T, Nan Z, Miao C, Jin X, Yang W, Wang Z, Tu Y, Bao H, Lyu J, Zheng H, Deng Q, Guo P, Xi Y, Yang X, Ge W. The autophagy-related gene Atg101 in Drosophila regulates both neuron and midgut homeostasis. J Biol Chem 2019; 294:5666-5676. [PMID: 30760524 DOI: 10.1074/jbc.ra118.006069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Atg101 is an autophagy-related gene identified in worms, flies, mice, and mammals, which encodes a protein that functions in autophagosome formation by associating with the ULK1-Atg13-Fip200 complex. In the last few years, the critical role of Atg101 in autophagy has been well-established through biochemical studies and the determination of its protein structure. However, Atg101's physiological role, both during development and in adulthood, remains less understood. Here, we describe the generation and characterization of an Atg101 loss-of-function mutant in Drosophila and report on the roles of Atg101 in maintaining tissue homeostasis in both adult brains and midguts. We observed that homozygous or hemizygous Atg101 mutants were semi-lethal, with only some of them surviving into adulthood. Both developmental and starvation-induced autophagy processes were defective in the Atg101 mutant animals, and Atg101 mutant adult flies had a significantly shorter lifespan and displayed a mobility defect. Moreover, we observed the accumulation of ubiquitin-positive aggregates in Atg101 mutant brains, indicating a neuronal defect. Interestingly, Atg101 mutant adult midguts were shorter and thicker and exhibited abnormal morphology with enlarged enterocytes. Detailed analysis also revealed that the differentiation from intestinal stem cells to enterocytes was impaired in these midguts. Cell type-specific rescue experiments disclosed that Atg101 had a function in enterocytes and limited their growth. In summary, the results of our study indicate that Drosophila Atg101 is essential for tissue homeostasis in both adult brains and midguts. We propose that Atg101 may have a role in age-related processes.
Collapse
Affiliation(s)
- Ting Guo
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Zi Nan
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Chen Miao
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Xiaoye Jin
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Weiwei Yang
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Zehua Wang
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Yinqi Tu
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Hongcun Bao
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Jialan Lyu
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Huimei Zheng
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Qiannan Deng
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Pengfei Guo
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058, and
| | - Yongmei Xi
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Xiaohang Yang
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| | - Wanzhong Ge
- From the Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058, .,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058.,the Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310058
| |
Collapse
|
57
|
Wang FM, Hu Z, Liu X, Feng JQ, Augsburger RA, Gutmann JL, Glickman GN. Resveratrol represses tumor necrosis factor α/c-Jun N-terminal kinase signaling via autophagy in human dental pulp stem cells. Arch Oral Biol 2019; 97:116-121. [PMID: 30384152 PMCID: PMC6927335 DOI: 10.1016/j.archoralbio.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To study the effects of polyphenol resveratrol on TNFα-induced inflammatory signaling as well as the underlying mechanism in human dental pulp stem cells (DPSCs). MATERIALS AND METHODS Human DPSCs were cultured and treated by TNFα in the presence or absence of resveratrol. NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting and immunofluorescence staining. Interleukin 6 (IL6) and interleukin 8 (IL8) mRNA levels were analyzed by reverse transcription polymerase chain reaction. For the mechanistic study, autophagy was examined and further manipulated by gene silencing of Atg5 using siRNAs. Statistical analysis was performed by Student's t- test, and values of p < 0.05 were considered significant. RESULTS Upon TNFα treatments, neither degradation of IκBα nor the phosphorylation and nuclear translocation of p65 NF-κB were inhibited by resveratrol at different concentrations. In contrast, resveratrol dramatically inhibited TNFα-induced phosphorylation of c-Jun N-terminal kinase (JNK) MAPK. Furthermore, resveratrol activated autophagy, as evidenced by the accumulated autophagic puncta formed by lipid bound LC3B in resveratrol-treated cells. Intriguingly, both resveratrol and JNK inhibitor SP600125 suppressed TNFα-induced IL6 and IL8 mRNA expression (P < 0.05). Silencing autophagy gene Atg5 led to the hyper-activation of JNK and augmented TNFα-induced IL6 and IL8 mRNA expression (P < 0.05). CONCLUSIONS The results suggest that resveratrol suppresses TNFα-induced inflammatory cytokines expressed by DPSCs through regulating the inhibitory autophagy-JNK signaling cascade. Resveratrol might be beneficial to ameliorate pulpal damage during the acute phase of inflammation in vital pulp therapy.
Collapse
Affiliation(s)
- Feng-Ming Wang
- Department of Endodontics, Texas A&M College of Dentistry, Dallas, TX, USA.
| | - Zhiai Hu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | | | - James L Gutmann
- Professor Emeritus, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Gerald N Glickman
- Department of Endodontics, Texas A&M College of Dentistry, Dallas, TX, USA
| |
Collapse
|
58
|
Xu C, Ericsson M, Perrimon N. Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 11:24-31. [PMID: 31595264 PMCID: PMC6781628 DOI: 10.1016/j.coisb.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the aims of systems biology is to model and discover properties of cells, tissues and organisms functioning as a system. In recent years, studies in the adult Drosophila gut have provided a wealth of information on the cell types and their functions, and the signaling pathways involved in the complex interactions between proliferating and differentiated cells in the context of homeostasis and pathology. Here, we document and discuss how high-resolution ultrastructure studies of organelle morphology have much to contribute to our understanding of how the gut functions as an integrated system.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Harvard Medical School, Goldenson 323, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
59
|
Hu W, Wu W, Sun S, Liu Z, Li A, Gao L, Liu X, Liu D, Deng H, Zhao B, Liu B, Pang Q. Identification and characterization of a TNF receptor-associated factor in Dugesia japonica. Gene 2018; 681:52-61. [PMID: 30267808 DOI: 10.1016/j.gene.2018.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/03/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
The tumor necrosis factor (TNF) superfamily consists of a wide variety of inflammatory cytokine, including cell-bound and secreted proteins. These TNFs function through binding and activation of the TNF receptors for modulating TNF-associated intracellular signals. A set of mammalian TNF receptor-associated factors (TRAFs) that have emerged as the major signal transducers for the TNF receptor superfamily, play an important role in both adaptive and innate immunity. However, the existence of TRAFs and their biological functions in planarian are still unknown. In this study, a new member of TRAFs, DjTRAF2, was identified in planarian Dugesia japonica. Phylogenetic analysis revealed that DjTRAF2 could be a new member of the invertebrate TRAF2 family. Sequence analysis showed that the open reading frame of DjTRAF2 had 1353 bp in length and encoded a putative protein of 450 amino acids with a predicted molecular mass of ~51.8 kDa and an isoelectric point of 7.052. Whole-mount in situ hybridization showed that DjTRAF2 was predominantly expressed in adult and regenerative pharynx, which is an important immune organ of planarian. Quantitative real-time PCR revealed that the transcriptional level of DjTRAF2 was significantly up-regulated after induced by pathogen-associated molecular patterns (polyinosinic-polycytidylic acid, lipopolysaccharide, peptidoglycan and β-glucan), suggesting that DjTRAF2 is involved in the immune response against pathogen invasion. Collectively, these results demonstrated that DjTRAF2 might play important roles in the innate immunity of planarian.
Collapse
Affiliation(s)
- Wenjing Hu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Weiwei Wu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Shimin Sun
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zuojun Liu
- Shenzhen University of Health Science Center, Shenzhen, Guangdong 518060, China
| | - Ao Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xi Liu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Shenzhen University of Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China.
| |
Collapse
|
60
|
Zhao Y, Sun H, Li X, Zha Y, Hou W. Hydroxysafflor yellow A attenuates high glucose-induced pancreatic β-cells oxidative damage via inhibiting JNK/c-jun signaling pathway. Biochem Biophys Res Commun 2018; 505:353-359. [PMID: 30249395 DOI: 10.1016/j.bbrc.2018.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
Abstract
Pancreatic β-cells apoptosis and dysfunction induced by glucose toxicity were attributed to the formation of excess oxidative damage. Some studies have found that hydroxysafflor yellow A has strong effects to scavenge oxidative stress and inhibit apoptosis. In order to explore the influence of HSYA on oxidative stress induced by high glucose and the potential mechanisms, we set up a high glucose damage model and induced oxidative stress in INS-1 rat insulinoma cells. N-acetylcysteine was added as a group of oxidative stress scavenger. After 72 h of cultivation, the related indexes of oxidative stress (reactive oxygen species, catalase, glutathione peroxidase, lipid peroxidation, and superoxide dismutase), apoptosis (caspase3, parp) and the function of glucose stimulated insulin secretion were determined. In addition, the signaling pathway proteins of C-Jun NH2 -terminal kinases (JNK), phosphorylated JNK, C-jun, phosphorylated C-jun were evaluated. Fluorescence microscopy, qRT-PCR, western blotting were the main methods used in the experiment. Our results showed that hydroxysafflor yellow A reduced pancreatic β-cells apoptosis by attenuating oxidative damage, and JNK/c-Jun signaling pathway was involved. It indicated a significant mechanism for the positive impacts of HSYA on oxidative stress induced by high glucose, and provide important basis for using HSYA in diabetic prevention and therapy.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine & health, China
| | - Hanchen Sun
- Shandong Provincial Medical Examination Office, Jinan, 250014, China
| | - Xiaosai Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine & health, China
| | - Yumei Zha
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine & health, China
| | - Weikai Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine & health, China.
| |
Collapse
|
61
|
Ma Y, Vassetzky Y, Dokudovskaya S. mTORC1 pathway in DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1293-1311. [PMID: 29936127 DOI: 10.1016/j.bbamcr.2018.06.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Yegor Vassetzky
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
62
|
Tang HW, Hu Y, Chen CL, Xia B, Zirin J, Yuan M, Asara JM, Rabinow L, Perrimon N. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming. Cell Metab 2018; 27:1040-1054.e8. [PMID: 29606597 PMCID: PMC6100782 DOI: 10.1016/j.cmet.2018.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/22/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chiao-Lin Chen
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Baolong Xia
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Min Yuan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - John M Asara
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Leonard Rabinow
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
63
|
Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Sci Rep 2018; 8:4644. [PMID: 29545557 PMCID: PMC5854693 DOI: 10.1038/s41598-018-23065-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is maintained by tightly controlled proliferation and differentiation of tissue-resident multipotent stem cells during aging and regeneration, which ensures organismal adaptation. Here we show that autophagy is required in Drosophila intestinal stem cells to sustain proliferation, and preserves the stem cell pool. Autophagy-deficient stem cells show elevated DNA damage and cell cycle arrest during aging, and are frequently eliminated via JNK-mediated apoptosis. Interestingly, loss of Chk2, a DNA damage-activated kinase that arrests the cell cycle and promotes DNA repair and apoptosis, leads to uncontrolled proliferation of intestinal stem cells regardless of their autophagy status. Chk2 accumulates in the nuclei of autophagy-deficient stem cells, raising the possibility that its activation may contribute to the effects of autophagy inhibition in intestinal stem cells. Our study reveals the crucial role of autophagy in preserving proper stem cell function for the continuous renewal of the intestinal epithelium in Drosophila.
Collapse
|
64
|
Lopes F, Keita ÅV, Saxena A, Reyes JL, Mancini NL, Al Rajabi A, Wang A, Baggio CH, Dicay M, van Dalen R, Ahn Y, Carneiro MBH, Peters NC, Rho JM, MacNaughton WK, Girardin SE, Jijon H, Philpott DJ, Söderholm JD, McKay DM. ER-stress mobilization of death-associated protein kinase-1-dependent xenophagy counteracts mitochondria stress-induced epithelial barrier dysfunction. J Biol Chem 2018; 293:3073-3087. [PMID: 29317503 DOI: 10.1074/jbc.ra117.000809] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome contributes to inflammatory bowel disease (IBD), in which bacteria can be present within the epithelium. Epithelial barrier function is decreased in IBD, and dysfunctional epithelial mitochondria and endoplasmic reticulum (ER) stress have been individually associated with IBD. We therefore hypothesized that the combination of ER and mitochondrial stresses significantly disrupt epithelial barrier function. Here, we treated human colonic biopsies, epithelial colonoids, and epithelial cells with an uncoupler of oxidative phosphorylation, dinitrophenol (DNP), with or without the ER stressor tunicamycin and assessed epithelial barrier function by monitoring internalization and translocation of commensal bacteria. We also examined barrier function and colitis in mice exposed to dextran sodium sulfate (DSS) or DNP and co-treated with DAPK6, an inhibitor of death-associated protein kinase 1 (DAPK1). Contrary to our hypothesis, induction of ER stress (i.e. the unfolded protein response) protected against decreased barrier function caused by the disruption of mitochondrial function. ER stress did not prevent DNP-driven uptake of bacteria; rather, specific mobilization of the ATF6 arm of ER stress and recruitment of DAPK1 resulted in enhanced autophagic killing (xenophagy) of bacteria. Of note, epithelia with a Crohn's disease-susceptibility mutation in the autophagy gene ATG16L1 exhibited less xenophagy. Systemic delivery of the DAPK1 inhibitor DAPK6 increased bacterial translocation in DSS- or DNP-treated mice. We conclude that promoting ER stress-ATF6-DAPK1 signaling in transporting enterocytes counters the transcellular passage of bacteria evoked by dysfunctional mitochondria, thereby reducing the potential for metabolic stress to reactivate or perpetuate inflammation.
Collapse
Affiliation(s)
- Fernando Lopes
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Åsa V Keita
- the Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping 581 83, Sweden, and
| | - Alpana Saxena
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Jose Luis Reyes
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Nicole L Mancini
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Ala Al Rajabi
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Arthur Wang
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Cristiane H Baggio
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Michael Dicay
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Rob van Dalen
- the Departments of Laboratory Medicine and Pathobiology and
| | - Younghee Ahn
- the Departments of Pediatrics, Clinical Neurosciences, and Physiology and Pharmacology and
| | - Matheus B H Carneiro
- the Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Nathan C Peters
- the Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Jong M Rho
- the Departments of Pediatrics, Clinical Neurosciences, and Physiology and Pharmacology and
| | - Wallace K MacNaughton
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | | | - Humberto Jijon
- Medicine, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, and
| | - Dana J Philpott
- Immunology, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - Johan D Söderholm
- the Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping 581 83, Sweden, and
| | - Derek M McKay
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| |
Collapse
|
65
|
Whon TW, Shin NR, Jung MJ, Hyun DW, Kim HS, Kim PS, Bae JW. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila. Antioxid Redox Signal 2017; 27:1361-1380. [PMID: 28462587 DOI: 10.1089/ars.2016.6790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. RESULTS Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. INNOVATION The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. CONCLUSION These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
66
|
Jia S, Wang Y, You Z, Liu B, Gao J, Liu W. Mammalian Atg9 contributes to the post-Golgi transport of lysosomal hydrolases by interacting with adaptor protein-1. FEBS Lett 2017; 591:4027-4038. [PMID: 29156099 DOI: 10.1002/1873-3468.12916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 11/11/2022]
Abstract
Accumulating evidence has indicated a role for autophagy-related (Atgs) proteins in cell regulation which is independent of their autophagic activities. As the only known transmembrane protein essential for autophagy, Atg9 cycles between the trans-Golgi network (TGN) and endosomes. Here, we report a function for mammalian Atg9 (mAtg9) in the transport of lysosomal hydrolases which impacts the lysosomal degradation capacity. Depletion of mAtg9 inhibits the degradation of epidermal growth factor receptor and the maturation of cathepsin D and cathepsin L. mAtg9 interacts with adaptor protein-1 (AP1) and the cation-independent mannose-6-phosphate receptor, facilitating AP1 polymerization and the transport of cathepsin D from the TGN. These results suggest that mAtg9 may serve as a coreceptor of lysosomal hydrolases for their TGN export by cycling between the TGN and endosomes.
Collapse
Affiliation(s)
- Shu Jia
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yusha Wang
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan You
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfeng Gao
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
67
|
Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades. Int J Mol Sci 2017; 18:ijms18122541. [PMID: 29186924 PMCID: PMC5751144 DOI: 10.3390/ijms18122541] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue “Ubiquitin System”.
Collapse
|
68
|
Wen JK, Wang YT, Chan CC, Hsieh CW, Liao HM, Hung CC, Chen GC. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila. eLife 2017; 6:29338. [PMID: 29144896 PMCID: PMC5690286 DOI: 10.7554/elife.29338] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/29/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.
Collapse
Affiliation(s)
- Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Wen Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Man Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
69
|
Tusco R, Jacomin AC, Jain A, Penman BS, Larsen KB, Johansen T, Nezis IP. Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses. Nat Commun 2017. [PMID: 29097655 DOI: 10.1016/j.jpowsour.2018.02.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex. Selective autophagic degradation of the IκB kinase complex prevents constitutive activation of the immune deficiency pathway in response to commensal microbiota. We show that autophagy-deficient flies have a systemic innate immune response that promotes a hyperplasia phenotype in the midgut. Remarkably, human IKKγ does not interact with mammalian Atg8-family proteins. Using a mathematical model, we suggest mechanisms by which pathogen selection might have driven the loss of LIR motif functionality during evolution. Our results suggest that there may have been an autophagy-related switch during the evolution of the IKKγ proteins in metazoans.
Collapse
Affiliation(s)
- Radu Tusco
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
| | - Bridget S Penman
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
70
|
Tusco R, Jacomin AC, Jain A, Penman BS, Larsen KB, Johansen T, Nezis IP. Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses. Nat Commun 2017; 8:1264. [PMID: 29097655 PMCID: PMC5668318 DOI: 10.1038/s41467-017-01287-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/06/2017] [Indexed: 12/23/2022] Open
Abstract
Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex. Selective autophagic degradation of the IκB kinase complex prevents constitutive activation of the immune deficiency pathway in response to commensal microbiota. We show that autophagy-deficient flies have a systemic innate immune response that promotes a hyperplasia phenotype in the midgut. Remarkably, human IKKγ does not interact with mammalian Atg8-family proteins. Using a mathematical model, we suggest mechanisms by which pathogen selection might have driven the loss of LIR motif functionality during evolution. Our results suggest that there may have been an autophagy-related switch during the evolution of the IKKγ proteins in metazoans. Selective autophagy describes the selective degradation of cellular components upon stress or nutrient deficiency, but whether it modulates innate immunity is unclear. Here the authors show that Drosophila Kenny may be an evolution-selected autophagy receptor for the down-regulation of innate NF-κB activation
Collapse
Affiliation(s)
- Radu Tusco
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
| | - Bridget S Penman
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
71
|
Wang N, Tan HY, Li S, Feng Y. Atg9b Deficiency Suppresses Autophagy and Potentiates Endoplasmic Reticulum Stress-Associated Hepatocyte Apoptosis in Hepatocarcinogenesis. Theranostics 2017; 7:2325-2338. [PMID: 28740555 PMCID: PMC5505064 DOI: 10.7150/thno.18225] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the mechanism underlying autophagy deficiency during hepatic carcinogenesis. For this purpose, we used choline-deficient, amino acid-defined (CDAA) hepatocarcinogenesis model in mice. miRNA microarrays combined with computational target predictions and GO analysis were used to identify molecular processes involved in carcinogenesis. PCR profiler array was employed to detect the dysregulated autophagy-related genes during carcinogenesis. We observed induction of hepatic tumours with increased inflammation, DNA damage, and cell death. These cellular processes were particularly detected upon oncogenic transformation of hepatocytes in which ER stress was excessively induced. Microarray combined with GO analysis showed that transformation of hepatocytes resulted in dysregulated events associated with cytoplasmic vesicle formation, which, in turn, was related to ER stress-induced autophagy. Defects of autophagy were observed in livers harbouring tumours and suffered a loss of expression of autophagy-related protein 9b (Atg9b). Hepatocytes lacking Atg9b were vulnerable to cell death induced by ER stress stimulus mainly caused by accumulation of ubiquitinated proteins. Loss of Atg9b also blocked recruitment of p62-associated ubiquitinated protein for autophagosome-lysosome degradation as Atg9b-driven phagophores may facilitate docking of both LC3 and p62 to initiate autophagy-associated degradation. miR-3091-3p from tumour-derived exosomes, which were internalised by hepatocytes, could suppress Atg9b expression. Observations from this study advance our knowledge about the regulation of autophagy during hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | | | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, PR of China
| |
Collapse
|
72
|
Basal autophagy prevents autoactivation or enhancement of inflammatory signals by targeting monomeric MyD88. Sci Rep 2017; 7:1009. [PMID: 28432355 PMCID: PMC5430896 DOI: 10.1038/s41598-017-01246-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
Autophagy, the processes of delivery of intracellular components to lysosomes, regulates induction of inflammation. Inducible macroautophagy degrades inflammasomes and dysfunctional mitochondria to downregulate inflammatory signals. Nonetheless, the effects of constitutive basal autophagy on inflammatory signals are largely unknown. Here, we report a previously unknown effect of basal autophagy. Lysosomal inhibition induced weak inflammatory signals in the absence of a cellular stimulus and in the presence of a nutrient supply, and their induction was impaired by MyD88 deficiency. During lysosomal inhibition, MyD88 was accumulated, and overabundant MyD88 autoactivated downstream signaling or enhanced TLR/IL-1R-mediated signaling. MyD88 is probably degraded via basal microautophagy because macroautophagy inhibitors, ATG5 deficiency, and an activator of chaperone-mediated autophagy did not affect MyD88. Analysis using a chimeric protein whose monomerization/dimerization can be switched revealed that monomeric MyD88 is susceptible to degradation. Immunoprecipitation of monomeric MyD88 revealed its interaction with TRAF6. In TRAF6-deficient cells, degradation of basal MyD88 was enhanced, suggesting that TRAF6 participates in protection from basal autophagy. Thus, basal autophagy lowers monomeric MyD88 expression, and thereby autoactivation of inflammatory signals is prevented. Given that impairment of lysosomes occurs in various settings, our results provide novel insights into the etiology of inflammatory signals that affect consequences of inflammation.
Collapse
|
73
|
Bader CA, Shandala T, Carter EA, Ivask A, Guinan T, Hickey SM, Werrett MV, Wright PJ, Simpson PV, Stagni S, Voelcker NH, Lay PA, Massi M, Plush SE, Brooks DA. A Molecular Probe for the Detection of Polar Lipids in Live Cells. PLoS One 2016; 11:e0161557. [PMID: 27551717 PMCID: PMC4994960 DOI: 10.1371/journal.pone.0161557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments.
Collapse
Affiliation(s)
- Christie A. Bader
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Tetyana Shandala
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth A. Carter
- Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela Ivask
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Taryn Guinan
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Shane M. Hickey
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Melissa V. Werrett
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Phillip J. Wright
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Peter V. Simpson
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Bologna, Italy
| | - Nicolas H. Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Peter A. Lay
- Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Massimiliano Massi
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Douglas A. Brooks
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
74
|
Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW, Park H, Ro SH, Kim JS, Juhász G, Lee JH. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2016; 11:1358-72. [PMID: 26086452 DOI: 10.1080/15548627.2015.1063766] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Autophagy is an essential process for eliminating ubiquitinated protein aggregates and dysfunctional organelles. Defective autophagy is associated with various degenerative diseases such as Parkinson disease. Through a genetic screening in Drosophila, we identified CG11148, whose product is orthologous to GIGYF1 (GRB10-interacting GYF protein 1) and GIGYF2 in mammals, as a new autophagy regulator; we hereafter refer to this gene as Gyf. Silencing of Gyf completely suppressed the effect of Atg1-Atg13 activation in stimulating autophagic flux and inducing autophagic eye degeneration. Although Gyf silencing did not affect Atg1-induced Atg13 phosphorylation or Atg6-Pi3K59F (class III PtdIns3K)-dependent Fyve puncta formation, it inhibited formation of Atg13 puncta, suggesting that Gyf controls autophagy through regulating subcellular localization of the Atg1-Atg13 complex. Gyf silencing also inhibited Atg1-Atg13-induced formation of Atg9 puncta, which is accumulated upon active membrane trafficking into autophagosomes. Gyf-null mutants also exhibited substantial defects in developmental or starvation-induced accumulation of autophagosomes and autolysosomes in the larval fat body. Furthermore, heads and thoraxes from Gyf-null adults exhibited strongly reduced expression of autophagosome-associated Atg8a-II compared to wild-type (WT) tissues. The decrease in Atg8a-II was directly correlated with an increased accumulation of ubiquitinated proteins and dysfunctional mitochondria in neuron and muscle, which together led to severe locomotor defects and early mortality. These results suggest that Gyf-mediated autophagy regulation is important for maintaining neuromuscular homeostasis and preventing degenerative pathologies of the tissues. Since human mutations in the GIGYF2 locus were reported to be associated with a type of familial Parkinson disease, the homeostatic role of Gyf-family proteins is likely to be evolutionarily conserved.
Collapse
Affiliation(s)
- Myungjin Kim
- a Department of Molecular and Integrative Physiology ; University of Michigan ; Ann Arbor , MI USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Nagy P, Kovács L, Sándor GO, Juhász G. Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila. Dis Model Mech 2016; 9:501-12. [PMID: 26921396 PMCID: PMC4892661 DOI: 10.1242/dmm.023416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy, endocytosis and DNA damage repair, but how its loss contributes to colorectal cancer is poorly understood. Here, we show that UVRAG deficiency in Drosophila intestinal stem cells leads to uncontrolled proliferation and impaired differentiation without preventing autophagy. As a result, affected animals suffer from gut dysfunction and short lifespan. Dysplasia upon loss of UVRAG is characterized by the accumulation of endocytosed ligands and sustained activation of STAT and JNK signaling, and attenuation of these pathways suppresses stem cell hyperproliferation. Importantly, the inhibition of early (dynamin-dependent) or late (Rab7-dependent) steps of endocytosis in intestinal stem cells also induces hyperproliferation and dysplasia. Our data raise the possibility that endocytic, but not autophagic, defects contribute to UVRAG-deficient colorectal cancer development in humans. Drosophila Collection: Intestinal-stem-cell-specific loss of the Drosophila ortholog of the tumor suppressor UVRAG, which is implicated in colorectal cancer, leads to endocytic defects and dysplasia.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary
| | - Laura Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary
| | - Gyöngyvér O Sándor
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
76
|
Ma M, Zhao H, Zhao H, Binari R, Perrimon N, Li Z. Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila. Dev Biol 2016; 411:207-216. [PMID: 26845534 DOI: 10.1016/j.ydbio.2016.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/31/2016] [Accepted: 01/31/2016] [Indexed: 11/26/2022]
Abstract
Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis.
Collapse
Affiliation(s)
- Meifang Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hanfei Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
77
|
Bader CA, Shandala T, Ng YS, Johnson IRD, Brooks DA. Atg9 is required for intraluminal vesicles in amphisomes and autolysosomes. Biol Open 2015; 4:1345-55. [PMID: 26353861 PMCID: PMC4728360 DOI: 10.1242/bio.013979] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an intracellular recycling and degradation process, which is important for energy metabolism, lipid metabolism, physiological stress response and organism development. During Drosophila development, autophagy is up-regulated in fat body and midgut cells, to control metabolic function and to enable tissue remodelling. Atg9 is the only transmembrane protein involved in the core autophagy machinery and is thought to have a role in autophagosome formation. During Drosophila development, Atg9 co-located with Atg8 autophagosomes, Rab11 endosomes and Lamp1 endosomes-lysosomes. RNAi silencing of Atg9 reduced both the number and the size of autophagosomes during development and caused morphological changes to amphisomes/autolysosomes. In control cells there was compartmentalised acidification corresponding to intraluminal Rab11/Lamp-1 vesicles, but in Atg9 depleted cells there were no intraluminal vesicles and the acidification was not compartmentalised. We concluded that Atg9 is required to form intraluminal vesicles and for localised acidification within amphisomes/autolysosomes, and consequently when depleted, reduced the capacity to degrade and remodel gut tissue during development. Summary: The disappearance of intraluminal vesicles in amphisomes/autolysosomes upon Atg9 depletion suggests that Atg9 has a specific role in intraluminal vesicle formation in autophagic compartments.
Collapse
Affiliation(s)
- C A Bader
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - T Shandala
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Y S Ng
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - I R D Johnson
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - D A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
78
|
Shang J, Guo XL, Deng Y, Yuan X, Liu HG. Regulatory effects of AT₁R-TRAF6-MAPKs signaling on proliferation of intermittent hypoxia-induced human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2015. [PMID: 26223916 DOI: 10.1007/s11596-015-1459-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial dysfunction induced by intermittent hypoxia (IH) participates in obstructive sleep apnea syndrome (OSAS)-associated cardiovascular disorders. Myeloid differentiation primary response 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) regulate numerous downstream adaptors like mitogen-activated protein kinases (MAPKs) and the subsequent oxidative stress and inflammatory responses. This study aimed to characterize the role of MyD88/TRAF6 in IH-treated cell function and its associated signaling. Human umbilical vein endothelial cells (HUVECs) were randomly exposed to IH or normoxia for 0, 2, 4 and 6 h. Western blotting was used to detect the expression pattern of target gene proteins [angiotensin 1 receptor (AT1R), p-ERK1/2, p-p38MAPK, MyD88 and TRAF6], and the relationships among these target genes down-regulated by the corresponding inhibitors were studied. Finally, the influence of these target genes on proliferation of HUVECs was also assessed by EdU analysis. Protein levels of AT1R, TRAF6 and p-ERK1/2 were increased after IH exposure, with a slight rise in MyD88 and a dynamic change in p-p38MAPK. The down-regulation of TRAF6 by siRNA reduced ERK1/2 phosphorylation during IH without any effects on AT1R. Blockade of AT1R with valsartan decreased TRAF6 and p-ERK1/2 protein expression after IH exposure. ERK1/2 inhibition with PD98059 suppressed only AT1R expression. IH promoted HUVECs proliferation, which was significantly suppressed by the inhibition of TRAF6, AT1R and ERK1/2. The findings demonstrate that TRAF6 regulates the proliferation of HUVECs exposed to short-term IH by modulating cell signaling involving ERK1/2 downstream of AT1R. Targeting the AT1R-TRAF6-p-ERK1/2 signaling pathway might be helpful in restoring endothelial function.
Collapse
Affiliation(s)
- Jin Shang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of the Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Ling Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of the Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of the Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of the Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of the Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
79
|
Ahn HH, Oh Y, Lee H, Lee W, Chang JW, Pyo HK, Nah DH, Jung YK. Identification of glucose-6-phosphate transporter as a key regulator functioning at the autophagy initiation step. FEBS Lett 2015; 589:2100-9. [PMID: 25982172 DOI: 10.1016/j.febslet.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
Abstract
Autophagy is a catabolic process involving autophagosome formation via lysosome. However, the initiation step of autophagy is largely unknown. We found an interaction between ULK1 and ATG9 in mammalian cells and utilized the interaction to identify novel regulators of autophagy upstream of ULK1. We established a cell-based screening assay employing bimolecular fluorescence complementation. By performing gain-of-function screening, we identified G6PT as an autophagy activator. G6PT enhanced the interaction between N-terminal Venus-tagged ULK1 and C-terminal Venus-tagged ATG9, and increased autophagic flux independent of its transport activity. G6PT negatively regulated mTORC1 activity, demonstrating that G6PT functions upstream of mTORC1 in stimulating autophagy.
Collapse
Affiliation(s)
- Hye-Hyun Ahn
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Republic of Korea; Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Yumin Oh
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Huikyong Lee
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - WonJae Lee
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Jae-Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ha-Kyung Pyo
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Do hyung Nah
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Republic of Korea; Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Yong-Keun Jung
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Republic of Korea; Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
80
|
Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat Cell Biol 2015; 17:715-25. [PMID: 25985393 DOI: 10.1038/ncb3172] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
We describe robust induction of autophagy during the reprogramming of mouse fibroblasts to induced pluripotent stem cells by four reprogramming factors (Sox2, Oct4, Klf4 and c-Myc), henceforth 4F. This process occurs independently of p53 activation, and is mediated by the synergistic downregulation of mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy-related genes. The 4F coordinately repress mTORC1, but bifurcate in their regulation of autophagy-related genes, with Klf4 and c-Myc inducing them but Sox2 and Oct4 inhibiting them. On one hand, inhibition of mTORC1 facilitates reprogramming by promoting cell reshaping (mitochondrial remodelling and cell size reduction). On the other hand, mTORC1 paradoxically impairs reprogramming by triggering autophagy. Autophagy does not participate in cell reshaping in reprogramming but instead degrades p62, whose accumulation in autophagy-deficient cells facilitates reprogramming. Our results thus reveal a complex signalling network involving mTORC1 inhibition and autophagy induction in the early phase of reprogramming, whose delicate balance ultimately determines reprogramming efficiency.
Collapse
|
81
|
Jain A, Rusten TE, Katheder N, Elvenes J, Bruun JA, Sjøttem E, Lamark T, Johansen T. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. J Biol Chem 2015; 290:14945-62. [PMID: 25931115 DOI: 10.1074/jbc.m115.656116] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/30/2022] Open
Abstract
The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too.
Collapse
Affiliation(s)
- Ashish Jain
- From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway and
| | - Tor Erik Rusten
- the Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Centre for Cancer Biomedicine, University of Oslo, 0379 Oslo, Norway
| | - Nadja Katheder
- the Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Centre for Cancer Biomedicine, University of Oslo, 0379 Oslo, Norway
| | - Julianne Elvenes
- From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway and
| | - Jack-Ansgar Bruun
- From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway and
| | - Eva Sjøttem
- From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway and
| | - Trond Lamark
- From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway and
| | - Terje Johansen
- From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway and
| |
Collapse
|
82
|
Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol 2015; 25:376-87. [PMID: 25862458 DOI: 10.1016/j.tcb.2015.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
Autophagy delivers cytoplasmic material to lysosomes for degradation. First identified in yeast, the core genes that control this process are conserved in higher organisms. Studies of mammalian cell cultures have expanded our understanding of the core autophagy pathway, but cannot reveal the unique animal-specific mechanisms for the regulation and function of autophagy. Multicellular organisms have different types of cells that possess distinct composition, morphology, and organization of intracellular organelles. In addition, the autophagic machinery integrates signals from other cells and environmental conditions to maintain cell, tissue and organism homeostasis. Here, we highlight how studies of autophagy in flies and worms have identified novel core autophagy genes and mechanisms, and provided insight into the context-specific regulation and function of autophagy.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Eric H Baehrecke
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
83
|
Tirodkar TS, Lu P, Bai A, Scheffel MJ, Gencer S, Garrett-Mayer E, Bielawska A, Ogretmen B, Voelkel-Johnson C. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner. J Biol Chem 2015; 290:13157-67. [PMID: 25839235 DOI: 10.1074/jbc.m114.631325] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/16/2022] Open
Abstract
A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity.
Collapse
Affiliation(s)
| | - Ping Lu
- From the Departments of Microbiology and Immunology
| | | | | | - Salih Gencer
- Biochemistry and Molecular Biology, and the Department of Molecular Biology and Genetics, 34662 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
84
|
Yin J, Duan J, Cui Z, Ren W, Li T, Yin Y. Hydrogen peroxide-induced oxidative stress activates NF-κB and Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Adv 2015. [DOI: 10.1039/c4ra13557a] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
H2O2 induces autophagy and activates NF-κB and Nrf2/Keap1 signals in a piglet model.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Zhijie Cui
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| |
Collapse
|
85
|
Reidick C, El Magraoui F, Meyer HE, Stenmark H, Platta HW. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO. Cancers (Basel) 2014; 7:1-29. [PMID: 25545884 PMCID: PMC4381249 DOI: 10.3390/cancers7010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022] Open
Abstract
The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.
Collapse
Affiliation(s)
- Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| | - Fouzi El Magraoui
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Helmut E Meyer
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310, Norway.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| |
Collapse
|
86
|
Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM. Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum. PeerJ 2014; 2:e674. [PMID: 25493211 PMCID: PMC4260130 DOI: 10.7717/peerj.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/01/2014] [Indexed: 11/20/2022] Open
Abstract
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.
Collapse
Affiliation(s)
- Mamdowh M Alkurashi
- School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham , Leicestershire , UK
| | - Kenny Kong
- School of Physics and Astronomy, University of Nottingham , UK
| | - Jaume Bacardit
- The Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University , Newcastle-upon-Tyne , UK
| | - David Haig
- School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK
| | - Hany M Elsheikha
- School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK
| |
Collapse
|
87
|
Liu SZ, He XM, Zhou XY, Xiang CN. Significance of changes in Toll-like receptor 4 and TRAF6 expression in intestinal ischemic injury in rats. Shijie Huaren Xiaohua Zazhi 2014; 22:4901-4906. [DOI: 10.11569/wcjd.v22.i32.4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the changes in the expression of Toll-like receptor 4 (TLR4) and tumor necrosis factor receptor associated-factor 6 (TRAF6) in intestinal ischemic injury in rats and to analyze their significance.
METHODS: Thirty-two adult male SD rats were randomly and equally divided into four groups: a sham operation group, and 1-, 3- and 6-h ischemia groups. Superior mesenteric artery ligation was performed in SD rats to induce intestinal ischemia. Real-time quantitative PCR (qPCR) and Western blot were carried out to detect the expression of TLR4 and TRAF6 in intestinal tissues. Meanwhile, the level of myeloperoxidase (MPO) was measured.
RESULTS: Compared with the sham operation group (20.65 U/L ± 6.88 U/L), MPO level was slightly elevated in the intestine in the 1-h ischemia group (23.27 U/L ± 3.00 U/L), but significantly increased in the 3-h (35.73 U/L ± 5.04 U/L, P < 0.01) and 6-h ischemia groups (51.79 U/L ± 2.27 U/L, P < 0.01). TLR4 expression gradually increased in the three ischemia groups (P < 0.01), while TRAF6 expression decreased in the intestine in the 1-h ischemia group, but rapidly increased in the 3- and 6-h groups (P < 0.05).
CONCLUSION: TLR4 and TRAF6 may be involved in regulating intestinal damage and inflammatory processes in rats with intestinal ischemic injury.
Collapse
|
88
|
Fader CM, Aguilera MO, Colombo MI. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens. Amino Acids 2014; 47:2101-12. [PMID: 25234192 DOI: 10.1007/s00726-014-1835-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.
Collapse
Affiliation(s)
- Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina
| | - Milton Osmar Aguilera
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina.
| |
Collapse
|
89
|
Park HW, Park H, Semple IA, Jang I, Ro SH, Kim M, Cazares VA, Stuenkel EL, Kim JJ, Kim JS, Lee JH. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat Commun 2014; 5:4834. [PMID: 25189398 PMCID: PMC4157315 DOI: 10.1038/ncomms5834] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that chronic increase of cytosolic calcium concentration in hepatocytes upon obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome-lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than thirty years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients.
Collapse
Affiliation(s)
- Hwan-Woo Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Haeli Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ian A Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Insook Jang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Seung-Hyun Ro
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Victor A Cazares
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Edward L Stuenkel
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jung-Jae Kim
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jeong Sig Kim
- 1] Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Obstetrics and Gynecology, Soonchunhyang University Seoul Hospital, Seoul 140-743, Republic of Korea
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
90
|
Abstract
Autophagy is the main cellular catabolic process responsible for degrading organelles and large protein aggregates. It is initiated by the formation of a unique membrane structure, the phagophore, which engulfs part of the cytoplasm and forms a double-membrane vesicle termed the autophagosome. Fusion of the outer autophagosomal membrane with the lysosome and degradation of the inner membrane contents complete the process. The extent of autophagy must be tightly regulated to avoid destruction of proteins and organelles essential for cell survival. Autophagic activity is thus regulated by external and internal cues, which initiate the formation of well-defined autophagy-related protein complexes that mediate autophagosome formation and selective cargo recruitment into these organelles. Autophagosome formation and the signaling pathways that regulate it have recently attracted substantial attention. In this review, we analyze the different signaling pathways that regulate autophagy and discuss recent progress in our understanding of autophagosome biogenesis.
Collapse
Affiliation(s)
- Adi Abada
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
91
|
Unraveling the Truth About Antioxidants: ROS and disease: finding the right balance. Nat Med 2014; 20:711-3. [DOI: 10.1038/nm.3625] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
92
|
Mei Y, Thompson MD, Cohen RA, Tong X. Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1852:243-51. [PMID: 24834848 DOI: 10.1016/j.bbadis.2014.05.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Autophagy is a highly conserved degradation process by which intracellular components, including soluble macromolecules (e.g. nucleic acids, proteins, carbohydrates, and lipids) and dysfunctional organelles (e.g. mitochondria, ribosomes, peroxisomes, and endoplasmic reticulum) are degraded by the lysosome. Autophagy is orchestrated by the autophagy related protein (Atg) composed protein complexes to form autophagosomes, which fuse with lysosomes to generate autolysosomes where the contents are degraded to provide energy for cell survival in response to environmental and cellular stress. Autophagy is an important player in cardiovascular disease development such as atherosclerosis, cardiac ischemia/reperfusion, cardiomyopathy, heart failure and hypertension. Autophagy in particular contributes to cardiac ischemia, hypertension and diabetes by interaction with reactive oxygen species generated in endoplasmic reticulum and mitochondria. This review highlights the dual role of autophagy in cardiovascular disease development. Full recognition of autophagy as an adaptive or maladaptive response would provide potential new strategies for cardiovascular disease prevention and management. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yu Mei
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Melissa D Thompson
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - XiaoYong Tong
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|