51
|
Zaniewski TM, Gicking AM, Fricks J, Hancock WO. A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle. J Biol Chem 2020; 295:17889-17903. [PMID: 33082143 PMCID: PMC7939386 DOI: 10.1074/jbc.ra120.014961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.
Collapse
Affiliation(s)
- Taylor M Zaniewski
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Allison M Gicking
- Department of Biomedical Engineering and Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, USA
| | - William O Hancock
- Department of Biomedical Engineering and Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
52
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
53
|
Pavin N, Tolić IM. Mechanobiology of the Mitotic Spindle. Dev Cell 2020; 56:192-201. [PMID: 33238148 DOI: 10.1016/j.devcel.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The mitotic spindle is a microtubule-based assembly that separates the chromosomes during cell division. As the spindle is basically a mechanical micro machine, the understanding of its functioning is constantly motivating the development of experimental approaches based on mechanical perturbations, which are complementary to and work together with the classical genetics and biochemistry methods. Recent data emerging from these approaches in combination with theoretical modeling led to novel ideas and significant revisions of the basic concepts in the field. In this Perspective, we discuss the advances in the understanding of spindle mechanics, focusing on microtubule forces that control chromosome movements.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
54
|
Fang CT, Kuo HH, Hsu SC, Yih LH. HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors. Cell Death Dis 2020; 11:715. [PMID: 32873777 PMCID: PMC7462862 DOI: 10.1038/s41419-020-02919-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The heat shock protein 70 (HSP70) is a conserved molecular chaperone and proteostasis regulator that protects cells from pharmacological stress and promotes drug resistance in cancer cells. In this study, we found that HSP70 may promote resistance to anticancer drugs that target the mitotic kinesin, Eg5, which is essential for assembly and maintenance of the mitotic spindle and cell proliferation. Our data show that loss of HSP70 activity enhances Eg5 inhibitor-induced cytotoxicity and spindle abnormalities. Furthermore, HSP70 colocalizes with Eg5 in the mitotic spindle, and inhibition of HSP70 disrupts this colocalization. Inhibition or depletion of HSP70 also causes Eg5 to accumulate at the spindle pole, altering microtubule dynamics and leading to chromosome misalignment. Using ground state depletion microscopy followed by individual molecule return (GSDIM), we found that HSP70 inhibition reduces the size of Eg5 ensembles and prevents their localization to the inter-polar region of the spindle. In addition, bis(maleimido)hexane-mediated protein-protein crosslinking and proximity ligation assays revealed that HSP70 inhibition deregulates the interaction between Eg5 tetramers and TPX2 at the spindle pole, leading to their accumulation in high-molecular-weight complexes. Finally, we showed that the passive substrate-binding activity of HSP70 is required for appropriate Eg5 distribution and function. Together, our results show that HSP70 substrate-binding activity may regulate proper assembly of Eg5 ensembles and Eg5-TPX2 complexes to modulate mitotic distribution/function of Eg5. Thus, HSP70 inhibition may sensitize cancer cells to Eg5 inhibitor-induced cytotoxicity.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
55
|
Wierenga H, Wolde PRT. Diffusible Cross-linkers Cause Superexponential Friction Forces. PHYSICAL REVIEW LETTERS 2020; 125:078101. [PMID: 32857554 DOI: 10.1103/physrevlett.125.078101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The friction between cytoskeletal filaments is of central importance for the formation of cellular structures such as the mitotic spindle and the cytokinetic ring. This friction is caused by passive cross-linkers, yet the underlying mechanism and the dependence on cross-linker density are poorly understood. Here, we use theory and computer simulations to study the friction between two filaments that are cross-linked by passive proteins, which can hop between discrete binding sites while physically excluding each other. The simulations reveal that filaments move via rare discrete jumps, which are associated with free-energy barrier crossings. We identify the reaction coordinate that governs the relative microtubule movement and derive an exact analytical expression for the free-energy barrier and the friction coefficient. Our analysis not only elucidates the molecular mechanism underlying cross-linker-induced filament friction, but also predicts that the friction coefficient scales superexponentially with the density of cross-linkers.
Collapse
|
56
|
Gaska I, Armstrong ME, Alfieri A, Forth S. The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding. Dev Cell 2020; 54:367-378.e5. [DOI: 10.1016/j.devcel.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 06/14/2020] [Indexed: 01/23/2023]
|
57
|
Chowdhury D, Ghanti D. Soft mechano-chemistry of molecular hubs in mitotic spindle: biomechanics and mechanical proofreading at microtubule ends. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:284001. [PMID: 32133984 DOI: 10.1088/1361-648x/ab7cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A microtubule (MT) is a long stiff tube-shaped filament formed by a hierarchical organization of a large number of tubulin protein molecules. These filaments constitute a major structural component of the scaffold of a multi-component macromolecular machine called mitotic spindle. The plus ends of the MTs are tethered to some specific binding partners by molecular tethers while those of some others are crosslinked by crosslinking molecules. Because of the non-covalent binding involved in the tethering and crosslinking, the attachments formed are intrinsically 'soft'. These attachments are transient because these can get ruptured spontaneously by thermal fluctuations. By implementing in silico the standard protocols of in vitro molecular force spectroscopy, we compute the lifetimes of simple theoretical models of these attachments. The mean lifetime is essentially a mean first-passage time. The stability of cross-linked antiparallel MTs is shown to decrease monotonically with increasing tension, a characteristic of all 'slip-bonds'. This is in sharp contrast to the nonmonotonic variation of the mean lifetime with tension, a mechanical fingerprint of 'catch-bonds', displayed by the MTs tethered to two distinct binding partners. We mention plausible functional implications of these observations in the context of mechanical proofreading.
Collapse
|
58
|
Braun M, Diez S, Lansky Z. Cytoskeletal organization through multivalent interactions. J Cell Sci 2020; 133:133/12/jcs234393. [PMID: 32540925 DOI: 10.1242/jcs.234393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
Collapse
Affiliation(s)
- Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany .,Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| |
Collapse
|
59
|
Matis M. The Mechanical Role of Microtubules in Tissue Remodeling. Bioessays 2020; 42:e1900244. [PMID: 32249455 DOI: 10.1002/bies.201900244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Indexed: 12/31/2022]
Abstract
During morphogenesis, tissues undergo extensive remodeling to get their final shape. Such precise sculpting requires the application of forces generated within cells by the cytoskeleton and transmission of these forces through adhesion molecules within and between neighboring cells. Within individual cells, microtubules together with actomyosin filaments and intermediate filaments form the composite cytoskeleton that controls cell mechanics during tissue rearrangements. While studies have established the importance of actin-based mechanical forces that are coupled via intercellular junctions, relatively little is known about the contribution of other cytoskeletal components such as microtubules to cell mechanics during morphogenesis. In this review the focus is on recent findings, highlighting the direct mechanical role of microtubules beyond its well-established role in trafficking and signaling during tissue formation.
Collapse
Affiliation(s)
- Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, 48149, Germany.,'Cells in Motion' Interfaculty Centre, University of Münster, Münster, 48149, Germany
| |
Collapse
|
60
|
Suresh P, Long AF, Dumont S. Microneedle manipulation of the mammalian spindle reveals specialized, short-lived reinforcement near chromosomes. eLife 2020; 9:e53807. [PMID: 32191206 PMCID: PMC7117910 DOI: 10.7554/elife.53807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
The spindle generates force to segregate chromosomes at cell division. In mammalian cells, kinetochore-fibers connect chromosomes to the spindle. The dynamic spindle anchors kinetochore-fibers in space and time to move chromosomes. Yet, how it does so remains poorly understood as we lack tools to directly challenge this anchorage. Here, we adapt microneedle manipulation to exert local forces on the spindle with spatiotemporal control. Pulling on kinetochore-fibers reveals the preservation of local architecture in the spindle-center over seconds. Sister, but not neighbor, kinetochore-fibers remain tightly coupled, restricting chromosome stretching. Further, pulled kinetochore-fibers pivot around poles but not chromosomes, retaining their orientation within 3 μm of chromosomes. This local reinforcement has a 20 s lifetime, and requires the microtubule crosslinker PRC1. Together, these observations indicate short-lived, specialized reinforcement in the spindle center. This could help protect chromosome attachments from transient forces while allowing spindle remodeling, and chromosome movements, over longer timescales.
Collapse
Affiliation(s)
- Pooja Suresh
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Alexandra F Long
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Sophie Dumont
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
61
|
She ZY, Zhong N, Yu KW, Xiao Y, Wei YL, Lin Y, Li YL, Lu MH. Kinesin-5 Eg5 is essential for spindle assembly and chromosome alignment of mouse spermatocytes. Cell Div 2020; 15:6. [PMID: 32165913 PMCID: PMC7060529 DOI: 10.1186/s13008-020-00063-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microtubule organization is essential for bipolar spindle assembly and chromosome segregation, which contribute to genome stability. Kinesin-5 Eg5 is known to be a crucial regulator in centrosome separation and spindle assembly in mammalian somatic cells, however, the functions and mechanisms of Eg5 in male meiotic cell division remain largely unknown. Results In this study, we have found that Eg5 proteins are expressed in mouse spermatogonia, spermatocytes and spermatids. After Eg5 inhibition by specific inhibitors Monastrol, STLC and Dimethylenastron, the meiotic spindles of dividing spermatocytes show spindle collapse and the defects in bipolar spindle formation. We demonstrate that Eg5 regulates spindle bipolarity and the maintenance of meiotic spindles in meiosis. Eg5 inhibition leads to monopolar spindles, spindle abnormalities and chromosome misalignment in cultured GC-2 spd cells. Furthermore, Eg5 inhibition results in the decrease of the spermatids and the abnormalities in mature sperms. Conclusions Our results have revealed an important role of kinesin-5 Eg5 in male meiosis and the maintenance of male fertility. We demonstrate that Eg5 is crucial for bipolar spindle assembly and chromosome alignment in dividing spermatocytes. Our data provide insights into the functions of Eg5 in meiotic spindle assembly of dividing spermatocytes.
Collapse
Affiliation(s)
- Zhen-Yu She
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122 Fujian China
| | - Ning Zhong
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Kai-Wei Yu
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Yu Xiao
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001 Fujian China.,4Fujian Provincial Children's Hospital, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Yang Lin
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Yue-Ling Li
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Ming-Hui Lu
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| |
Collapse
|
62
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
63
|
Bodrug T, Wilson-Kubalek EM, Nithianantham S, Thompson AF, Alfieri A, Gaska I, Major J, Debs G, Inagaki S, Gutierrez P, Gheber L, McKenney RJ, Sindelar CV, Milligan R, Stumpff J, Rosenfeld SS, Forth ST, Al-Bassam J. The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding. eLife 2020; 9:e51131. [PMID: 31958056 PMCID: PMC7015671 DOI: 10.7554/elife.51131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Molecular and Cellular BiologyUniversity of California, DavisDavisUnited States
| | - Elizabeth M Wilson-Kubalek
- Department of Integrative Structural and Computational BiologyScripps Research InstituteLa JollaUnited States
| | - Stanley Nithianantham
- Department of Molecular and Cellular BiologyUniversity of California, DavisDavisUnited States
| | - Alex F Thompson
- Department of Molecular Physiology and BiophysicsUniversity of VermontBurlingtonUnited States
| | - April Alfieri
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyUnited States
| | - Ignas Gaska
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyUnited States
| | - Jennifer Major
- Department of Cancer BiologyLerner Research Institute, Cleveland ClinicLorainUnited States
- Department of PharmacologyMayo ClinicJacksonvilleUnited States
| | - Garrett Debs
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Sayaka Inagaki
- Department of PharmacologyMayo ClinicJacksonvilleUnited States
| | - Pedro Gutierrez
- Department of Molecular and Cellular BiologyUniversity of California, DavisDavisUnited States
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevNegevIsrael
| | - Richard J McKenney
- Department of Molecular and Cellular BiologyUniversity of California, DavisDavisUnited States
| | | | - Ronald Milligan
- Department of Integrative Structural and Computational BiologyScripps Research InstituteLa JollaUnited States
| | - Jason Stumpff
- Department of Molecular Physiology and BiophysicsUniversity of VermontBurlingtonUnited States
| | - Steven S Rosenfeld
- Department of Cancer BiologyLerner Research Institute, Cleveland ClinicLorainUnited States
- Department of PharmacologyMayo ClinicJacksonvilleUnited States
| | - Scott T Forth
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyUnited States
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular BiologyUniversity of California, DavisDavisUnited States
| |
Collapse
|
64
|
Uçar MC, Lipowsky R. Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding. NANO LETTERS 2020; 20:669-676. [PMID: 31797672 DOI: 10.1021/acs.nanolett.9b04445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria , Am Campus 1 , 3400 Klosterneuburg , Austria
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
65
|
Lera‐Ramirez M, Nédélec FJ. Theory of antiparallel microtubule overlap stabilization by motors and diffusible crosslinkers. Cytoskeleton (Hoboken) 2019; 76:600-610. [DOI: 10.1002/cm.21574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022]
|
66
|
Yasunaga A, Murad Y, Li ITS. Quantifying molecular tension-classifications, interpretations and limitations of force sensors. Phys Biol 2019; 17:011001. [PMID: 31387091 DOI: 10.1088/1478-3975/ab38ff] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular force sensors (MFSs) have grown to become an important tool to study the mechanobiology of cells and tissues. They provide a minimally invasive means to optically report mechanical interactions at the molecular level. One of the challenges in molecular force sensor studies is the interpretation of the fluorescence readout. In this review, we divide existing MFSs into three classes based on the force-sensing mechanism (reversibility) and the signal output (analog/digital). From single-molecule force spectroscopy (SMFS) perspectives, we provided a critical discussion on how the sensors respond to force and how the different sensor designs affect the interpretation of their fluorescence readout. Lastly, the review focuses on the limitations and attention one must pay in designing MFSs and biological experiments using them; in terms of their tunability, signal-to-noise ratio (SNR), and perturbation of the biological system under investigation.
Collapse
Affiliation(s)
- Adam Yasunaga
- These authors contributed equally to the manuscript (co-first author)
| | | | | |
Collapse
|
67
|
Leary A, Sim S, Nazarova E, Shulist K, Genthial R, Yang SK, Bui KH, Francois P, Vogel J. Successive Kinesin-5 Microtubule Crosslinking and Sliding Promote Fast, Irreversible Formation of a Stereotyped Bipolar Spindle. Curr Biol 2019; 29:3825-3837.e3. [DOI: 10.1016/j.cub.2019.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
68
|
Mohammed D, Versaevel M, Bruyère C, Alaimo L, Luciano M, Vercruysse E, Procès A, Gabriele S. Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Front Bioeng Biotechnol 2019; 7:162. [PMID: 31380357 PMCID: PMC6646473 DOI: 10.3389/fbioe.2019.00162] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in “outside-in” and “inside-out” signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.
Collapse
Affiliation(s)
- Danahe Mohammed
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Bruyère
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laura Alaimo
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Eléonore Vercruysse
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Anthony Procès
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Department of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
69
|
Prelogović M, Winters L, Milas A, Tolić IM, Pavin N. Pivot-and-bond model explains microtubule bundle formation. Phys Rev E 2019; 100:012403. [PMID: 31499770 DOI: 10.1103/physreve.100.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 06/10/2023]
Abstract
During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more microtubules growing from the same origin and held together by cross-linking proteins. An interesting question is what are the physical principles underlying the formation and stability of such microtubule bundles. Here we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.
Collapse
Affiliation(s)
- Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
70
|
Allard J, Doumic M, Mogilner A, Oelz D. Bidirectional sliding of two parallel microtubules generated by multiple identical motors. J Math Biol 2019; 79:571-594. [PMID: 31016335 PMCID: PMC11100485 DOI: 10.1007/s00285-019-01369-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Indexed: 10/27/2022]
Abstract
It is often assumed in biophysical studies that when multiple identical molecular motors interact with two parallel microtubules, the microtubules will be crosslinked and locked together. The aim of this study is to examine this assumption mathematically. We model the forces and movements generated by motors with a time-continuous Markov process and find that, counter-intuitively, a tug-of-war results from opposing actions of identical motors bound to different microtubules. The model shows that many motors bound to the same microtubule generate a great force applied to a smaller number of motors bound to another microtubule, which increases detachment rate for the motors in minority, stabilizing the directional sliding. However, stochastic effects cause occasional changes of the sliding direction, which has a profound effect on the character of the long-term microtubule motility, making it effectively diffusion-like. Here, we estimate the time between the rare events of switching direction and use them to estimate the effective diffusion coefficient for the microtubule pair. Our main result is that parallel microtubules interacting with multiple identical motors are not locked together, but rather slide bidirectionally. We find explicit formulae for the time between directional switching for various motor numbers.
Collapse
Affiliation(s)
- Jun Allard
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Marie Doumic
- Inria, UPMC Univ Paris 06, Lab. J.L. Lions UMR CNRS 7598, Sorbonne Universités, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
| | - Dietmar Oelz
- School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
71
|
Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakov A, Betzig E, Kapoor TM. High-resolution imaging reveals how the spindle midzone impacts chromosome movement. J Cell Biol 2019; 218:2529-2544. [PMID: 31248912 PMCID: PMC6683753 DOI: 10.1083/jcb.201904169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Microtubule bundles in the spindle midzone have been reported to either promote or hinder chromosome movement. Pamula et al. examine the assembly dynamics of midzone microtubule bundles during anaphase and how chromosome segregation is impacted by aberrant bundle assembly. In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.
Collapse
Affiliation(s)
- Melissa C Pamula
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Scott Forth
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Priyanka Verma
- Department of Cancer Biology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Subbulakshmi Suresh
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| |
Collapse
|
72
|
Chen Y, Nam S, Chaudhuri O, Huang HC. The evolution of spindles and their mechanical implications for cancer metastasis. Cell Cycle 2019; 18:1671-1675. [PMID: 31234701 DOI: 10.1080/15384101.2019.1632137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mitotic spindle has long been known to play a crucial role in mitosis, orchestrating the segregation of chromosomes into two daughter cells during mitosis with high fidelity. Intracellular forces generated by the mitotic spindle are increasingly well understood, and recent work has revealed that the efficiency and the accuracy of mitosis is ensured by the scaling of mitotic spindle size with cell size. However, the role of the spindle in cancer progression has largely been ignored. Two recent studies point toward the role of mitotic spindle evolution in cancer progression through extracellular force generation. Cancer cells with lengthened spindles exhibit highly increased metastatic potential. Further, interpolar spindle elongation drives protrusive extracellular force generation along the mitotic axis to allow mitotic elongation, a morphological change that is required for cell division. Together, these findings open a new research area studying the role of the mitotic spindle evolution in cancer metastasis.
Collapse
Affiliation(s)
- Yun Chen
- a Institute of Molecular and Cellular Biology , National Taiwan University , Taipei , Taiwan
| | - Sungmin Nam
- b Department of Mechanical Engineering , Stanford University , Stanford , CA , USA
| | - Ovijit Chaudhuri
- b Department of Mechanical Engineering , Stanford University , Stanford , CA , USA
| | - Hsiao-Chun Huang
- a Institute of Molecular and Cellular Biology , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
73
|
Kaneko T, Ando S, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars. NANOSCALE 2019; 11:9879-9887. [PMID: 30888373 DOI: 10.1039/c9nr01324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Motor proteins function in in vivo ensembles to achieve cargo transport, flagellum motion, and mitotic cell division. Although the cooperativity of multiple motors is indispensable for physiological function, reconstituting the arrangement of motors in vitro is challenging, so detailed analysis of the functions of motor ensembles has not yet been achieved. Here, we developed an assay platform to study the motility of microtubules driven by a defined number of kinesin motors spaced in a definite manner. Gold (Au) nano-pillar arrays were fabricated on a silicon/silicon dioxide (Si/SiO2) substrate with spacings of 100 nm to 500 nm. The thiol-polyethylene glycol (PEG)-biotin self-assembled monolayer (SAM) and silane-PEG-CH3 SAM were then selectively formed on the pillars and SiO2 surface, respectively. This allowed for both immobilization of kinesin molecules on Au nano-pillars in a precise manner and repulsion of kinesins from the SiO2 surface. Using arrayed kinesin motors, we report that motor number and spacing do not influence the motility of microtubules driven by kinesin-1 motors. This assay platform is applicable to all kinds of biotinylated motors, allows the study of the effects of motor number and spacing, and is expected to reveal novel behaviors of motor proteins.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Suguru Ando
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
74
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
75
|
Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast. Sci Rep 2019; 9:7336. [PMID: 31089172 PMCID: PMC6517423 DOI: 10.1038/s41598-019-43774-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/01/2019] [Indexed: 02/03/2023] Open
Abstract
Bipolar mitotic spindles play a critical part in accurate chromosome segregation. During late mitosis, spindle microtubules undergo drastic elongation in a process called anaphase B. Two kinesin motors, Kinesin-5 and Kinesin-6, are thought to generate outward forces to drive spindle elongation, and the microtubule crosslinker Ase1/PRC1 maintains structural integrity of antiparallel microtubules. However, how these three proteins orchestrate this process remains unknown. Here we explore the functional interplay among fission yeast Kinesin-5/Cut7, Kinesin-6/Klp9 and Ase1. Using total internal reflection fluorescence microscopy, we show that Klp9 forms homotetramers and that Klp9 is a processive plus end-directed motor. klp9Δase1Δ is synthetically lethal. Surprisingly, this lethality is not ascribable to the defective motor activity of Klp9; instead, it is dependent upon a nuclear localisation signal and coiled coil domains within the non-motor region. We isolated a cut7 mutant (cut7-122) that displays temperature sensitivity only in the absence of Klp9. Interestingly, cut7-122 alone is impaired in spindle elongation during anaphase B, and furthermore, cut7-122klp9Δ double mutants exhibit additive defects. We propose that Klp9 plays dual roles during anaphase B; one is motor-dependent that collaborates with Cut7 in force generation, while the other is motor-independent that ensures structural integrity of spindle microtubules together with Ase1.
Collapse
|
76
|
Mechanically Distinct Microtubule Arrays Determine the Length and Force Response of the Meiotic Spindle. Dev Cell 2019; 49:267-278.e5. [DOI: 10.1016/j.devcel.2019.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
|
77
|
Gicking AM, Qiu W, Hancock WO. Mitotic kinesins in action: diffusive searching, directional switching, and ensemble coordination. Mol Biol Cell 2019; 29:1153-1156. [PMID: 29757705 PMCID: PMC5935065 DOI: 10.1091/mbc.e17-10-0612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitotic spindle assembly requires the collective action of multiple microtubule motors that coordinate their activities in ensembles. However, despite significant advances in our understanding of mitotic kinesins at the single-motor level, multi-motor systems are challenging to reconstitute in vitro and thus less well understood. Recent findings highlighted in this perspective demonstrate how various properties of kinesin-5 and -14 motors—diffusive searching, directional switching, and multivalent interactions—allow them to achieve their physiological roles of cross-linking parallel microtubules and sliding antiparallel ones during cell division. Additionally, we highlight new experimental techniques that will help bridge the gap between in vitro biophysical studies and in vivo cell biology investigations and provide new insights into how specific single-molecule mechanisms generate complex cellular behaviors.
Collapse
Affiliation(s)
- Allison M Gicking
- Department of Physics and, Oregon State University, Corvallis, OR 97331
| | - Weihong Qiu
- Department of Physics and, Oregon State University, Corvallis, OR 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802.,Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802
| |
Collapse
|
78
|
MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules. Sci Rep 2019; 9:3794. [PMID: 30846705 PMCID: PMC6405942 DOI: 10.1038/s41598-018-37767-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 11/11/2022] Open
Abstract
Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.
Collapse
|
79
|
Krüger LK, Sanchez JL, Paoletti A, Tran PT. Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast. eLife 2019; 8:42182. [PMID: 30806623 PMCID: PMC6391065 DOI: 10.7554/elife.42182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
The length of the mitotic spindle scales with cell size in a wide range of organisms during embryonic development. Interestingly, in C. elegans embryos, this goes along with temporal regulation: larger cells speed up spindle assembly and elongation. We demonstrate that, similarly in fission yeast, spindle length and spindle dynamics adjust to cell size, which allows to keep mitosis duration constant. Since prolongation of mitosis was shown to affect cell viability, this may resemble a mechanism to regulate mitosis duration. We further reveal how the velocity of spindle elongation is regulated: coupled to cell size, the amount of kinesin-6 Klp9 molecules increases, resulting in an acceleration of spindle elongation in anaphase B. In addition, the number of Klp9 binding sites to microtubules increases overproportionally to Klp9 molecules, suggesting that molecular crowding inversely correlates to cell size and might have an impact on spindle elongation velocity control.
Collapse
Affiliation(s)
| | | | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Phong Thanh Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
80
|
Uçar MC, Lipowsky R. Force sharing and force generation by two teams of elastically coupled molecular motors. Sci Rep 2019; 9:454. [PMID: 30679693 PMCID: PMC6345805 DOI: 10.1038/s41598-018-37126-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Many active cellular processes such as long-distance cargo transport, spindle organization, as well as flagellar and ciliary beating are driven by molecular motors. These motor proteins act collectively and typically work in small teams. One particularly interesting example is two teams of antagonistic motors that pull a common cargo into opposite directions, thereby generating mutual interaction forces. Important issues regarding such multiple motor systems are whether or not motors from the same team share their load equally, and how the collectively generated forces depend on the single motor properties. Here we address these questions by introducing a stochastic model for cargo transport by an arbitrary number of elastically coupled molecular motors. We determine the state space of this motor system and show that this space has a rather complex and nested structure, consisting of multiple activity states and a large number of elastic substates, even for the relatively small system of two identical motors working against one antagonistic motor. We focus on this latter case because it represents the simplest tug-of-war that involves force sharing between motors from the same team. We show that the most likely motor configuration is characterized by equal force sharing between identical motors and that the most likely separation of these motors corresponds to a single motor step. These likelihoods apply to different types of motors and to different elastic force potentials acting between the motors. Furthermore, these features are observed both in the steady state and during the initial build-up of elastic strains. The latter build-up is non-monotonic and exhibits a maximum at intermediate times, a striking consequence of mutual unbinding of the elastically coupled motors. Mutual strain-induced unbinding also reduces the magnitude of the collectively generated forces. Our computational approach is quite general and can be extended to other motor systems such as motor teams working against an optical trap or mixed teams of motors with different single motor properties.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| | - Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
81
|
Mann BJ, Wadsworth P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol 2019; 29:66-79. [DOI: 10.1016/j.tcb.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
82
|
Mann BJ, Wadsworth P. Distribution of Eg5 and TPX2 in mitosis: Insight from CRISPR tagged cells. Cytoskeleton (Hoboken) 2018; 75:508-521. [DOI: 10.1002/cm.21486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- B. J. Mann
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| | - P. Wadsworth
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
83
|
Elting MW, Suresh P, Dumont S. The Spindle: Integrating Architecture and Mechanics across Scales. Trends Cell Biol 2018; 28:896-910. [PMID: 30093097 PMCID: PMC6197898 DOI: 10.1016/j.tcb.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023]
Abstract
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally
| | - Pooja Suresh
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally
| | - Sophie Dumont
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Cellular & Molecular Pharmacology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
84
|
Wijeratne S, Subramanian R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 2018; 7:32595. [PMID: 30353849 PMCID: PMC6200392 DOI: 10.7554/elife.32595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends (‘end-tag’). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
Collapse
Affiliation(s)
- Sithara Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
85
|
Sherin L, Farwa S, Sohail A, Li Z, Bég OA. Cancer drug therapy and stochastic modeling of "nano-motors". Int J Nanomedicine 2018; 13:6429-6440. [PMID: 30410329 PMCID: PMC6198871 DOI: 10.2147/ijn.s168780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Controlled inhibition of kinesin motor proteins is highly desired in the field of oncology. Among other interventions, there exists “targeted chemotherapeutic regime/options” of selective Eg5 competitive and allosteric inhibitors, inducing cancer cell apoptosis and tumor regression with improved safety profiles. Research question Though promising, such studies are still under clinical trials, for the discovery of efficient and least harmful Eg5 inhibitors. The aim of this research was to bridge the computational modeling approach with drug design and therapy of cancer cells. Methods A computational model, interfaced with the clinical data of “Eg5 dynamics” and “inhibitors” via special functions, is presented in this article. Comparisons are made for the drug efficacy, and the threshold values are predicted through numerical simulations. Results Results are obtained to depict the dynamics induced by ispinesib, when used as an inhibitor of kinesin Eg5, on cancer cell lines.
Collapse
Affiliation(s)
- Lubna Sherin
- Department of Chemistry, COMSATS University Islamabad, Lahore 54000, Pakistan
| | - Shabieh Farwa
- Department of Mathematics, COMSATS University Islamabad, Wah Cantt, Pakistan
| | - Ayesha Sohail
- Department of Mathematics, COMSATS University Islamabad, Lahore 54000, Pakistan,
| | - Zhiwu Li
- Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau.,School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China
| | - O Anwar Bég
- Fluid Mechanics, Spray Research Group, Mechanical and Petroleum Engineering, School of Computing, Science and Engineering, G77, University of Salford, Manchester M54WT, UK
| |
Collapse
|
86
|
Liu M, Ran J, Zhou J. Non-canonical functions of the mitotic kinesin Eg5. Thorac Cancer 2018; 9:904-910. [PMID: 29927078 PMCID: PMC6068462 DOI: 10.1111/1759-7714.12792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023] Open
Abstract
Kinesins are widely expressed, microtubule-dependent motors that play vital roles in microtubule-associated cellular activities, such as cell division and intracellular transport. Eg5, also known as kinesin-5 or kinesin spindle protein, is a member of the kinesin family that contributes to the formation and maintenance of the bipolar mitotic spindle during cell division. Small-molecule compounds that inhibit Eg5 activity have been shown to impair spindle assembly, block mitotic progression, and possess anti-cancer activity. Recent studies focusing on the localization and functions of Eg5 in plants have demonstrated that in addition to spindle organization, this motor protein has non-canonical functions, such as chromosome segregation and cytokinesis, that have not been observed in animals. In this review, we discuss the structure, function, and localization of Eg5 in various organisms, highlighting the specific role of this protein in plants. We also propose directions for the future studies of novel Eg5 functions based on the lessons learned from plants.
Collapse
Affiliation(s)
- Min Liu
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jie Ran
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jun Zhou
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| |
Collapse
|
87
|
Reinemann DN, Norris SR, Ohi R, Lang MJ. Processive Kinesin-14 HSET Exhibits Directional Flexibility Depending on Motor Traffic. Curr Biol 2018; 28:2356-2362.e5. [PMID: 30017484 PMCID: PMC11009875 DOI: 10.1016/j.cub.2018.06.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
A common mitotic defect observed in cancer cells that possess supernumerary (more than two) centrosomes is multipolar spindle formation [1, 2]. Such structures are resolved into a bipolar geometry by minus-end-directed motor proteins, such as cytoplasmic dynein and the kinesin-14 HSET [3-8]. HSET is also thought to antagonize plus-end-directed kinesin-5 Eg5 to balance spindle forces [4, 5, 7, 9]. However, the biomechanics of this force opposition are unclear, as HSET has previously been defined as a non-processive motor [10-16]. Here, we use optical trapping to elucidate the mechanism of force generation by HSET. We show that a single HSET motor has a processive nature with the ability to complete multiple steps while trapped along a microtubule and when unloaded can move in both directions for microns. Compared to other kinesins, HSET has a relatively weak stall force of 1.1 pN [17, 18]. Moreover, HSET's tail domain and its interaction with the E-hook of tubulin are necessary for long-range motility. In vitro polarity-marked bundle assays revealed that HSET selectively generates force in anti-parallel bundles on the order of its stall force. When combined with varied ratios of Eg5, HSET adopts Eg5's directionality while acting as an antagonizing force brake, requiring at least a 10-fold higher Eg5 concentration to surpass HSET's sliding force. These results reveal HSET's ability to change roles within the spindle from acting as an adjustable microtubule slider and force regulator to a processive motor that aids in minus end focusing.
Collapse
Affiliation(s)
- Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology and LSI, University of Michigan School of Medicine, Ann Arbor, MI 48109-2216, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
88
|
Lüdecke A, Seidel AM, Braun M, Lansky Z, Diez S. Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules. Nat Commun 2018; 9:2214. [PMID: 29880831 PMCID: PMC5992172 DOI: 10.1038/s41467-018-04656-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/17/2018] [Indexed: 12/27/2022] Open
Abstract
Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact with one microtubule via their non-processive motor domains and with another via their diffusive tail domains, the latter allowing the protein to slip along the microtubule surface. Little is known about the influence of the tail domains on the protein's performance. Here, we show that diffusive anchorage of Ncd's tail domains impacts velocity and force considerably. Tail domain slippage reduced velocities from 270 nm s-1 to 60 nm s-1 and forces from several piconewtons to the sub-piconewton range. These findings challenge the notion that kinesin-14 may act as an antagonizer of other crosslinking motors, such as kinesin-5, during mitosis. It rather suggests a role of kinesin-14 as a flexible element, pliantly sliding and crosslinking microtubules to facilitate remodeling of the mitotic spindle.
Collapse
Affiliation(s)
- Annemarie Lüdecke
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany
| | - Anja-Maria Seidel
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany
| | - Marcus Braun
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. .,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| | - Zdenek Lansky
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. .,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| |
Collapse
|
89
|
McHugh T, Drechsler H, McAinsh AD, Carter NJ, Cross RA. Kif15 functions as an active mechanical ratchet. Mol Biol Cell 2018; 29:1743-1752. [PMID: 29771628 PMCID: PMC6080711 DOI: 10.1091/mbc.e18-03-0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kif15 is a kinesin-12 that contributes critically to bipolar spindle assembly in humans. Here we use force-ramp experiments in an optical trap to probe the mechanics of single Kif15 molecules under hindering or assisting loads and in a variety of nucleotide states. While unloaded Kif15 is established to be highly processive, we find that under hindering loads, Kif15 takes <∼10 steps. As hindering load is increased, Kif15 forestep:backstep ratio decreases exponentially, with stall occurring at 6 pN. In contrast, under assisting loads, Kif15 detaches readily and rapidly, even from its AMPPNP state. Kif15 mechanics thus depend markedly on the loading direction. Kif15 interacts with a binding partner, Tpx2, and we show that Tpx2 locks Kif15 to microtubules under both hindering and assisting loads. Overall, our data predict that Kif15 in the central spindle will act as a mechanical ratchet, supporting spindle extension but resisting spindle compression.
Collapse
Affiliation(s)
- Toni McHugh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Hauke Drechsler
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Nicolas J Carter
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
90
|
Abstract
Cell division involves mechanical processes, such as chromosome transport and centrosome separation. Quantitative micromanipulation-based approaches have been central to dissecting the forces driving these processes. We highlight two biophysical assays that can be employed for such analyses. First, an in vitro "mini-spindle" assay is described that can be used to examine the collective mechanics of mitotic motor proteins cross-linking two microtubules. In the spindle, motor proteins (e.g., kinesin-5, kinesin-14, and dynein) can localize to overlapping microtubules that slide relative to each other, work as an ensemble, and equilibrate between cytoplasm and the microtubules. The "mini-spindle" assay can recapitulate these features and allows measurements of forces generated between adjacent microtubules and their dependence on filament orientation, sliding speed, overlap length, and motor protein density. Second, we describe a force-calibrated microneedle-based "whole-spindle" micromechanics assay. Microneedle-based micromanipulation can be a useful technique to examine cellular scale mechanics, but its use has been restricted by the difficulty in getting probes to penetrate the plasma membrane without disrupting cell physiology. As detailed here, the use of cell-free extracts prepared from metaphase-arrested Xenopus eggs can address this limitation. These micromanipulation studies also benefit from the use of frozen stocks of Xenopus egg extract. Together, these approaches can be used to decipher how micromechanics and biochemical activities ensure successful cell division.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
91
|
Lv Z, Rosenbaum J, Aspelmeier T, Großhans J. A 'molecular guillotine' reveals the interphase function of Kinesin-5. J Cell Sci 2018; 131:jcs.210583. [PMID: 29361546 PMCID: PMC5826049 DOI: 10.1242/jcs.210583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
Motor proteins are important for transport and force generation in a variety of cellular processes and in morphogenesis. Here, we describe a general strategy for conditional motor mutants by inserting a protease cleavage site into the 'neck' between the head domain and the stalk of the motor protein, making the protein susceptible to proteolytic cleavage at the neck by the corresponding protease. To demonstrate the feasibility of this approach, we inserted the cleavage site of the tobacco etch virus (TEV) protease into the neck of the tetrameric motor Kinesin-5. Application of TEV protease led to a specific depletion and functional loss of Kinesin-5 in Drosophila embryos. With our approach, we revealed that Kinesin-5 stabilizes the microtubule network during interphase in syncytial embryos. The 'molecular guillotine' can potentially be applied to many motor proteins because Kinesins and myosins have conserved structures with accessible neck regions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Jan Rosenbaum
- Institute for Mathematical Stochastics and Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany
| | - Timo Aspelmeier
- Institute for Mathematical Stochastics and Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
92
|
Fallesen T, Roostalu J, Duellberg C, Pruessner G, Surrey T. Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement. Biophys J 2017; 113:2055-2067. [PMID: 29117528 PMCID: PMC5685778 DOI: 10.1016/j.bpj.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor.
Collapse
Affiliation(s)
- Todd Fallesen
- The Francis Crick Institute, Imperial College London, London, United Kingdom
| | - Johanna Roostalu
- The Francis Crick Institute, Imperial College London, London, United Kingdom
| | - Christian Duellberg
- The Francis Crick Institute, Imperial College London, London, United Kingdom
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | - Thomas Surrey
- The Francis Crick Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
93
|
Reinemann DN, Sturgill EG, Das DK, Degen MS, Vörös Z, Hwang W, Ohi R, Lang MJ. Collective Force Regulation in Anti-parallel Microtubule Gliding by Dimeric Kif15 Kinesin Motors. Curr Biol 2017; 27:2810-2820.e6. [PMID: 28918951 PMCID: PMC5909953 DOI: 10.1016/j.cub.2017.08.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022]
Abstract
During cell division, the mitotic kinesin-5 Eg5 generates most of the force required to separate centrosomes during spindle assembly. However, Kif15, another mitotic kinesin, can replace Eg5 function, permitting mammalian cells to acquire resistance to Eg5 poisons. Unlike Eg5, the mechanism by which Kif15 generates centrosome separation forces is unknown. Here we investigated the mechanical properties and force generation capacity of Kif15 at the single-molecule level using optical tweezers. We found that the non-motor microtubule-binding tail domain interacts with the microtubule's E-hook tail with a rupture force higher than the stall force of the motor. This allows Kif15 dimers to productively and efficiently generate forces that could potentially slide microtubules apart. Using an in vitro optical trapping and fluorescence assay, we found that Kif15 slides anti-parallel microtubules apart with gradual force buildup while parallel microtubule bundles remain stationary with a small amount of antagonizing force generated. A stochastic simulation shows the essential role of Kif15's tail domain for load storage within the Kif15-microtubule system. These results suggest a mechanism for how Kif15 rescues bipolar spindle assembly.
Collapse
Affiliation(s)
- Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emma G Sturgill
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dibyendu Kumar Das
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Miriam Steiner Degen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zsuzsanna Vörös
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wonmuk Hwang
- Departments of Biomedical Engineering and Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology and LSI, University of Michigan School of Medicine, Ann Arbor, MI 48109-2216, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
94
|
Goldstein A, Siegler N, Goldman D, Judah H, Valk E, Kõivomägi M, Loog M, Gheber L. Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell Mol Life Sci 2017; 74:3395-3412. [PMID: 28455557 PMCID: PMC11107736 DOI: 10.1007/s00018-017-2523-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
The bipolar kinesin-5 motors perform essential functions in mitotic spindle dynamics. We previously demonstrated that phosphorylation of at least one of the Cdk1 sites in the catalytic domain of the Saccharomyces cerevisiae kinesin-5 Cin8 (S277, T285, S493) regulates its localization to the anaphase spindle. The contribution of these three sites to phospho-regulation of Cin8, as well as the timing of such contributions, remains unknown. Here, we examined the function and spindle localization of phospho-deficient (serine/threonine to alanine) and phospho-mimic (serine/threonine to aspartic acid) Cin8 mutants. In vitro, the three Cdk1 sites undergo phosphorylation by Clb2-Cdk1. In cells, phosphorylation of Cin8 affects two aspects of its localization to the anaphase spindle, translocation from the spindle-pole bodies (SPBs) region to spindle microtubules (MTs) and the midzone, and detachment from the mitotic spindle. We found that phosphorylation of S277 is essential for the translocation of Cin8 from SPBs to spindle MTs and the subsequent detachment from the spindle. Phosphorylation of T285 mainly affects the detachment of Cin8 from spindle MTs during anaphase, while phosphorylation at S493 affects both the translocation of Cin8 from SPBs to the spindle and detachment from the spindle. Only S493 phosphorylation affected the anaphase spindle elongation rate. We conclude that each phosphorylation site plays a unique role in regulating Cin8 functions and postulate a model in which the timing and extent of phosphorylation of the three sites orchestrates the anaphase function of Cin8.
Collapse
Affiliation(s)
- Alina Goldstein
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Nurit Siegler
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Darya Goldman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Haim Judah
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mardo Kõivomägi
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
95
|
Coordinated force generation of skeletal myosins in myofilaments through motor coupling. Nat Commun 2017; 8:16036. [PMID: 28681850 PMCID: PMC5504292 DOI: 10.1038/ncomms16036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
In contrast to processive molecular motors, skeletal myosins form a large motor ensemble for contraction of muscles against high loads. Despite numerous information on the molecular properties of skeletal myosin, its ensemble effects on collective force generation have not been rigorously clarified. Here we show 4 nm stepwise actin displacements generated by synthetic myofilaments beyond a load of 30 pN, implying that steps cannot be driven exclusively by single myosins, but potentially by coordinated force generations among multiple myosins. The simulation model shows that stepwise actin displacements are primarily caused by coordinated force generation among myosin molecules. Moreover, the probability of coordinated force generation can be enhanced against high loads by utilizing three factors: strain-dependent kinetics between force-generating states; multiple power stroke steps; and high ATP concentrations. Compared with other molecular motors, our findings reveal how the properties of skeletal myosin are tuned to perform cooperative force generation for efficient muscle contraction. Skeletal muscle myosin forms large ensembles to generate force against high loads. Using optical tweezers and simulation Kaya et al. provide experimental evidence for cooperative force generation, and describe how the molecular properties of skeletal myosins are tuned for coordinated power strokes.
Collapse
|
96
|
Mooney P, Sulerud T, Pelletier J, Dilsaver M, Tomschik M, Geisler C, Gatlin JC. Tau-based fluorescent protein fusions to visualize microtubules. Cytoskeleton (Hoboken) 2017; 74:221-232. [PMID: 28407416 PMCID: PMC5592782 DOI: 10.1002/cm.21368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin- and microtubule (MT)-dependent phenomena such as cell motility, cell division, and mitosis. Here, we describe a novel set of fluorescent protein (FP) fusions designed specifically to visualize MTs in living systems using fluorescence microscopy. Each fusion contains a FP module linked in frame to a modified phospho-deficient version of the MT-binding domain of Tau (mTMBD). We found that expressed and purified constructs containing a single mTMBD decorated Xenopus egg extract spindles more homogenously than similar constructs containing the MT-binding domain of Ensconsin, suggesting that the binding affinity of mTMBD is minimally affected by localized signaling gradients generated during mitosis. Furthermore, MT dynamics were not grossly perturbed by the presence of Tau-based FP fusions. Interestingly, the addition of a second mTMBD to the opposite terminus of our construct caused dramatic changes to the spatial localization of probes within spindles. These results support the use of Tau-based FP fusions as minimally perturbing tools to accurately visualize MTs in living systems.
Collapse
Affiliation(s)
- Paul Mooney
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - Taylor Sulerud
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - James Pelletier
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA,
02115, USA
| | - Matthew Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | - Miroslav Tomschik
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | | | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| |
Collapse
|
97
|
Forth S, Kapoor TM. The mechanics of microtubule networks in cell division. J Cell Biol 2017; 216:1525-1531. [PMID: 28490474 PMCID: PMC5461028 DOI: 10.1083/jcb.201612064] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
Forth and Kapoor review the mechanical properties of the spindle microtubule network during cell division. The primary goal of a dividing somatic cell is to accurately and equally segregate its genome into two new daughter cells. In eukaryotes, this process is performed by a self-organized structure called the mitotic spindle. It has long been appreciated that mechanical forces must be applied to chromosomes. At the same time, the network of microtubules in the spindle must be able to apply and sustain large forces to maintain spindle integrity. Here we consider recent efforts to measure forces generated within microtubule networks by ensembles of key proteins. New findings, such as length-dependent force generation, protein clustering by asymmetric friction, and entropic expansion forces will help advance models of force generation needed for spindle function and maintaining integrity.
Collapse
Affiliation(s)
- Scott Forth
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
98
|
Chen GY, Kang YJ, Gayek AS, Youyen W, Tüzel E, Ohi R, Hancock WO. Eg5 Inhibitors Have Contrasting Effects on Microtubule Stability and Metaphase Spindle Integrity. ACS Chem Biol 2017; 12:1038-1046. [PMID: 28165699 DOI: 10.1021/acschembio.6b01040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To uncover their contrasting mechanisms, antimitotic drugs that inhibit Eg5 (kinesin-5) were analyzed in mixed-motor gliding assays of kinesin-1 and Eg5 motors in which Eg5 "braking" dominates motility. Loop-5 inhibitors (monastrol, STLC, ispinesib, and filanesib) increased gliding speeds, consistent with inducing a weak-binding state in Eg5, whereas BRD9876 slowed gliding, consistent with locking Eg5 in a rigor state. Biochemical and single-molecule assays demonstrated that BRD9876 acts as an ATP- and ADP-competitive inhibitor with 4 nM KI. Consistent with its microtubule polymerase activity, Eg5 was shown to stabilize microtubules against depolymerization. This stabilization activity was eliminated in monastrol but was enhanced by BRD9876. Finally, in metaphase-arrested RPE-1 cells, STLC promoted spindle collapse, whereas BRD9876 did not. Thus, different Eg5 inhibitors impact spindle assembly and architecture through contrasting mechanisms, and rigor inhibitors may paradoxically have the capacity to stabilize microtubule arrays in cells.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- Department
of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - You Jung Kang
- Department
of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - A. Sophia Gayek
- Department
of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Wiphu Youyen
- Department
of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Erkan Tüzel
- Department
of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Ryoma Ohi
- Department
of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - William O. Hancock
- Department
of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
99
|
Fong KK, Sarangapani KK, Yusko EC, Riffle M, Llauró A, Graczyk B, Davis TN, Asbury CL. Direct measurement of the strength of microtubule attachment to yeast centrosomes. Mol Biol Cell 2017; 28:1853-1861. [PMID: 28331072 PMCID: PMC5541836 DOI: 10.1091/mbc.e17-01-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
Laser trapping is used to manipulate single attached microtubules in vitro. Direct mechanical measurement shows that attachment of microtubule minus ends to yeast spindle pole bodies is extraordinarily strong. Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB–microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB–microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB–microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Krishna K Sarangapani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Aida Llauró
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Beth Graczyk
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
100
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|