51
|
Saintilnord WN, Tenlep SYN, Preston JD, Duregon E, DeRouchey JE, Unrine JM, de Cabo R, Pearson KJ, Fondufe-Mittendorf YN. Chronic Exposure to Cadmium Induces Differential Methylation in Mice Spermatozoa. Toxicol Sci 2021; 180:262-276. [PMID: 33483743 PMCID: PMC8041459 DOI: 10.1093/toxsci/kfab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cadmium exposure is ubiquitous and has been linked to diseases including cancers and reproductive defects. Since cadmium is nonmutagenic, it is thought to exert its gene dysregulatory effects through epigenetic reprogramming. Several studies have implicated germline exposure to cadmium in developmental reprogramming. However, most of these studies have focused on maternal exposure, while the impact on sperm fertility and disease susceptibility has received less attention. In this study, we used reduced representation bisulfite sequencing to comprehensively investigate the impact of chronic cadmium exposure on mouse spermatozoa DNA methylation. Adult male C57BL/J6 mice were provided water with or without cadmium chloride for 9 weeks. Sperm, testes, liver, and kidney tissues were collected at the end of the treatment period. Cadmium exposure was confirmed through gene expression analysis of metallothionein-1 and 2, 2 well-known cadmium-induced genes. Analysis of sperm DNA methylation changes revealed 1788 differentially methylated sites present at regulatory regions in sperm of mice exposed to cadmium compared with vehicle (control) mice. Furthermore, most of these differential methylation changes positively correlated with changes in gene expression at both the transcription initiation stage as well as the splicing levels. Interestingly, the genes targeted by cadmium exposure are involved in several critical developmental processes. Our results present a comprehensive analysis of the sperm methylome in response to chronic cadmium exposure. These data, therefore, highlight a foundational framework to study gene expression patterns that may affect fertility in the exposed individual as well as their offspring, through paternal inheritance.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Sara Y N Tenlep
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Joshua D Preston
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| | - Yvonne N Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| |
Collapse
|
52
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
53
|
Molaro A, Wood AJ, Janssens D, Kindelay SM, Eickbush MT, Wu S, Singh P, Muller CH, Henikoff S, Malik HS. Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biol 2020; 18:e3001001. [PMID: 33362208 PMCID: PMC7757805 DOI: 10.1371/journal.pbio.3001001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Histone variants expand chromatin functions in eukaryote genomes. H2A.B genes are testis-expressed short histone H2A variants that arose in placental mammals. Their biological functions remain largely unknown. To investigate their function, we generated a knockout (KO) model that disrupts all 3 H2A.B genes in mice. We show that H2A.B KO males have globally altered chromatin structure in postmeiotic germ cells. Yet, they do not show impaired spermatogenesis or testis function. Instead, we find that H2A.B plays a crucial role postfertilization. Crosses between H2A.B KO males and females yield embryos with lower viability and reduced size. Using a series of genetic crosses that separate parental and zygotic contributions, we show that the H2A.B status of both the father and mother, but not of the zygote, affects embryonic viability and growth during gestation. We conclude that H2A.B is a novel parental-effect gene, establishing a role for short H2A histone variants in mammalian development. We posit that parental antagonism over embryonic growth drove the origin and ongoing diversification of short histone H2A variants in placental mammals.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anna J. Wood
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Derek Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Selina M. Kindelay
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael T. Eickbush
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Wu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Priti Singh
- Comparative Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Charles H. Muller
- Male Fertility Laboratory, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
54
|
Wen Z, Zhang L, Ruan H, Li G. Histone variant H2A.Z regulates nucleosome unwrapping and CTCF binding in mouse ES cells. Nucleic Acids Res 2020; 48:5939-5952. [PMID: 32392318 PMCID: PMC7293034 DOI: 10.1093/nar/gkaa360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 01/28/2023] Open
Abstract
Nucleosome is the basic structural unit of chromatin, and its dynamics plays critical roles in the regulation of genome functions. However, how the nucleosome structure is regulated by histone variants in vivo is still largely uncharacterized. Here, by employing Micrococcal nuclease (MNase) digestion of crosslinked chromatin followed by chromatin immunoprecipitation (ChIP) and paired-end sequencing (MNase-X-ChIP-seq), we mapped unwrapping states of nucleosomes containing histone variant H2A.Z in mouse embryonic stem (ES) cells. We found that H2A.Z nucleosomes are more enriched with unwrapping states compared with canonical nucleosomes. Interestingly, +1 H2A.Z nucleosomes with 30–80 bp DNA is correlated with less active genes compared with +1 H2A.Z nucleosomes with 120–140 bp DNA. We confirmed the unwrapping of H2A.Z nucleosomes under native condition by re-ChIP of H2A.Z and H2A after CTCF CUT&RUN in mouse ES cells. Importantly, we found that depletion of H2A.Z results in decreased unwrapping of H3.3 nucleosomes and increased CTCF binding. Taken together, through MNase-X-ChIP-seq, we showed that histone variant H2A.Z regulates nucleosome unwrapping in vivo and that its function in regulating transcription or CTCF binding is correlated with unwrapping states of H2A.Z nucleosomes.
Collapse
Affiliation(s)
- Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Abstract
Cell-free DNA (cfDNA) has the potential to enable non-invasive detection of disease states and progression. Beyond its sequence, cfDNA also represents the nucleosomal landscape of cell(s)-of-origin and captures the dynamics of the epigenome. In this review, we highlight the emergence of cfDNA epigenomic methods that assess disease beyond the scope of mutant tumour genotyping. Detection of tumour mutations is the gold standard for sequencing methods in clinical oncology. However, limitations inherent to mutation targeting in cfDNA, and the possibilities of uncovering molecular mechanisms underlying disease, have made epigenomics of cfDNA an exciting alternative. We discuss the epigenomic information revealed by cfDNA, and how epigenomic methods exploit cfDNA to detect and characterize cancer. Future applications of cfDNA epigenomic methods to act complementarily and orthogonally to current clinical practices has the potential to transform cancer management and improve cancer patient outcomes.
Collapse
Affiliation(s)
| | | | - Srinivas Ramachandran
- RNA Bioscience Initiative, and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Mail Stop: 8101, 12801 East 17th Avenue L18–9102, Aurora, CO 80045, USA
| |
Collapse
|
56
|
Galan C, Krykbaeva M, Rando OJ. Early life lessons: The lasting effects of germline epigenetic information on organismal development. Mol Metab 2020; 38:100924. [PMID: 31974037 PMCID: PMC7300385 DOI: 10.1016/j.molmet.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND An organism's metabolic phenotype is primarily affected by its genotype, its lifestyle, and the nutritional composition of its food supply. In addition, it is now clear from studies in many different species that ancestral environments can also modulate metabolism in at least one to two generations of offspring. SCOPE OF REVIEW We limit ourselves here to paternal effects in mammals, primarily focusing on studies performed in inbred rodent models. Although hundreds of studies link paternal diets and offspring metabolism, the mechanistic basis by which epigenetic information in sperm programs nutrient handling in the next generation remains mysterious. Our goal in this review is to provide a brief overview of paternal effect paradigms and the germline epigenome. We then pivot to exploring one key mystery in this literature: how do epigenetic changes in sperm, most of which are likely to act transiently in the early embryo, ultimately direct a long-lasting physiological response in offspring? MAJOR CONCLUSIONS Several potential mechanisms exist by which transient epigenetic modifications, such as small RNAs or methylation states erased shortly after fertilization, could be transferred to more durable heritable information. A detailed mechanistic understanding of this process will provide deep insights into early development, and could be of great relevance for human health and disease.
Collapse
Affiliation(s)
- Carolina Galan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Marina Krykbaeva
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
57
|
Torres-Flores U, Hernández-Hernández A. The Interplay Between Replacement and Retention of Histones in the Sperm Genome. Front Genet 2020; 11:780. [PMID: 32765595 PMCID: PMC7378789 DOI: 10.3389/fgene.2020.00780] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
The genome of eukaryotes is highly organized within the cell nucleus, this organization per se elicits gene regulation and favors other mechanisms like cell memory throughout histones and their post-translational modifications. In highly specialized cells, like sperm, the genome is mostly organized by protamines, yet a significant portion of it remains organized by histones. This protamine-histone-DNA organization, known as sperm epigenome, is established during spermiogenesis. Specific histones and their post-translational modifications are retained at specific genomic sites and during embryo development these sites recapitulate their histone profile that harbored in the sperm nucleus. It is known that histones are the conduit of epigenetic memory from cell to cell, hence histones in the sperm epigenome may have a role in transmitting epigenetic memory from the sperm to the embryo. However, the exact function and mechanism of histone retention remains elusive. During spermatogenesis, most of the histones that organize the genome are replaced by protamines and their retention at specific regions may be deeply intertwined with the eviction and replacement mechanism. In this review we will cover some relevant aspects of histone replacement that in turn may help us to contextualize histone retention. In the end, we focus on the architectonical protein CTCF that is, so far, the only factor that has been directly linked to the histone retention process.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
58
|
Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J. Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription. Nat Commun 2020; 11:3491. [PMID: 32661239 PMCID: PMC7359334 DOI: 10.1038/s41467-020-17238-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development. Using calibrated ChIP-seq, we show that remodelling of histones during spermiogenesis results in the retention of methylated histone H3 at the same genomic location in most sperm cell. This homogeneously methylated fraction of histone H3 in the sperm genome is maintained during early embryonic replication. Such methylated histone fraction resisting post-fertilisation reprogramming marks developmental genes whose expression is perturbed upon experimental reduction of histone methylation. A similar homogeneously methylated histone H3 fraction is detected in human sperm. Altogether, we uncover a conserved mechanism of paternal epigenetic information transmission to the embryo through the homogeneous retention of methylated histone in a sperm cells population.
Collapse
Affiliation(s)
- Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eva Hormanseder
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Alan O'Doherty
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, D04 V1W8, Ireland
| | - Emma Falk
- CRTI, INSERM, UNIV Nantes, Nantes, France
| | | | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Declan Keane
- ReproMed Ireland, Rockfield Medical Campus, Northblock, Dundrum, Dublin 16, D16 W7W3, Ireland
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes, France
| | | | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- CRTI, INSERM, UNIV Nantes, Nantes, France.
| |
Collapse
|
59
|
Hsieh THS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian R, Darzacq X. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding. Mol Cell 2020; 78:539-553.e8. [PMID: 32213323 PMCID: PMC7703524 DOI: 10.1016/j.molcel.2020.03.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/02/2020] [Indexed: 01/31/2023]
Abstract
Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.
Collapse
Affiliation(s)
- Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elena Slobodyanyuk
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
60
|
ATF7-Dependent Epigenetic Changes Are Required for the Intergenerational Effect of a Paternal Low-Protein Diet. Mol Cell 2020; 78:445-458.e6. [DOI: 10.1016/j.molcel.2020.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
61
|
Ramani V, Qiu R, Shendure J. High Sensitivity Profiling of Chromatin Structure by MNase-SSP. Cell Rep 2020; 26:2465-2476.e4. [PMID: 30811994 PMCID: PMC6582983 DOI: 10.1016/j.celrep.2019.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/07/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
A complete view of eukaryotic gene regulation requires that we accurately delineate how transcription factors (TFs) and nucleosomes are arranged along linear DNA in a sensitive, unbiased manner. Here we introduce MNase-SSP, a single-stranded sequencing library preparation method for nuclease-digested chromatin that enables simultaneous mapping of TF and nucleosome positions. As a proof of concept, we apply MNase-SSP toward the genome-wide, high-resolution mapping of nucleosome and TF occupancy in murine embryonic stem cells (mESCs). Compared with existing MNase-seq protocols, MNase-SSP markedly enriches for short DNA fragments, enabling detection of binding by subnucleosomal particles and TFs, in addition to nucleosomes. From these same data, we identify multiple, sequence-dependent binding modes of the architectural TF Ctcf and extend this analysis to the TF Nrsf/ Rest. Looking forward, we anticipate that single stranded protocol (SSP) adaptations of any protein-DNA interaction mapping technique (e.g., ChIP-exo and CUT&RUN) will enhance the information content of the resulting data. Ramani et al. describe MNase-SSP, a single-stranded DNA sequencing library preparation method for profiling chromatin structure. MNase-SSP libraries harbor diminished sequence bias and capture shorter DNA fragments compared to traditional MNase-seq libraries. Applying MNase-SSP to murine embryonic stem cells enables simultaneous analysis of nucleosomal, subnucleosomal, and transcription factor-DNA interactions genome-wide.
Collapse
Affiliation(s)
- Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
62
|
Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh THS, Parsi KM, Yang L, Maehr R, Mirny LA, Dekker J, Rando OJ. Ultrastructural Details of Mammalian Chromosome Architecture. Mol Cell 2020; 78:554-565.e7. [PMID: 32213324 DOI: 10.1016/j.molcel.2020.03.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.
Collapse
Affiliation(s)
- Nils Krietenstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sameer Abraham
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Sergey V Venev
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nezar Abdennur
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Johan Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Krishna Mohan Parsi
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liyan Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
63
|
Mahadevan IA, Kumar S, Rao MRS. Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes. Epigenetics Chromatin 2020; 13:9. [PMID: 32131873 PMCID: PMC7057672 DOI: 10.1186/s13072-020-00335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, SAAMI Building, 851/A, AECS Layout, B-Block, Singasandra Hosur Road, Bangalore, India
| | | |
Collapse
|
64
|
RNA-Guided Genomic Localization of H2A.L.2 Histone Variant. Cells 2020; 9:cells9020474. [PMID: 32085641 PMCID: PMC7072763 DOI: 10.3390/cells9020474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular basis of residual histone retention after the nearly genome-wide histone-to-protamine replacement during late spermatogenesis is a critical and open question. Our previous investigations showed that in postmeiotic male germ cells, the genome-scale incorporation of histone variants TH2B-H2A.L.2 allows a controlled replacement of histones by protamines to occur. Here, we highlight the intrinsic ability of H2A.L.2 to specifically target the pericentric regions of the genome and discuss why pericentric heterochromatin is a privileged site of histone retention in mature spermatozoa. We observed that the intranuclear localization of H2A.L.2 is controlled by its ability to bind RNA, as well as by an interplay between its RNA-binding activity and its tropism for pericentric heterochromatin. We identify the H2A.L.2 RNA-binding domain and demonstrate that in somatic cells, the replacement of H2A.L.2 RNA-binding motif enhances and stabilizes its pericentric localization, while the forced expression of RNA increases its homogenous nuclear distribution. Based on these data, we propose that the specific accumulation of RNA on pericentric regions combined with H2A.L.2 tropism for these regions are responsible for stabilizing H2A.L.2 on these regions in mature spermatozoa. This situation would favor histone retention on pericentric heterochromatin.
Collapse
|
65
|
Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, Jiang J. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol 2020; 21:24. [PMID: 32014062 PMCID: PMC6996174 DOI: 10.1186/s13059-020-1927-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Regulation of transcription depends on interactions between cis-regulatory elements (CREs) and regulatory proteins. Active CREs are imbedded in open chromatin that are accessible to nucleases. Several techniques, including DNase-seq, which is based on nuclease DNase I, and ATAC-seq, which is based on transposase Tn5, have been widely used to identify genomic regions associated with open chromatin. These techniques have played a key role in dissecting the regulatory networks in gene expression in both animal and plant species. RESULTS We develop a technique, named MNase hypersensitivity sequencing (MH-seq), to identify genomic regions associated with open chromatin in Arabidopsis thaliana. Genomic regions enriched with MH-seq reads are referred as MNase hypersensitive sites (MHSs). MHSs overlap with the majority (~ 90%) of the open chromatin identified previously by DNase-seq and ATAC-seq. Surprisingly, 22% MHSs are not covered by DNase-seq or ATAC-seq reads, which are referred to "specific MHSs" (sMHSs). sMHSs tend to be located away from promoters, and a substantial portion of sMHSs are derived from transposable elements. Most interestingly, genomic regions containing sMHSs are enriched with epigenetic marks, including H3K27me3 and DNA methylation. In addition, sMHSs show a number of distinct characteristics including association with transcriptional repressors. Thus, sMHSs span distinct classes of open chromatin that may not be accessible to DNase I or Tn5. We hypothesize that the small size of the MNase enzyme relative to DNase I or Tn5 allows its access to relatively more condensed chromatin domains. CONCLUSION MNase can be used to identify open chromatin regions that are not accessible to DNase I or Tn5. Thus, MH-seq provides an important tool to identify and catalog all classes of open chromatin in plants.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China.
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
66
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
67
|
Luense LJ, Donahue G, Lin-Shiao E, Rangel R, Weller AH, Bartolomei MS, Berger SL. Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis. Dev Cell 2019; 51:745-758.e6. [PMID: 31761669 DOI: 10.1016/j.devcel.2019.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/12/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
During mammalian spermatogenesis, germ cell chromatin undergoes dramatic histone acetylation-mediated reorganization, whereby 90%-99% of histones are evicted. Given the potential role of retained histones in fertility and embryonic development, the genomic location of retained nucleosomes is of great interest. However, the ultimate position and mechanisms underlying nucleosome eviction or retention are poorly understood, including several studies utilizing micrococcal-nuclease sequencing (MNase-seq) methodologies reporting remarkably dissimilar locations. We utilized assay for transposase accessible chromatin sequencing (ATAC-seq) in mouse sperm and found nucleosome enrichment at promoters but also retention at inter- and intragenic regions and repetitive elements. We further generated germ-cell-specific, conditional knockout mice for the key histone acetyltransferase Gcn5, which resulted in abnormal chromatin dynamics leading to increased sperm histone retention and severe reproductive phenotypes. Our findings demonstrate that Gcn5-mediated histone acetylation promotes chromatin accessibility and nucleosome eviction in spermiogenesis and that loss of histone acetylation leads to defects that disrupt male fertility and potentially early embryogenesis.
Collapse
Affiliation(s)
- Lacey J Luense
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrique Lin-Shiao
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard Rangel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela H Weller
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
68
|
Sharma U. Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information. Front Cell Dev Biol 2019; 7:215. [PMID: 31681757 PMCID: PMC6803970 DOI: 10.3389/fcell.2019.00215] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
The most fundamental process for the perpetuation of a species is the transfer of information from parent to offspring. Although genomic DNA contributes to the majority of the inheritance, it is now clear that epigenetic information −information beyond the underlying DNA sequence − is also passed on to future generations. However, the mechanism and extent of such inheritance are not well-understood. Here, I review some of the concepts, evidence, and mechanisms of intergenerational epigenetic inheritance via sperm small RNAs. Recent studies provide evidence that mature sperm are highly abundant in small non-coding RNAs. These RNAs are modulated by paternal environmental conditions and potentially delivered to the zygote at fertilization, where they can regulate early embryonic development. Intriguingly, sperm small RNA payload undergoes dramatic changes during testicular and post-testicular maturation, making the mature sperm epigenome highly unique and distinct from testicular germ cells. I explore the mechanism of sperm small RNA remodeling during post-testicular maturation in the epididymis, and the potential role of this reprograming in intergenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
69
|
Germ cell-mediated mechanisms of epigenetic inheritance. Semin Cell Dev Biol 2019; 97:116-122. [PMID: 31404658 DOI: 10.1016/j.semcdb.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023]
Abstract
It is well established that lifestyle and other environmental factors have the potential to shape our own health and future. Research from the last two decades, however, provides mounting evidence that parental exposures or experiences such as dietary challenges, toxin exposure, or stress can impact the health and future of our offspring. There are indications that both the paternal and maternal germline are able to store information of the parental environment and pass certain information on to their progeny. These intergenerational effects are mediated by epigenetic mechanisms. This review summarizes and discusses insights into germline epigenetic plasticity caused by environmental stimuli and how such alterations are transmitted to induce a stable phenotype in the offspring.
Collapse
|
70
|
EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat Commun 2019; 10:3858. [PMID: 31451685 PMCID: PMC6710278 DOI: 10.1038/s41467-019-11800-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
The Polycomb group of proteins is required for the proper orchestration of gene expression due to its role in maintaining transcriptional silencing. It is composed of several chromatin modifying complexes, including Polycomb Repressive Complex 2 (PRC2), which deposits H3K27me2/3. Here, we report the identification of a cofactor of PRC2, EZHIP (EZH1/2 Inhibitory Protein), expressed predominantly in the gonads. EZHIP limits the enzymatic activity of PRC2 and lessens the interaction between the core complex and its accessory subunits, but does not interfere with PRC2 recruitment to chromatin. Deletion of Ezhip in mice leads to a global increase in H3K27me2/3 deposition both during spermatogenesis and at late stages of oocyte maturation. This does not affect the initial number of follicles but is associated with a reduction of follicles in aging. Our results suggest that mature oocytes Ezhip-/- might not be fully functional and indicate that fertility is strongly impaired in Ezhip-/- females. Altogether, our study uncovers EZHIP as a regulator of chromatin landscape in gametes.
Collapse
|
71
|
Jung YH, Kremsky I, Gold HB, Rowley MJ, Punyawai K, Buonanotte A, Lyu X, Bixler BJ, Chan AWS, Corces VG. Maintenance of CTCF- and Transcription Factor-Mediated Interactions from the Gametes to the Early Mouse Embryo. Mol Cell 2019; 75:154-171.e5. [PMID: 31056445 PMCID: PMC6625867 DOI: 10.1016/j.molcel.2019.04.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/02/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
Abstract
The epigenetic information present in mammalian gametes and whether it is transmitted to the progeny are relatively unknown. We find that many promoters in mouse sperm are occupied by RNA polymerase II (Pol II) and Mediator. The same promoters are accessible in GV and MII oocytes and preimplantation embryos. Sperm distal ATAC-seq sites containing motifs for various transcription factors are conserved in monkeys and humans. ChIP-seq analyses confirm that Foxa1, ERα, and AR occupy distal enhancers in sperm. Accessible sperm enhancers containing H3.3 and H2A.Z are also accessible in oocytes and preimplantation embryos. Furthermore, their interactions with promoters in the gametes persist during early development. Sperm- or oocyte-specific interactions mediated by CTCF and cohesin are only present in the paternal or maternal chromosomes, respectively, in the zygote and 2-cell stages. These interactions converge in both chromosomes by the 8-cell stage. Thus, mammalian gametes contain complex patterns of 3D interactions that can be transmitted to the zygote after fertilization.
Collapse
Affiliation(s)
- Yoon Hee Jung
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Isaac Kremsky
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Hannah B Gold
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Kanchana Punyawai
- Yerkes National Primate Research Center, 954 Gatewood Rd. NE, Atlanta, GA 39329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Alyx Buonanotte
- Yerkes National Primate Research Center, 954 Gatewood Rd. NE, Atlanta, GA 39329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd., Atlanta, GA 30322, USA
| | - Xiaowen Lyu
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Brianna J Bixler
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd., Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd. NE, Atlanta, GA 39329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd., Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd., Atlanta, GA 30322, USA.
| |
Collapse
|
72
|
Zhang MZ, Cao XM, Xu FQ, Liang XW, Fu LL, Li B, Liu WG, Li SG, Sun FZ, Huang XY, Huang WH. In the human sperm nucleus, nucleosomes form spatially restricted domains consistent with programmed nucleosome positioning. Biol Open 2019; 8:bio.041368. [PMID: 31262721 PMCID: PMC6679404 DOI: 10.1242/bio.041368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In human sperm, a fraction of its chromatin retains nucleosomes that are positioned on specific sequences containing genes and regulatory units essential for embryonic development. This nucleosome positioning (NP) feature provides an inherited epigenetic mark for sperm. However, it is not known whether there is a structural constraint for these nucleosomes and, if so, how they are localized in a three-dimensional (3D) context of the sperm nucleus. In this study, we examine the 3D organization of sperm chromatin and specifically determine its 3D localization of nucleosomes using structured illumination microscopy. A fraction of the sperm chromatin form nucleosome domains (NDs), visible as microscopic puncta ranging from 40 μm to 700 μm in diameter, and these NDs are precisely localized in the post acrosome region (PAR), outside the sperm's core chromatin. Further, NDs exist mainly in sperm from fertile men in a pilot survey with a small sample size. Together, this study uncovers a new spatially-restricted sub-nuclear structure containing NDs that are consistent with NPs of the sperm, which might represent a novel mark for healthy sperm in human.
Collapse
Affiliation(s)
- Mei-Zi Zhang
- Reproductive Medicine Center, Tianjin First central hospital, Tianjin 300192, China
| | - Xiao-Min Cao
- Reproductive Medicine Center, Tianjin First central hospital, Tianjin 300192, China
| | - Feng-Qin Xu
- Reproductive Medicine Center, Tianjin First central hospital, Tianjin 300192, China
| | - Xiao-Wei Liang
- Bejing Human Sperm Bank and National Research Institute for Family Planning, Beijing 100101, China
| | - Long-Long Fu
- Bejing Human Sperm Bank and National Research Institute for Family Planning, Beijing 100101, China
| | - Bao Li
- Department of Urology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, Shandong, China
| | - Wei-Guang Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, Shandong, China
| | - Shuo-Guo Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang-Zhen Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Ying Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Hong Huang
- Department of Urology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, Shandong, China .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
73
|
Riaz S, Niaz Z, Khan S, Liu Y, Sui Z. Detection, characterization and expression dynamics of histone proteins in the dinoflagellate Alexandrium pacificum during growth regulation. HARMFUL ALGAE 2019; 87:101630. [PMID: 31349883 DOI: 10.1016/j.hal.2019.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Histones are the most abundant proteins associated with eukaryotic nuclear DNA. The exception is dinoflagellates, which have histone protein expression that is mostly reported to be below detectable levels. In this study, we investigated the presence of histone proteins and their functions in the dinoflagellate, Alexandrium pacificum. Histone protein sequences were analyzed, focusing on phylogenetic analysis and histone code. Histone expression was analyzed during the cell cycle and under nutritionally enhanced conditions using quantitative-PCR and western blots. Acid-soluble proteins were subjected to mass spectrometry analysis. To our knowledge, this is the first report of immunological detection of histone proteins (H2B and H4) in any dinoflagellate species. Absolute quantification of histone transcript in activily dividing cells revealed significant transcription in cells. The stable expression of histones during the cell cycle suggested that the histone genes in A. pacificum belonged to a replication-independent class and appeared to have a limited role in DNA packaging. The conservation of numerous post-translationally modified residues of multiple histone variants and differential expression of histones under nutritionally enhanced conditions suggested their functional significance in dinoflagellates. However, we detected histone H2B protein only via mass spectrometry. Histone-like protein was identified as most abundant acid-soluble protein of the cells.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, University of Central Punjab, Lahore, Pakistan
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
74
|
Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 2019; 20:535-550. [DOI: 10.1038/s41580-019-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
75
|
van Steensel B, Furlong EEM. The role of transcription in shaping the spatial organization of the genome. Nat Rev Mol Cell Biol 2019; 20:327-337. [PMID: 30886333 PMCID: PMC7116054 DOI: 10.1038/s41580-019-0114-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spatial organization of the genome into compartments and topologically associated domains can have an important role in the regulation of gene expression. But could gene expression conversely regulate genome organization? Here, we review recent studies that assessed the requirement of transcription and/or the transcription machinery for the establishment or maintenance of genome topology. The results reveal different requirements at different genomic scales. Transcription is generally not required for higher-level genome compartmentalization, has only moderate effects on domain organization and is not sufficient to create new domain boundaries. However, on a finer scale, transcripts or transcription does seem to have a role in the formation of subcompartments and subdomains and in stabilizing enhancer-promoter interactions. Recent evidence suggests a dynamic, reciprocal interplay between fine-scale genome organization and transcription, in which each is able to modulate or reinforce the activity of the other.
Collapse
Affiliation(s)
- Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, Netherlands.
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
76
|
Ketchum CC, Larsen CD, McNeil A, Meyer-Ficca ML, Meyer RG. Early histone H4 acetylation during chromatin remodeling in equine spermatogenesis. Biol Reprod 2019; 98:115-129. [PMID: 29186293 DOI: 10.1093/biolre/iox159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin remodeling during spermatogenesis culminates in the exchange of nucleosomes for transition proteins and protamines as an important part of spermatid development to give rise to healthy sperm. Comparative immunofluorescence analyses of equine and murine testis histological sections were used to characterize nucleoprotein exchange in the stallion. Histone H4 hyperacetylation is considered a key event of histone removal during the nucleoprotein transition to a protamine-based sperm chromatin structure. In the stallion, but not the mouse, H4 was already highly acetylated in lysine residues K5, K8, and K12 in round spermatids almost immediately after meiotic division. Time courses of transition protein 1 (TP1), protamine 1, H2A histone family member Z (H2AFZ), and testis-specific histone H2B variant (TH2B) expression in stallion spermatogenesis were similar to the mouse where protamine 1 and TP1 were only expressed in elongating spermatids much later in spermatid development. The additional acetylation of H4 in K16 position (H4K16ac) was detected during a brief phase of spermatid elongation in both species, concomitant with the phosphorylation of the noncanonical histone variant H2AFX resulting from DNA strand break-mediated DNA relaxation. The results suggest that H4K16 acetylation, which is dependent on DNA damage signaling, may be more important for nucleosome replacement in spermiogenesis than indicated by data obtained in rodents and highlight the value of the stallion as an alternative animal model for investigating human spermatogenesis. A revised classification system of the equine spermatogenic cycle for simplified comparison with the mouse is proposed to this end.
Collapse
Affiliation(s)
- Chelsea C Ketchum
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA.,Utah Experimental Station, Utah State University, Logan, Utah, USA
| | - Casey D Larsen
- School of Veterinary Medicine (Washington-Idaho-Montana-Utah Regional Veterinary Medical Program, WIMU), Utah State University, Logan, Utah, USA
| | - Alexis McNeil
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA
| | - Mirella L Meyer-Ficca
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine (Washington-Idaho-Montana-Utah Regional Veterinary Medical Program, WIMU), Utah State University, Logan, Utah, USA
| | - Ralph G Meyer
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA.,Utah Experimental Station, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine (Washington-Idaho-Montana-Utah Regional Veterinary Medical Program, WIMU), Utah State University, Logan, Utah, USA
| |
Collapse
|
77
|
Abstract
Germ cells undergo epigenome reprogramming for proper development of the next generation. The achievement of in vitro germ cell derivation from human and mouse pluripotent stem cells and further differentiation in a plane culture and in aggregation with gonadal somatic cells offers unprecedented opportunities for investigation of the germ cell development. Moreover, advances in low-input/single-cell genomics have enabled detailed investigation of epigenome dynamics during germ cell development. These technologies have advanced our knowledge of epigenome reprogramming during the specification and development of primordial germ cells, their sex differentiation, and gametogenesis. Key findings include details of chromatin remodeling and transcriptional regulation, progressive and comprehensive DNA demethylation, and tight links between DNA demethylation and histone marks during the development of primordial germ cells, acquisition of unique totipotent epigenome during oogenesis (e.g., broad H3K4me3 domains and low-level three-dimensional genomic organization), and unexpected organization of the sperm genome. Moreover, these studies suggest the importance of epigenome analyses for in-depth evaluations of in vitro gametogenesis.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
78
|
Harwood JC, Kent NA, Allen ND, Harwood AJ. Nucleosome dynamics of human iPSC during neural differentiation. EMBO Rep 2019; 20:embr.201846960. [PMID: 31036712 PMCID: PMC6549019 DOI: 10.15252/embr.201846960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleosome positioning is important for neurodevelopment, and genes mediating chromatin remodelling are strongly associated with human neurodevelopmental disorders. To investigate changes in nucleosome positioning during neural differentiation, we generate genome‐wide nucleosome maps from an undifferentiated human‐induced pluripotent stem cell (hiPSC) line and after its differentiation to the neural progenitor cell (NPC) stage. We find that nearly 3% of nucleosomes are highly positioned in NPC, but significantly, there are eightfold fewer positioned nucleosomes in pluripotent cells, indicating increased positioning during cell differentiation. Positioned nucleosomes do not strongly correlate with active chromatin marks or gene transcription. Unexpectedly, we find a small population of nucleosomes that occupy similar positions in pluripotent and neural progenitor cells and are found at binding sites of the key gene regulators NRSF/REST and CTCF. Remarkably, the presence of these nucleosomes appears to be independent of the associated regulatory complexes. Together, these results present a scenario in human cells, where positioned nucleosomes are sparse and dynamic, but may act to alter gene expression at a distance via the structural conformation at sites of chromatin regulation.
Collapse
Affiliation(s)
- Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | | | | | - Adrian J Harwood
- School of Biosciences, Cardiff University, Cardiff, UK .,Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Cardiff, UK
| |
Collapse
|
79
|
Hainer SJ, Bošković A, McCannell KN, Rando OJ, Fazzio TG. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell 2019; 177:1319-1329.e11. [PMID: 30955888 DOI: 10.1016/j.cell.2019.03.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/05/2019] [Indexed: 02/09/2023]
Abstract
Cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small populations of cells within developing embryos. To understand their functions in vivo, it is important to identify TF binding sites in these cells. However, current methods cannot profile TFs genome-wide at or near the single-cell level. Here we adapt the cleavage under targets and release using nuclease (CUT&RUN) method to profile TFs in low cell numbers, including single cells and individual pre-implantation embryos. Single-cell experiments suggest that only a fraction of TF binding sites are occupied in most cells, in a manner broadly consistent with measurements of peak intensity from multi-cell studies. We further show that chromatin binding by the pluripotency TF NANOG is highly dependent on the SWI/SNF chromatin remodeling complex in individual blastocysts but not in cultured cells. Ultra-low input CUT&RUN (uliCUT&RUN) therefore enables interrogation of TF binding from rare cell populations of particular importance in development or disease.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
80
|
Kurup JT, Campeanu IJ, Kidder BL. Contribution of H3K4 demethylase KDM5B to nucleosome organization in embryonic stem cells revealed by micrococcal nuclease sequencing. Epigenetics Chromatin 2019; 12:20. [PMID: 30940185 PMCID: PMC6444878 DOI: 10.1186/s13072-019-0266-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Positioning of nucleosomes along DNA is an integral regulator of chromatin accessibility and gene expression in diverse cell types. However, the precise nature of how histone demethylases including the histone 3 lysine 4 (H3K4) demethylase, KDM5B, impacts nucleosome positioning around transcriptional start sites (TSS) of active genes is poorly understood. RESULTS Here, we report that KDM5B is a critical regulator of nucleosome positioning in embryonic stem (ES) cells. Micrococcal nuclease sequencing (MNase-Seq) revealed increased enrichment of nucleosomes around TSS regions and DNase I hypersensitive sites in KDM5B-depleted ES cells. Moreover, depletion of KDM5B resulted in a widespread redistribution and disorganization of nucleosomes in a sequence-dependent manner. Dysregulated nucleosome phasing was also evident in KDM5B-depleted ES cells, including asynchronous nucleosome spacing surrounding TSS regions, where nucleosome variance was positively correlated with the degree of asynchronous phasing. The redistribution of nucleosomes around TSS regions in KDM5B-depleted ES cells is correlated with dysregulated gene expression, and altered H3K4me3 and RNA polymerase II occupancy. In addition, we found that DNA shape features varied significantly at regions with shifted nucleosomes. CONCLUSION Altogether, our data support a role for KDM5B in regulating nucleosome positioning in ES cells.
Collapse
Affiliation(s)
- Jiji T. Kurup
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Ion J. Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Benjamin L. Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
81
|
Muratori M, De Geyter C. Chromatin condensation, fragmentation of DNA and differences in the epigenetic signature of infertile men. Best Pract Res Clin Endocrinol Metab 2019; 33:117-126. [PMID: 30420311 DOI: 10.1016/j.beem.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies report an increase of pathologies of male reproductive tracts and suggest a link between this trend and the increased exposure of men to endocrine disruptors (EDs). The mechanisms by which EDs impact male fertility are far to be elucidated although DNA, chromatin and epigenome of spermatozoa appear to be relevant targets for these molecules. Indeed, many studies report associations between increased levels of sperm DNA fragmentation (sDF) or aberrant chromatin condensation or epigenetic modifications and poor semen quality and/or infertile phenotype. In this scenario, therapies able to reduce sperm damage to DNA, chromatin and epigenome are sought. Currently, antioxidants and FSH administration is proposed for treating high levels of sDF, but whether or not such therapies are really effective is still debated. Further studies are necessary to understand the link between endocrine disruptor exposure and damage to sperm function and/or structure and thus to define effective therapeutic strategies.
Collapse
Affiliation(s)
- Monica Muratori
- Department of Experimental, Clinical and Biomedical Sciences, Unit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of Florence, Viale Pieraccini, 6, I-50139, Firenze, Italy.
| | - Christian De Geyter
- Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse 134, CH-4031, Basel, Switzerland.
| |
Collapse
|
82
|
Chen G, Wang J. A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. Semin Cancer Biol 2019; 57:72-78. [PMID: 30710616 DOI: 10.1016/j.semcancer.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Mouse embryonic stem cell (ESC) is a prototype of pluripotent stem cell that undergoes endless self-renewal in culture without losing the pluripotency, the ability to differentiate to all somatic lineages. The self-renewal of ESC relies on a gene expression program, epigenetic state, and cellular metabolism specific to ESC. In this review, we will present the evidence to exemplify how gene regulation, chromatin methylation, and threonine catabolism are specialized to boost ESC self-renewal. It is evident that a feedforward regulatory circuitry forms at the interfaces between the transcriptional, epigenetic and metabolic control to consolidate the pluripotency of ESC.
Collapse
Affiliation(s)
- Guohua Chen
- Department of Pathology, Wayne State of University School of Medicine, United States
| | - Jian Wang
- Department of Pathology, Wayne State of University School of Medicine, United States; Cardiovascular Research Institute, Wayne State of University School of Medicine, United States.
| |
Collapse
|
83
|
An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun 2019; 10:364. [PMID: 30664750 PMCID: PMC6341076 DOI: 10.1038/s41467-018-08244-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Human pre-implantation embryonic development involves extensive changes in chromatin structure and transcriptional activity. Here, we report on LiCAT-seq, a technique that enables simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of cells, and map the chromatin accessibility and transcriptome landscapes for human pre-implantation embryos. We observed global difference in chromatin accessibility between sperm and all stages of embryos, finding that the accessible regions in sperm tend to occur in gene-poor genomic regions. Integrative analyses between the two datasets reveals strong association between the establishment of accessible chromatin and embryonic genome activation (EGA), and uncovers transcription factors and endogenous retrovirus (ERVs) specific to EGA. In particular, a large proportion of the early activated genes and ERVs are bound by DUX4 and become accessible as early as the 2- to 4-cell stages. Our results thus offer mechanistic insights into the molecular events inherent to human pre-implantation development.
Collapse
|
84
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
85
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|
86
|
Riaz S, Sui Z, Niaz Z, Khan S, Liu Y, Liu H. Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins. Microorganisms 2018; 6:E128. [PMID: 30558155 PMCID: PMC6313786 DOI: 10.3390/microorganisms6040128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates "dinokaryon" have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA. However, their role in bulk packaging of DNA is not significant as low amounts of proteins are associated with the gigantic genome. This review intends to summarize the discoveries encompassing unique nuclear features of dinoflagellates, particularly focusing on histone and histone replacement proteins. In addition, a comprehensive view of the evolution of dinoflagellate nuclei is presented.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Haoxin Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
87
|
Schon SB, Luense LJ, Wang X, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet 2018; 36:267-275. [PMID: 30397898 DOI: 10.1007/s10815-018-1354-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Alternations to the paternal epigenome, specifically the components of sperm chromatin, can lead to infertility in humans and potentially transmit aberrant information to the embryo. One key component of sperm chromatin is the post-translational modification of histones (PTMs). We previously identified a comprehensive profile of histone PTMs in normozoospermic sperm; however, only specific histone PTMs have been identified in abnormal sperm by antibody-based approaches and comprehensive changes to histone PTM profiles remain unknown. Here, we investigate if sperm with abnormalities of total motility, progressive motility, and morphology have altered histone PTM profiles compared to normozoospermic sperm samples. METHODS Discarded semen samples from 31 men with normal or abnormal semen parameters were analyzed for relative abundance of PTMs on histone H3 and H4 by "bottom-up" nano-liquid chromatography-tandem mass spectrometry. RESULTS Asthenoteratozoospermic samples (abnormal motility, forward progression, and morphology, n = 6) displayed overall decreased H4 acetylation (p = 0.001) as well as alterations in H4K20 (p = 0.003) and H3K9 methylation (p < 0.04) when compared to normozoospermic samples (n = 8). Asthenozoospermic samples (abnormal motility and progression, n = 5) also demonstrated decreased H4 acetylation (p = 0.04) and altered H4K20 (p = 0.005) and H3K9 methylation (p < 0.04). Samples with isolated abnormal progression (n = 6) primarily demonstrated decreased acetylation on H4 (p < 0.02), and teratozoospermic samples (n = 6) appeared similar to normozoospermic samples (n = 8). CONCLUSION Sperm samples with combined and isolated abnormalities of total motility, progressive motility, and morphology display distinct and altered histone PTM signatures compared to normozoospermic sperm. This provides evidence that alterations in histone PTMs may be important for normal sperm function and fertility.
Collapse
Affiliation(s)
- Samantha B Schon
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, 3701 Market Street, Suite 800, Philadelphia, PA, 19104, USA. .,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, L4000 UH-South, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Lacey J Luense
- Department of Cell and Developmental Biology, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA
| | - Xiaoshi Wang
- Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA
| | - Christos Coutifaris
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, 3701 Market Street, Suite 800, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA. .,Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.
| |
Collapse
|
88
|
Hug CB, Vaquerizas JM. The Birth of the 3D Genome during Early Embryonic Development. Trends Genet 2018; 34:903-914. [PMID: 30292539 DOI: 10.1016/j.tig.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
The 3D structure of chromatin in the nucleus is important for the regulation of gene expression and the correct deployment of developmental programs. The differentiation of germ cells and early embryonic development (when the zygotic genome is activated and transcription is taking place for the first time) are accompanied by dramatic changes in gene expression and the epigenetic landscape. Recent studies used Hi-C to investigate the 3D chromatin organization during these developmental transitions, uncovering remarkable remodeling of the 3D genome. Here, we highlight the changes described so far and discuss some of the implications that these findings have for our understanding of the mechanisms and functionality of 3D chromatin architecture.
Collapse
Affiliation(s)
- Clemens B Hug
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. https://twitter.com/vaquerizasjm
| |
Collapse
|
89
|
Ladstätter S, Tachibana K. Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 2018; 218:70-82. [PMID: 30257850 PMCID: PMC6314560 DOI: 10.1083/jcb.201807044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Ladstätter and Tachibana discuss changes in DNA methylation, chromatin accessibility, and topological architecture occurring during the reprogramming to totipotency in the early embryo. The early embryo is the natural prototype for the acquisition of totipotency, which is the potential of a cell to produce a whole organism. Generation of a totipotent embryo involves chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications. Understanding embryonic chromatin architecture and how this is related to the epigenome and transcriptome will provide invaluable insights into cell fate decisions. Recently emerging low-input genomic assays allow the exploration of regulatory networks in the sparsely available mammalian embryo. Thus, the field of developmental biology is transitioning from microscopy to genome-wide chromatin descriptions. Ultimately, the prototype becomes a unique model for studying fundamental principles of development, epigenetic reprogramming, and cellular plasticity. In this review, we discuss chromatin reprogramming in the early mouse embryo, focusing on DNA methylation, chromatin accessibility, and higher-order chromatin structure.
Collapse
Affiliation(s)
- Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
90
|
Wang Y, Long H, Yu J, Dong L, Wassef M, Zhuo B, Li X, Zhao J, Wang M, Liu C, Wen Z, Chang L, Chen P, Wang QF, Xu X, Margueron R, Li G. Histone variants H2A.Z and H3.3 coordinately regulate PRC2-dependent H3K27me3 deposition and gene expression regulation in mES cells. BMC Biol 2018; 16:107. [PMID: 30249243 PMCID: PMC6151936 DOI: 10.1186/s12915-018-0568-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 01/27/2023] Open
Abstract
Background The hierarchical organization of eukaryotic chromatin plays a central role in gene regulation, by controlling the extent to which the transcription machinery can access DNA. The histone variants H3.3 and H2A.Z have recently been identified as key regulatory players in this process, but the underlying molecular mechanisms by which they permit or restrict gene expression remain unclear. Here, we investigated the regulatory function of H3.3 and H2A.Z on chromatin dynamics and Polycomb-mediated gene silencing. Results Our ChIP-seq analysis reveals that in mouse embryonic stem (mES) cells, H3K27me3 enrichment correlates strongly with H2A.Z. We further demonstrate that H2A.Z promotes PRC2 activity on H3K27 methylation through facilitating chromatin compaction both in vitro and in mES cells. In contrast, PRC2 activity is counteracted by H3.3 through impairing chromatin compaction. However, a subset of H3.3 may positively regulate PRC2-dependent H3K27 methylation via coordinating depositions of H2A.Z to developmental and signaling genes in mES cells. Using all-trans retinoic acid (tRA)-induced gene as a model, we show that the dynamic deposition of H2A.Z and H3.3 coordinately regulates the PRC2-dependent H3K27 methylation by modulating local chromatin structure at the promoter region during the process of turning genes off. Conclusions Our study provides key insights into the mechanism of how histone variants H3.3 and H2A.Z function coordinately to finely tune the PRC2 enzymatic activity during gene silencing, through promoting or impairing chromosome compaction respectively. Electronic supplementary material The online version of this article (10.1186/s12915-018-0568-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haizhen Long
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liping Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Michel Wassef
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 26 Rue d'Ulm, 75005, Paris, France
| | - Baowen Zhuo
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China
| | - Xia Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyuan Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqing Xu
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China
| | - Raphael Margueron
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 26 Rue d'Ulm, 75005, Paris, France.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
91
|
Yoshida K, Muratani M, Araki H, Miura F, Suzuki T, Dohmae N, Katou Y, Shirahige K, Ito T, Ishii S. Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nat Commun 2018; 9:3885. [PMID: 30250204 PMCID: PMC6155156 DOI: 10.1038/s41467-018-06243-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of histones are replaced by protamines during spermatogenesis, but small amounts are retained in mammalian spermatozoa. Since nucleosomes in spermatozoa influence epigenetic inheritance, it is important to know how histones are distributed in the sperm genome. Conflicting data, which may result from different conditions used for micrococcal nuclease (MNase) digestion, have been reported: retention of nucleosomes at either gene promoter regions or within distal gene-poor regions. Here, we find that the swim-up sperm used in many studies contain about 10% population of sperm which have not yet completed the histone-to-protamine replacement. We develop a method to purify histone replacement-completed sperm (HRCS) and to completely solubilize histones from cross-linked HRCS without MNase digestion. Our results indicate that histones are retained at specific promoter regions in HRCS. This method allows the study of epigenetic status in mature sperm. While a majority of histones are replaced by protamines during spermatogenesis, a small amount is retained in mammalian spermatozoa. Here the authors develop a method to purify histones from replacement-completed sperm (HRCS), completely solubilize histones from cross-linked HRCS without MNase digestion, and map histone-binding sites in these cells.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Cluster for Pioneering Research, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Yuki Katou
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shunsuke Ishii
- Cluster for Pioneering Research, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, Tsukuba, Ibaraki, 305-0074, Japan. .,Department of Functional Genomics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
92
|
Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, Namekawa SH. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci 2018; 131:jcs217125. [PMID: 30097555 PMCID: PMC6140322 DOI: 10.1242/jcs.217125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Mayuka Funakoshi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Taiga Sato
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
93
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
94
|
Arhondakis S, Varriale A. Distribution of Nucleosome-enriched Sequences of Human Sperm Chromatin Along Isochores. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:54-60. [DOI: 10.14218/erhm.2018.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
95
|
Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS. Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenetics Chromatin 2018; 11:43. [PMID: 30068355 PMCID: PMC6069787 DOI: 10.1186/s13072-018-0214-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linker histones establish and maintain higher-order chromatin structure. Eleven linker histone subtypes have been reported in mammals. HILS1 is a spermatid-specific linker histone, and its expression overlaps with the histone-protamine exchange process during mammalian spermiogenesis. However, the role of HILS1 in spermatid chromatin remodeling is largely unknown. RESULTS In this study, we demonstrate using circular dichroism spectroscopy that HILS1 is a poor condenser of DNA and chromatin compared to somatic linker histone H1d. Genome-wide occupancy study in elongating/condensing spermatids revealed the preferential binding of HILS1 to the LINE-1 (L1) elements within the intergenic and intronic regions of rat spermatid genome. We observed specific enrichment of the histone PTMs like H3K9me3, H4K20me3 and H4 acetylation marks (H4K5ac and H4K12ac) in the HILS1-bound chromatin complex, whereas H3K4me3 and H3K27me3 marks were absent. CONCLUSIONS HILS1 possesses significantly lower α-helicity compared to other linker histones such as H1t and H1d. Interestingly, in contrast to the somatic histone variant H1d, HILS1 is a poor condenser of chromatin which demonstrate the idea that this particular linker histone variant may have distinct role in histone to protamine replacement. Based on HILS1 ChIP-seq analysis of elongating/condensing spermatids, we speculate that HILS1 may provide a platform for the structural transitions and forms the higher-order chromatin structures encompassing LINE-1 elements during spermiogenesis.
Collapse
Affiliation(s)
- Laxmi Narayan Mishra
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Vasantha Shalini
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Nikhil Gupta
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Epigenetics and Cell Fate, UMR7216, CNRS, University Paris Diderot, Sorbonne Paris Cite, 75013, Paris, France
| | - Krittika Ghosh
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Neeraj Suthar
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - M R Satyanarayana Rao
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
96
|
Mylonas C, Tessarz P. Transcriptional repression by FACT is linked to regulation of chromatin accessibility at the promoter of ES cells. Life Sci Alliance 2018; 1:e201800085. [PMID: 30456357 PMCID: PMC6238418 DOI: 10.26508/lsa.201800085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Depletion of FACT in murine embryonic stem cells show mild changes on the nucleosomal landscape but widespread changes in the transcriptome, faster proliferation, and neuronal differentiation rates. The conserved and essential histone chaperone, facilitates chromatin transcription (FACT), reorganizes nucleosomes during DNA transcription, replication, and repair and ensures both efficient elongation of RNA Pol II and nucleosome integrity. In mammalian cells, FACT is a heterodimer, consisting of SSRP1 and SUPT16. Here, we show that in contrast to yeast, FACT accumulates at the transcription start site of genes reminiscent of RNA polymerase II profile. Depletion of FACT in mouse embryonic stem cells leads to deregulation of developmental and pro-proliferative genes concomitant with hyper-proliferation of mES cells. Using MNase-seq, Assay for Transposase-Accessible Chromatin sequencing, and nascent elongating transcript sequencing, we show that up-regulation of genes coincides with loss of nucleosomes upstream of the transcription start site and concomitant increase in antisense transcription, indicating that FACT impacts the promoter architecture to regulate the expression of these genes. Finally, we demonstrate a role for FACT in cell fate determination and show that FACT depletion primes embryonic stem cells for the neuronal lineage.
Collapse
Affiliation(s)
| | - Peter Tessarz
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
97
|
Pilsner JR, Shershebnev A, Medvedeva YA, Suvorov A, Wu H, Goltsov A, Loukianov E, Andreeva T, Gusev F, Manakhov A, Smigulina L, Logacheva M, Shtratnikova V, Kuznetsova I, Speranskiy-Podobed P, Burns JS, Williams PL, Korrick S, Lee MM, Rogaev E, Hauser R, Sergeyev O. Peripubertal serum dioxin concentrations and subsequent sperm methylome profiles of young Russian adults. Reprod Toxicol 2018; 78:40-49. [PMID: 29550351 PMCID: PMC6130911 DOI: 10.1016/j.reprotox.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND The association of exposure to endocrine disrupting chemicals in the peripubertal period with subsequent sperm DNA methylation is unknown. OBJECTIVE We examined the association of peripubertal serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentrations with whole-genome bisulfite sequencing (WGBS) of sperm collected in young adulthood. METHODS The Russian Children's Study is a prospective cohort of 516 boys who were enrolled at 8-9 years of age and provided semen samples at 18-19 years of age. WGBS of sperm was conducted to identify differentially methylated regions (DMR) between highest (n = 4) and lowest (n = 4) peripubertal TCDD groups. RESULTS We found 52 DMRs that distinguished lowest and highest peripubertal serum TCDD concentrations. One of the top scoring networks, "Cellular Assembly and Organization, Cellular Function and Maintenance, Carbohydrate Metabolism", identified estrogen receptor alpha as its central regulator. CONCLUSION Findings from our limited sample size suggest that peripubertal environmental exposures are associated with sperm DNA methylation in young adults.
Collapse
Affiliation(s)
- J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Alex Shershebnev
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, Bld. 1, 117312, Moscow, Russia; Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Andrey Goltsov
- Department of Molecular Genetics, Research Center for Obstetrics, Gynecology and Perinatology, 4 Oparin St., 117997, Moscow, Russia; Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Evgeny Loukianov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Tatiana Andreeva
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Andrey Manakhov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Luidmila Smigulina
- Chapaevsk Medical Association, 3a Meditsinskaya st., 446100, Chapaevsk, Samara region, Russia.
| | - Maria Logacheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143028, Moscow, Russia.
| | - Victoria Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143028, Moscow, Russia.
| | - Irina Kuznetsova
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Peter Speranskiy-Podobed
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Jane S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Susan Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
| | - Mary M Lee
- Pediatric Endocrine Division, Department of Pediatrics, University of Massachusetts Medical School, 55 N Lake Avenue, Worcester, MA, 01655, USA.
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia; Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, 01604 Worcester, MA, USA.
| | - Russ Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Oleg Sergeyev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia; Chapaevsk Medical Association, 3a Meditsinskaya st., 446100, Chapaevsk, Samara region, Russia; A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.
| |
Collapse
|
98
|
Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, Shirahige K, Okada Y. Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep 2018; 23:3920-3932. [DOI: 10.1016/j.celrep.2018.05.094] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022] Open
|
99
|
Inherited DNA methylation primes the establishment of accessible chromatin during genome activation. Genome Res 2018; 28:998-1007. [PMID: 29844026 PMCID: PMC6028135 DOI: 10.1101/gr.228833.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
For animals, epigenetic modifications can be globally or partially inherited from gametes after fertilization, and such information is required for proper transcriptional regulation, especially during the process of zygotic genome activation (ZGA). However, the mechanism underlying how the inherited epigenetic signatures affect transcriptional regulation during ZGA remains poorly understood. Here, we performed genome-wide profiling of chromatin accessibility during zebrafish ZGA, which is closely related to zygotic transcriptional regulation. We observed a clear trend toward a gradual increase in accessible chromatin during ZGA. Furthermore, accessible chromatin at the promoters displayed a sequential priority of emergence, and the locations of the accessible chromatin were precisely primed by the enrichment of unmethylated CpGs that were fully inherited from gametes. On the other hand, distal regions with high methylation levels that were inherited from the sperm facilitated the binding of DNA methylation-preferred transcription factors, such as Pou5f3 and Nanog, which contributed to the establishment of accessible chromatin at these loci. Our results demonstrate a model whereby inherited DNA methylation signatures from gametes prime the establishment of accessible chromatin during zebrafish ZGA through two distinct mechanisms.
Collapse
|
100
|
Steger K, Balhorn R. Sperm nuclear protamines: A checkpoint to control sperm chromatin quality. Anat Histol Embryol 2018; 47:273-279. [PMID: 29797354 DOI: 10.1111/ahe.12361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Protamines are nuclear proteins which are specifically expressed in haploid male germ cells. Their replacement of histones and binding to DNA is followed by chromatin hypercondensation that protects DNA from negative influences by environmental factors. Mammalian sperm contain two types of protamines: PRM1 and PRM2. While the proportion of the two protamines is highly variable between different species, abnormal ratios within a species are known to be associated with male subfertility. Therefore, it is more than likely that correct protamine expression represents a kind of chromatin checkpoint during sperm development rendering protamines as suitable biomarkers for the estimation of sperm quality. This review presents an overview of our current knowledge on protamines comparing gene and protein structures between different mammalian species with particular consideration given to man, mouse and stallion. At last, recent insights into the possible role of inherited sperm histones for early embryo development are provided.
Collapse
Affiliation(s)
- Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Molecular Andrology, Biomedical Research Center of the Justus Liebig University, Giessen, Germany
| | - Rod Balhorn
- Briar Patch Biosciences LLC, Livermore, CA, USA
| |
Collapse
|