51
|
Bracey KM, Ho KH, Yampolsky D, Gu G, Kaverina I, Holmes WR. Microtubules Regulate Localization and Availability of Insulin Granules in Pancreatic Beta Cells. Biophys J 2019; 118:193-206. [PMID: 31839261 DOI: 10.1016/j.bpj.2019.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022] Open
Abstract
Two key prerequisites for glucose-stimulated insulin secretion (GSIS) in β cells are the proximity of insulin granules to the plasma membrane and their anchoring or docking to the plasma membrane (PM). Although recent evidence has indicated that both of these factors are altered in the context of diabetes, it is unclear what regulates localization of insulin granules and their interactions with the PM within single cells. Here, we demonstrate that microtubule (MT)-motor-mediated transport dynamics have a critical role in regulating both factors. Super-resolution imaging shows that whereas the MT cytoskeleton resembles a random meshwork in the cells' interior, MTs near the cell surface are preferentially aligned with the PM. Computational modeling suggests two consequences of this alignment. First, this structured MT network preferentially withdraws granules from the PM. Second, the binding and transport of insulin granules by MT motors prevents their stable anchoring to the PM. These findings suggest the MT cytoskeleton may negatively regulate GSIS by both limiting the amount of insulin proximal to the PM and preventing or breaking interactions between the PM and the remaining nearby insulin granules. These results predict that altering MT network structure in β cells can be used to tune GSIS. Thus, our study points to the potential of an alternative therapeutic strategy for diabetes by targeting specific MT regulators.
Collapse
Affiliation(s)
| | | | - Dmitry Yampolsky
- Vanderbilt University, Nashville, Tennessee; University of Massachusetts Boston, Boston, Massachusetts
| | | | | | | |
Collapse
|
52
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
53
|
Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic β Cells. Curr Biol 2019; 29:2339-2350.e5. [PMID: 31303487 DOI: 10.1016/j.cub.2019.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/23/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022]
Abstract
The microtubule (MT) network is an essential regulator of insulin secretion from pancreatic β cells, which is central to blood-sugar homeostasis. We find that when glucose metabolism induces insulin secretion, it also increases formation of Golgi-derived microtubules (GDMTs), notably with the same biphasic kinetics as insulin exocytosis. Furthermore, GDMT nucleation is controlled by a glucose signal-transduction pathway through cAMP and its effector EPAC2. Preventing new GDMT nucleation dramatically affects the pipeline of insulin production, storage, and release. There is an overall reduction of β-cell insulin content, and remaining insulin becomes retained within the Golgi, likely because of stalling of insulin-granule budding. While not preventing glucose-induced insulin exocytosis, the diminished granule availability substantially blunts the amount secreted. Constant dynamic maintenance of the GDMT network is therefore critical for normal β-cell physiology. Our study demonstrates that the biogenesis of post-Golgi carriers, particularly large secretory granules, requires ongoing nucleation and replenishment of the GDMT network.
Collapse
|
54
|
Fu J, Githaka JM, Dai X, Plummer G, Suzuki K, Spigelman AF, Bautista A, Kim R, Greitzer-Antes D, Fox JEM, Gaisano HY, MacDonald PE. A glucose-dependent spatial patterning of exocytosis in human β-cells is disrupted in type 2 diabetes. JCI Insight 2019; 5:127896. [PMID: 31085831 DOI: 10.1172/jci.insight.127896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Impaired insulin secretion in type 2 diabetes (T2D) is linked to reduced insulin granule docking, disorganization of the exocytotic site, and an impaired glucose-dependent facilitation of insulin exocytosis. We show in β-cells from 80 human donors that the glucose-dependent amplification of exocytosis is disrupted in T2D. Spatial analyses of granule fusion, visualized by total internal reflection fluorescence (TIRF) microscopy in 24 of these donors, demonstrate that these are non-random across the surface of β-cells from donors with no diabetes (ND). The compartmentalization of events occurs within regions defined by concurrent or recent membrane-resident secretory granules. This organization, and the number of membrane-associated granules, is glucose-dependent and notably impaired in T2D β-cells. Mechanistically, multi-channel Kv2.1 clusters contribute to maintaining the density of membrane-resident granules and the number of fusion 'hotspots', while SUMOylation sites at the channel N- (K145) and C-terminus (K470) determine the relative proportion of fusion events occurring within these regions. Thus, a glucose-dependent compartmentalization of fusion, regulated in part by a structural role for Kv2.1, is disrupted in β-cells from donors with type 2 diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute and Department of Pharmacology and
| | | | - Xiaoqing Dai
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Gregory Plummer
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Kunimasa Suzuki
- Alberta Diabetes Institute and Department of Pharmacology and
| | | | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
55
|
Holmes WR. Subdiffusive Dynamics Lead to Depleted Particle Densities near Cellular Borders. Biophys J 2019; 116:1538-1546. [PMID: 30954212 DOI: 10.1016/j.bpj.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
It has long been known that the complex cellular environment leads to anomalous motion of intracellular particles. At a gross level, this is characterized by mean-squared displacements that deviate from the standard linear profile. Statistical analysis of particle trajectories has helped further elucidate how different characteristics of the cellular environment can introduce different types of anomalousness. A significant majority of this literature has, however, focused on characterizing the properties of trajectories that do not interact with cell borders (e.g., cell membrane or nucleus). Numerous biological processes ranging from protein activation to exocytosis, however, require particles to be near a membrane. This study investigates the consequences of a canonical type of subdiffusive motion, fractional Brownian motion, and its physical analog, generalized Langevin equation dynamics, on the spatial localization of particles near reflecting boundaries. Results show that this type of subdiffusive motion leads to the formation of significant zones of depleted particle density near boundaries and that this effect is independent of the specific model details encoding those dynamics. Rather, these depletion layers are a natural and robust consequence of the anticorrelated nature of motion increments that is at the core of fractional Brownian motion (or alternatively generalized Langevin equation) dynamics. If such depletion zones are present, it would be of profound importance given the wide array of signaling and transport processes that occur near membranes. If not, that would suggest our understanding of this type of anomalous motion may be flawed. Either way, this result points to the need to further investigate the consequences of anomalous particle motions near cell borders from both theoretical and experimental perspectives.
Collapse
Affiliation(s)
- William R Holmes
- Department of Pysics and Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Mathematics, Vanderbilt University, Nashville, Tennessee; Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
56
|
Stancill JS, Osipovich AB, Cartailler JP, Magnuson MA. Transgene-associated human growth hormone expression in pancreatic β-cells impairs identification of sex-based gene expression differences. Am J Physiol Endocrinol Metab 2019; 316:E196-E209. [PMID: 30532991 PMCID: PMC6397359 DOI: 10.1152/ajpendo.00229.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Fluorescent protein reporter genes are widely used to identify and sort murine pancreatic β-cells. In this study, we compared use of the MIP-GFP transgene, which exhibits aberrant expression of human growth hormone (hGH), with a newly derived Ins2Apple allele that lacks hGH expression on the expression of sex-specific genes. β-Cells from MIP-GFP transgenic mice exhibit changes in the expression of 7,733 genes, or greater than half of their transcriptome, compared with β-cells from Ins2Apple/+ mice. To determine how these differences might affect a typical differential gene expression study, we analyzed the effect of sex on gene expression using both reporter lines. Six hundred fifty-seven differentially expressed genes were identified between male and female β-cells containing the Ins2Apple allele. Female β-cells exhibit higher expression of Xist, Tmed9, Arpc3, Eml2, and several islet-enriched transcription factors, including Nkx2-2 and Hnf4a, whereas male β-cells exhibited a generally higher expression of genes involved in cell cycle regulation. In marked contrast, the same male vs. female comparison of β-cells containing the MIP-GFP transgene revealed only 115 differentially expressed genes, and comparison of the 2 lists of differentially expressed genes revealed only 17 that were common to both analyses. These results indicate that 1) male and female β-cells differ in their expression of key transcription factors and cell cycle regulators and 2) the MIP-GFP transgene may attenuate sex-specific differences that distinguish male and female β-cells, thereby impairing the identification of sex-specific variations.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| | | | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
57
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
58
|
Gavilan MP, Gandolfo P, Balestra FR, Arias F, Bornens M, Rios RM. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep 2018; 19:embr.201845942. [PMID: 30224411 DOI: 10.15252/embr.201845942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.
Collapse
Affiliation(s)
- Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Gandolfo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R Balestra
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Arias
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | | | - Rosa M Rios
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
59
|
Petrenko V, Philippe J, Dibner C. Time zones of pancreatic islet metabolism. Diabetes Obes Metab 2018; 20 Suppl 2:116-126. [PMID: 30230177 DOI: 10.1111/dom.13383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022]
Abstract
Most living beings possess an intrinsic system of circadian oscillators, allowing anticipation of the Earth's rotation around its own axis. The mammalian circadian timing system orchestrates nearly all aspects of physiology and behaviour. Together with systemic signals originating from the central clock that resides in the hypothalamic suprachiasmatic nucleus, peripheral oscillators orchestrate tissue-specific fluctuations in gene transcription and translation, and posttranslational modifications, driving overt rhythms in physiology and behaviour. There is accumulating evidence of a reciprocal connection between the circadian oscillator and most aspects of physiology and metabolism, in particular as the circadian system plays a critical role in orchestrating body glucose homeostasis. Recent reports imply that circadian clocks operative in the endocrine pancreas regulate insulin secretion, and that islet clock perturbation in rodents leads to the development of overt type 2 diabetes. While whole islet clocks have been extensively studied during the last years, the heterogeneity of islet cell oscillators and the interplay between α- and β-cellular clocks for orchestrating glucagon and insulin secretion have only recently gained attention. Here, we review recent findings on the molecular makeup of the circadian clocks operative in pancreatic islet cells in rodents and in humans, and focus on the physiologically relevant synchronizers that are resetting these time-keepers. Moreover, the implication of islet clock functional outputs in the temporal coordination of metabolism in health and disease will be highlighted.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Jacques Philippe
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
60
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
61
|
Huang C, Walker EM, Dadi PK, Hu R, Xu Y, Zhang W, Sanavia T, Mun J, Liu J, Nair GG, Tan HYA, Wang S, Magnuson MA, Stoeckert CJ, Hebrok M, Gannon M, Han W, Stein R, Jacobson DA, Gu G. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca 2+ Sensitivity of Insulin Secretion Vesicles. Dev Cell 2018; 45:347-361.e5. [PMID: 29656931 PMCID: PMC5962294 DOI: 10.1016/j.devcel.2018.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca2+ concentrations, suggesting differences in the Ca2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca2+ binding paralog of the β cell Ca2+ sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca2+ sensing plays in regulating β cell maturation.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Wenjian Zhang
- China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Tiziana Sanavia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jisoo Mun
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Jennifer Liu
- Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | | | - Hwee Yim Angeline Tan
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Singapore, Singapore
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Christian J Stoeckert
- Institute for Biomedical Informatics and Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Maureen Gannon
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Singapore, Singapore
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA.
| |
Collapse
|
62
|
Bharadwaj P, Wijesekara N, Liyanapathirana M, Newsholme P, Ittner L, Fraser P, Verdile G. The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins. J Alzheimers Dis 2018; 59:421-432. [PMID: 28269785 DOI: 10.3233/jad-161192] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wealth of evidence indicates a strong link between type 2 diabetes (T2D) and neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanism remains unclear, T2D can exacerbate neurodegenerative processes. Brain atrophy, reduced cerebral glucose metabolism, and central nervous system insulin resistance are features of both AD and T2D. The T2D phenotype (glucose dyshomeostasis, insulin resistance, impaired insulin signaling) also promotes AD pathology, namely accumulation of amyloid-β (Aβ) and hyperphosphorylated tau and can induce other aspects of neuronal degeneration including inflammatory and oxidative processes. Aβ and hyperphosphorylated tau may also have roles in pancreatic β-cell dysfunction and in reducing insulin sensitivity and glucose uptake by peripheral tissues such as liver, skeletal muscle, and adipose tissue. This suggests a role for these AD-related proteins in promoting T2D. The accumulation of the islet amyloid polypeptide (IAPP, or amylin) within islet β-cells is a major pathological feature of the pancreas in patients with chronic T2D. Co-secreted with insulin, amylin accumulates over time and contributes to β-cell toxicity, ultimately leading to reduced insulin secretion and onset of overt (insulin dependent) diabetes. Recent evidence also suggests that this protein accumulates in the brain of AD patients and may interact with Aβ to exacerbate the neurodegenerative process. In this review, we highlight evidence indicating T2D in promoting Aβ and tau mediated neurodegeneration and the potential contributions of Aβ and tau in promoting a diabetic phenotype that could further exacerbate neurodegeneration. We also discuss underlying mechanisms by which amylin can contribute to the neurodegenerative processes.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, WA, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, WA, Australia
| | - Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Milindu Liyanapathirana
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, WA, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, WA, Australia
| | - Lars Ittner
- School of Medical Sciences, University of NSW, Kensington, NSW, Australia
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, WA, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Australia
| |
Collapse
|
63
|
The role of adherens junction proteins in the regulation of insulin secretion. Biosci Rep 2018; 38:BSR20170989. [PMID: 29459424 PMCID: PMC5861323 DOI: 10.1042/bsr20170989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
In healthy individuals, any rise in blood glucose levels is rapidly countered by the release of insulin from the β-cells of the pancreas which in turn promotes the uptake and storage of the glucose in peripheral tissues. The β-cells possess exquisite mechanisms regulating the secretion of insulin to ensure that the correct amount of insulin is released. These mechanisms involve tight control of the movement of insulin containing secretory vesicles within the β-cells, initially preventing most vesicles being able to move to the plasma membrane. Elevated glucose levels trigger an influx of Ca2+ that allows fusion of the small number of insulin containing vesicles that are pre-docked at the plasma membrane but glucose also stimulates processes that allow other insulin containing vesicles located further in the cell to move to and fuse with the plasma membrane. The mechanisms controlling these processes are complex and not fully understood but it is clear that the interaction of the β-cells with other β-cells in the islets is very important for their ability to develop the appropriate machinery for proper regulation of insulin secretion. Emerging evidence indicates one factor that is key for this is the formation of homotypic cadherin mediated adherens junctions between β-cells. Here, we review the evidence for this and discuss the mechanisms by which these adherens junctions might regulate insulin vesicle trafficking as well as the implications this has for understanding the dysregulation of insulin secretion seen in pathogenic states.
Collapse
|
64
|
Wijesekara N, Gonçalves RA, Ahrens R, De Felice FG, Fraser PE. Tau ablation in mice leads to pancreatic β cell dysfunction and glucose intolerance. FASEB J 2018; 32:3166-3173. [DOI: 10.1096/fj.201701352] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of Toronto Toronto Ontario Canada
| | - Rafaella Araujo Gonçalves
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| | - Rosemary Ahrens
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of Toronto Toronto Ontario Canada
| | - Fernanda G. De Felice
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of Toronto Toronto Ontario Canada
- Department of Biomedical and Molecular SciencesCentre for Neuroscience StudiesQueen's University Kingston Ontario Canada
| |
Collapse
|
65
|
Abstract
The eukaryotic cell's microtubule cytoskeleton is a complex 3D filament network. Microtubules cross at a wide variety of separation distances and angles. Prior studies in vivo and in vitro suggest that cargo transport is affected by intersection geometry. However, geometric complexity is not yet widely appreciated as a regulatory factor in its own right, and mechanisms that underlie this mode of regulation are not well understood. We have used our recently reported 3D microtubule manipulation system to build filament crossings de novo in a purified in vitro environment and used them to assay kinesin-1-driven model cargo navigation. We found that 3D microtubule network geometry indeed significantly influences cargo routing, and in particular that it is possible to bias a cargo to pass or switch just by changing either filament spacing or angle. Furthermore, we captured our experimental results in a model which accounts for full 3D geometry, stochastic motion of the cargo and associated motors, as well as motor force production and force-dependent behavior. We used a combination of experimental and theoretical analysis to establish the detailed mechanisms underlying cargo navigation at microtubule crossings.
Collapse
|
66
|
Abstract
Objective Actin cytoskeleton remodeling is necessary for glucose-stimulated insulin secretion in pancreatic β-cells. A mechanistic understanding of actin dynamics in the islet is paramount to a better comprehension of β-cell dysfunction in diabetes. Here, we investigate the Rho GTPase regulator Stard13 and its role in F-actin cytoskeleton organization and islet function in adult mice. Methods We used Lifeact-EGFP transgenic animals to visualize actin cytoskeleton organization and dynamics in vivo in the mouse islets. Furthermore, we applied this model to study actin cytoskeleton and insulin secretion in mutant mice deleted for Stard13 selectively in pancreatic cells. We isolated transgenic islets for 3D-imaging and perifusion studies to measure insulin secretion dynamics. In parallel, we performed histological and morphometric analyses of the pancreas and used in vivo approaches to study glucose metabolism in the mouse. Results In this study, we provide the first genetic evidence that Stard13 regulates insulin secretion in response to glucose. Postnatally, Stard13 expression became restricted to the mouse pancreatic islets. We showed that Stard13 deletion results in a marked increase in actin polymerization in islet cells, which is accompanied by severe reduction of insulin secretion in perifusion experiments. Consistently, Stard13-deleted mice displayed impaired glucose tolerance and reduced glucose-stimulated insulin secretion. Conclusions Taken together, our results suggest a previously unappreciated role for the RhoGAP protein Stard13 in the interplay between actin cytoskeletal remodeling and insulin secretion. Lifeact-EGFP mice allow in vivo labeling of the actin cytoskeleton in islets. The RhoGAP Stard13 regulates actin cytoskeleton organization in mouse islets. Stard13 deficiency hampers glucose-induced insulin secretion by mouse β-cells.
Collapse
|
67
|
Sanders AAWM, Chang K, Zhu X, Thoppil RJ, Holmes WR, Kaverina I. Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi. Mol Biol Cell 2017; 28:3181-3192. [PMID: 28931596 PMCID: PMC5687021 DOI: 10.1091/mbc.e17-06-0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023] Open
Abstract
Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites.
Collapse
Affiliation(s)
- Anna A W M Sanders
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Kevin Chang
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Xiaodong Zhu
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Roslin J Thoppil
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - William R Holmes
- Physics and Astronomy, Vanderbilt University, Nashville, TN 37240
| | - Irina Kaverina
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
68
|
Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development 2017; 144:3012-3021. [PMID: 28851722 DOI: 10.1242/dev.153171] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several decades, numerous studies have greatly expanded our knowledge about how microtubule organization and dynamics are controlled in cultured cells in vitro However, our understanding of microtubule dynamics and functions in vivo, in differentiated cells and tissues, remains under-explored. Recent advances in generating genetic tools and imaging technologies to probe microtubules in situ, coupled with an increased interest in the functions of this cytoskeletal network in differentiated cells, are resulting in a renaissance. Here, we discuss the lessons learned from such approaches, which have revealed that, although some differentiated cells utilize conserved strategies to remodel microtubules, there is considerable diversity in the underlying molecular mechanisms of microtubule reorganization. This highlights a continued need to explore how differentiated cells regulate microtubule geometry in vivo.
Collapse
Affiliation(s)
- Andrew Muroyama
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
69
|
Müller A, Mziaut H, Neukam M, Knoch KP, Solimena M. A 4D view on insulin secretory granule turnover in the β-cell. Diabetes Obes Metab 2017; 19 Suppl 1:107-114. [PMID: 28880479 DOI: 10.1111/dom.13015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/31/2023]
Abstract
Insulin secretory granule (SG) turnover consists of several highly regulated processes allowing for proper β-cell function and insulin secretion. Besides the spatial distribution of insulin SGs, their age has great impact on the likelihood of their secretion and their behaviour within the β-cell. While quantitative measurements performed decades ago demonstrated the preferential secretion of young insulin, new experimental approaches aim to investigate insulin ageing at the granular level. Live-cell imaging, automated image analysis and correlative light and electron microscopy have fostered knowledge of age-defined insulin SG dynamics, their interaction with the cytoskeleton and ultrastructural features. Here, we review our recent work in regards to the connection between insulin SG age, SG dynamics, intracellular location and interaction with other proteins.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hassan Mziaut
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| |
Collapse
|
70
|
Wijesekara N, Ahrens R, Sabale M, Wu L, Ha K, Verdile G, Fraser PE. Amyloid-β and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model. FASEB J 2017; 31:5409-5418. [PMID: 28808140 DOI: 10.1096/fj.201700431r] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) present a significant risk to each other. AD and T2D are characterized by deposition of cerebral amyloid-β (Aβ) and pancreatic human islet amyloid polypeptide (hIAPP), respectively. We investigated the role of amyloidogenic proteins in the interplay between these diseases. A novel double transgenic mouse model combining T2D and AD was generated and characterized. AD-related amyloid transgenic mice coexpressing hIAPP displayed peripheral insulin resistance, hyperglycemia, and glucose intolerance. Aβ and IAPP amyloid co-deposition increased tau phosphorylation, and a reduction in pancreatic β-cell mass was detected in islets. Increased brain Aβ deposition and tau phosphorylation and reduced insulin levels and signaling were accompanied by extensive synaptic loss and decreased neuronal counts. Aβ immunization rescued the peripheral insulin resistance and hyperglycemia, suggesting a role for Aβ in T2D pathogenesis for individuals predisposed to AD. These findings demonstrate that Aβ and IAPP are key factors in the overlapping pathologies of AD and T2D.-Wijesekara, N., Ahrens, R., Sabale, M., Wu, L., Ha, K., Verdile, G., Fraser, P. E. Amyloid-β and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada;
| | - Rosemary Ahrens
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Miheer Sabale
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Kathy Ha
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
71
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
72
|
Houtz J, Borden P, Ceasrine A, Minichiello L, Kuruvilla R. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion. Dev Cell 2017; 39:329-345. [PMID: 27825441 DOI: 10.1016/j.devcel.2016.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/15/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction.
Collapse
Affiliation(s)
- Jessica Houtz
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Philip Borden
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Alexis Ceasrine
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
73
|
Vaahtomeri K, Brown M, Hauschild R, De Vries I, Leithner AF, Mehling M, Kaufmann WA, Sixt M. Locally Triggered Release of the Chemokine CCL21 Promotes Dendritic Cell Transmigration across Lymphatic Endothelia. Cell Rep 2017; 19:902-909. [PMID: 28467903 PMCID: PMC5437727 DOI: 10.1016/j.celrep.2017.04.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 01/29/2023] Open
Abstract
Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration.
Collapse
Affiliation(s)
- Kari Vaahtomeri
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Wihuri Research Institute and Translational Cancer Biology Program, Research Program Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Markus Brown
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ingrid De Vries
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexander Franz Leithner
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matthias Mehling
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Walter Anton Kaufmann
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
74
|
Gachon F, Loizides-Mangold U, Petrenko V, Dibner C. Glucose Homeostasis: Regulation by Peripheral Circadian Clocks in Rodents and Humans. Endocrinology 2017; 158:1074-1084. [PMID: 28324069 DOI: 10.1210/en.2017-00218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
Abstract
Most organisms, including humans, have developed an intrinsic system of circadian oscillators, allowing the anticipation of events related to the rotation of Earth around its own axis. The mammalian circadian timing system orchestrates nearly all aspects of physiology and behavior. Together with systemic signals, emanating from the central clock that resides in the hypothalamus, peripheral oscillators orchestrate tissue-specific fluctuations in gene expression, protein synthesis, and posttranslational modifications, driving overt rhythms in physiology and behavior. There is increasing evidence on the essential roles of the peripheral oscillators, operative in metabolically active organs in the regulation of body glucose homeostasis. Here, we review some recent findings on the molecular and cellular makeup of the circadian timing system and its implications in the temporal coordination of metabolism in health and disease.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Loizides-Mangold
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
75
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
76
|
Phelps EA, Cianciaruso C, Santo-Domingo J, Pasquier M, Galliverti G, Piemonti L, Berishvili E, Burri O, Wiederkehr A, Hubbell JA, Baekkeskov S. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep 2017; 7:45961. [PMID: 28401888 PMCID: PMC5388888 DOI: 10.1038/srep45961] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
A robust and reproducible method for culturing monolayers of adherent and well-spread primary islet cells on glass coverslips is required for detailed imaging studies by super-resolution and live-cell microscopy. Guided by an observation that dispersed islet cells spread and adhere well on glass surfaces in neuronal co-culture and form a monolayer of connected cells, we demonstrate that in the absence of neurons, well-defined surface coatings combined with components of neuronal culture media collectively support robust attachment and growth of primary human or rat islet cells as monolayers on glass surfaces. The islet cell monolayer cultures on glass stably maintain distinct mono-hormonal insulin+, glucagon+, somatostatin+ and PP+ cells and glucose-responsive synchronized calcium signaling as well as expression of the transcription factors Pdx-1 and NKX-6.1 in beta cells. This technical advance enabled detailed observation of sub-cellular processes in primary human and rat beta cells by super-resolution microscopy. The protocol is envisaged to have broad applicability to sophisticated analyses of pancreatic islet cells that reveal new biological insights, as demonstrated by the identification of an in vitro protocol that markedly increases proliferation of primary beta cells and is associated with a reduction in ciliated, ostensibly proliferation-suppressed beta cells.
Collapse
Affiliation(s)
- Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Gabriele Galliverti
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lorenzo Piemonti
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, CH-1211 Geneva, Switzerland
| | - Olivier Burri
- BioImaging and Optics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
77
|
Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 2017; 47:43-51. [PMID: 28390244 DOI: 10.1016/j.ceb.2017.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles required for a variety of cellular processes. Its vital functions include not only processing and sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the cellular state or environmental demands and stress. For instance, its most dramatic change takes place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be detached and positioned at specific cellular locations to gain additional functionalities during differentiation, or fragmented to different degrees along disease progression or upon cell death. Here, we describe the major morphological alterations of Golgi ribbon disassembly under physiological and pathological conditions and discuss the underlying mechanisms that drive these changes.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
78
|
Petrenko V, Saini C, Giovannoni L, Gobet C, Sage D, Unser M, Heddad Masson M, Gu G, Bosco D, Gachon F, Philippe J, Dibner C. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Genes Dev 2017; 31:383-398. [PMID: 28275001 PMCID: PMC5358758 DOI: 10.1101/gad.290379.116] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023]
Abstract
Here, Petrenko et al. present the first integrative analysis of the molecular properties of circadian clocks in α and β pancreatic cells and provide new insights into the complex regulation of islet cell physiology at transcriptional and functional levels. A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and β-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and β-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and β cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and β-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Camille Saini
- Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Laurianne Giovannoni
- Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Cedric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, EPFL, CH-1015 Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, EPFL, CH-1015 Lausanne, Switzerland
| | - Mounia Heddad Masson
- Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37240, USA
| | - Domenico Bosco
- Department of Surgery, Cell Isolation and Transplantation Centre, University Hospital of Geneva, CH-1211 Geneva, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jacques Philippe
- Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland
| | - Charna Dibner
- Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
79
|
Petrenko V, Gosmain Y, Dibner C. High-Resolution Recording of the Circadian Oscillator in Primary Mouse α- and β-Cell Culture. Front Endocrinol (Lausanne) 2017; 8:68. [PMID: 28439257 PMCID: PMC5383706 DOI: 10.3389/fendo.2017.00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/24/2017] [Indexed: 01/14/2023] Open
Abstract
Circadian clocks have been developed in evolution as an anticipatory mechanism allowing for adaptation to the constantly changing light environment due to rotation of the Earth. This mechanism is functional in all light-sensitive organisms. There is a considerable body of evidence on the tight connection between the circadian clock and most aspects of physiology and metabolism. Clocks, operative in the pancreatic islets, have caught particular attention in the last years due to recent reports on their critical roles in regulation of insulin secretion and etiology of type 2 diabetes. While β-cell clocks have been extensively studied during the last years, α-cell clocks and their role in islet function and orchestration of glucose metabolism stayed unexplored, largely due to the difficulty to isolate α-cells, which represents a considerable technical challenge. Here, we provide a detailed description of an experimental approach for the isolation of separate mouse α- and β-cell population, culture of isolated primary α- and β-cells, and their subsequent long-term high-resolution circadian bioluminescence recording. For this purpose, a triple reporter ProGlucagon-Venus/RIP-Cherry/Per2:Luciferase mouse line was established, carrying specific fluorescent reporters for α- and β-cells, and luciferase reporter for monitoring the molecular clockwork. Flow cytometry fluorescence-activated cell sorting allowed separating pure α- and β-cell populations from isolated islets. Experimental conditions, developed by us for the culture of functional primary mouse α- and β-cells for at least 10 days, will be highlighted. Importantly, temporal analysis of freshly isolated α- and β-cells around-the-clock revealed preserved rhythmicity of core clock genes expression. Finally, we describe the setting to assess circadian rhythm in cultured α- and β-cells synchronized in vitro. The here-described methodology allows to analyze the functional properties of primary α- and β-cells under physiological or pathophysiological conditions and to assess the islet cellular clock properties.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Endocrinology, Diabetes, Hypertension and Nutrition Division, Department of Specialties of Medicine, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yvan Gosmain
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Molecular Diabetes Laboratory, Endocrinology, Diabetes, Hypertension and Nutrition Division, Faculty of Medicine, Department of Specialties of Medicine, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Endocrinology, Diabetes, Hypertension and Nutrition Division, Department of Specialties of Medicine, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Charna Dibner,
| |
Collapse
|
80
|
Wu J, de Heus C, Liu Q, Bouchet B, Noordstra I, Jiang K, Hua S, Martin M, Yang C, Grigoriev I, Katrukha E, Altelaar A, Hoogenraad C, Qi R, Klumperman J, Akhmanova A. Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 2016; 39:44-60. [DOI: 10.1016/j.devcel.2016.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/23/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
|
81
|
Yokawa S, Furuno T, Suzuki T, Inoh Y, Suzuki R, Hirashima N. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells. Cell Biochem Biophys 2016; 74:391-8. [DOI: 10.1007/s12013-016-0737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023]
|
82
|
Sanders AAWM, Kaverina I. Nucleation and Dynamics of Golgi-derived Microtubules. Front Neurosci 2015; 9:431. [PMID: 26617483 PMCID: PMC4639703 DOI: 10.3389/fnins.2015.00431] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Integrity of the Golgi apparatus requires the microtubule (MT) network. A subset of MTs originates at the Golgi itself, which in this case functions as a MT-organizing center (MTOC). Golgi-derived MTs serve important roles in post-Golgi trafficking, maintenance of Golgi integrity, cell polarity and motility, as well as cell type-specific functions, including neurite outgrowth/branching. Here, we discuss possible models describing the formation and dynamics of Golgi-derived MTs. How Golgi-derived MTs are formed is not fully understood. A widely discussed model implicates that the critical step of the process is recruitment of molecular factors, which drive MT nucleation (γ-tubulin ring complex, or γ-TuRC), to the Golgi membrane via specific scaffolding interactions. Based on recent findings, we propose to introduce an additional level of regulation, whereby MT-binding proteins and/or local tubulin dimer concentration at the Golgi helps to overcome kinetic barriers at the initial nucleation step. According to our model, emerging MTs are subsequently stabilized by Golgi-associated MT-stabilizing proteins. We discuss molecular factors potentially involved in all three steps of MT formation. To preserve proper cell functioning, a balance must be maintained between MT subsets at the centrosome and the Golgi. Recent work has shown that certain centrosomal factors are important in maintaining this balance, suggesting a close connection between regulation of centrosomal and Golgi-derived MTs. Finally, we will discuss potential functions of Golgi-derived MTs based on their nucleation site location within a Golgi stack.
Collapse
Affiliation(s)
- Anna A W M Sanders
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|