51
|
Li Q, Sun Y, Jarugumilli GK, Liu S, Dang K, Cotton JL, Xiol J, Chan PY, DeRan M, Ma L, Li R, Zhu LJ, Li JH, Leiter AB, Ip YT, Camargo FD, Luo X, Johnson RL, Wu X, Mao J. Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell 2020; 26:675-692.e8. [PMID: 32259481 DOI: 10.1016/j.stem.2020.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.
Collapse
Affiliation(s)
- Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shun Liu
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jordi Xiol
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Pui Yee Chan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael DeRan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Ma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joyce H Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy L Johnson
- Division of Basic Science Research, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
52
|
Jia M, Xiong Y, Li M, Mao Q. Corosolic Acid Inhibits Cancer Progress Through Inactivating YAP in Hepatocellular Carcinoma. Oncol Res 2020; 28:371-383. [PMID: 32220262 PMCID: PMC7851517 DOI: 10.3727/096504020x15853075736554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is critical for the treatment of hepatocellular carcinoma (HCC). Despite the proapoptotic effects of corosolic acid (CA) treatment, its underlying mechanism is not completely clear. The aim of this study was to determine the molecular mechanism of CA in HCC treatment. MTT assay was used to determine the IC50 of CA. Immunoprecipitation and immunofluorescence were used to detect the interaction and subcellular localization of Yes-associated protein (YAP) and mouse double minute 2 (MDM2). In addition, in vivo xenotransplantation was performed to assess the effects of CA, YAP, and MDM2 on tumorigenesis. The IC50 of CA was about 40 μM in different HCC cell lines, and CA decreased YAP expression by reducing its stability and increasing its ubiquitination. CA treatment and MDM2 overexpression significantly decreased the crosstalk between YAP and cAMP-responsive element-binding protein (CREB), TEA domain transcription factor (TEAD), and Runt-related transcription factor 2 (Runx2). CA stimulation promoted the translocation of YAP and MDM2 from the nucleus to the cytoplasm and increased their binding. In addition, CA treatment obviously reduced tumorigenesis, whereas this effect was abolished when cells were transfected with sh-MDM2 or Vector-YAP. The present study uncovered that CA induced cancer progress repression through translocating YAP from the nucleus in HCC, which might provide a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Ming Jia
- Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingP.R. China
| | - Yulin Xiong
- Department of Laboratory, The Fourth Medical Center of PLA General HospitalBeijingP.R. China
| | - Maoshi Li
- Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingP.R. China
| | - Qing Mao
- Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingP.R. China
| |
Collapse
|
53
|
Zou R, Xu Y, Feng Y, Shen M, Yuan F, Yuan Y. YAP nuclear‐cytoplasmic translocation is regulated by mechanical signaling, protein modification, and metabolism. Cell Biol Int 2020; 44:1416-1425. [DOI: 10.1002/cbin.11345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rong Zou
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yahui Xu
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| |
Collapse
|
54
|
Astudillo P. Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol 2020; 8:110. [PMID: 32195251 PMCID: PMC7064718 DOI: 10.3389/fcell.2020.00110] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains an important health challenge, accounting for a significant number of cancer-related deaths worldwide. Therefore, a deeper understanding of the molecular mechanisms involved in gastric cancer establishment and progression is highly desirable. The Wnt pathway plays a fundamental role in development, homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion and migration, although the molecular mechanisms explaining these roles have not been fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric cancer cell lines seem to exhibit little expression of this ligand, thus raising the question about the source of this ligand in vivo. This review summarizes available research about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a promotes invasion and migration by modulating integrin adhesion turnover. Disheveled, a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related effects of Wnt5a in gastric cancer cells, and several studies provide growing support for a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer cells, such as cell survival and induction of gene expression. On the other hand, the available evidence suggests that Wnt5a might be expressed by cells residing in the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion and signaling might be established. This review analyzes the possible functions of Wnt5a in this pathological context and discusses potential links to mechanosensing and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
55
|
SETD7 promotes TNF-α-induced proliferation and migration of airway smooth muscle cells in vitro through enhancing NF-κB/CD38 signaling. Int Immunopharmacol 2020; 72:459-466. [PMID: 31035088 DOI: 10.1016/j.intimp.2019.04.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/27/2019] [Accepted: 04/19/2019] [Indexed: 11/21/2022]
Abstract
The inflammation-induced the excessive proliferation and migration of airway smooth muscle (ASM) cells in the airway wall contribute to airway remodeling in asthma pathogenesis. SET domain-containing lysine methyltransferase 7 (SETD7) has emerged as one of the key regulators of inflammation. Yet, the function of SETD7 in regulating inflammation-induced ASM cell proliferation and invasion remains unclear. In the present study, we aimed to investigate the function of SETD7 in regulating ASM cell proliferation and invasion induced by tumor necrosis factor (TNF)-α in vitro. Our results showed that SETD7 expression was upregulated in ASM cells stimulated with TNF-α. Silencing SETD7 significantly decreased TNF-α-induced ASM cell proliferation and migration, while SETD7 overexpression exhibited the opposite effect. Notably, silencing SETD7 decreased the activation of nuclear factor (NF)-κB and reduced the expression of CD38 induced by TNF-α. Blocking NF-κB activation significantly abrogated the promotional effect of SETD7 overexpression on CD38 expression. Moreover, overexpression of CD38 partially reversed the inhibitory effect of SETD7 silencing on TNF-α-induced ASM cell proliferation and migration. Overall, these results demonstrate that SETD7 regulates TNF-α-induced ASM cell proliferation and migration through modulation of NF-κB/CD38 signaling, suggesting a potential role of SETD7 in asthma airway remodeling.
Collapse
|
56
|
Zhao M, Wang K, Shang J, Liang Z, Zheng W, Gu J. MiR-345-5p inhibits tumorigenesis of papillary thyroid carcinoma by targeting SETD7. Arch Med Sci 2020; 16:888-897. [PMID: 32542092 PMCID: PMC7286325 DOI: 10.5114/aoms.2019.83823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION This study aimed to explore the effects of miR-345-5p on papillary thyroid carcinoma (PTC) and uncover the possible mechanisms. MATERIAL AND METHODS MiR-345-5p and SETD7 mRNA levels were analyzed by quantitative real-time PCR and SETD7 protein level was measured by Western blot. The viability, colony formation ability and apoptosis of PTC cells were measured with CCK-8, soft agar colony formation and flow cytometry assay, respectively. Luciferase reporter assay was used to identify miR-345-5p's target. RESULTS Compared to neighboring normal tissues, there was lower miR-345-5p expression and higher SETD7 expression in PTC tissues. Moreover, Spearman's correlation analysis indicated that there was a negative correlation between miR-345-5p and SETD7 expression in PTC tissues. MiR-345-5p mimics inhibited the viability and colony formation of TPC1 and B-CPAP cells and promoted apoptosis, whereas anti-miR-345-5p promoted PTC cell proliferation and inhibited apoptosis. SETD7 was confirmed to be a direct target of miR-345-5p through target scan analysis and luciferase reporter assay. Additionally, overexpression of SETD7 promoted the viability and colony formation of TPC1 and B-CPAP cells and inhibited apoptosis, whereas downregulation of SETD7 by shRNAs had opposite effects on PTC cells. Furthermore, overexpression of SETD7 attenuated the miR-345-5p induced anti-tumor effects on PTC cells. CONCLUSIONS MiR-345-5p exhibited suppressive effects on PTC via targeting SETD7.
Collapse
Affiliation(s)
| | - Kejing Wang
- Corresponding author: Kejing Wang, Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China, Phone: +86 571 88122233, Fax: +86 571 88122233, E-mail:
| | | | | | | | | |
Collapse
|
57
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
58
|
Yang X, Li Y, Zheng L, He X, Luo Y, Huang K, Xu W. Glucose-regulated protein 75 in foodborne disease models induces renal tubular necrosis. Food Chem Toxicol 2019; 133:110720. [DOI: 10.1016/j.fct.2019.110720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023]
|
59
|
García de Herreros A, Duñach M. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells 2019; 8:cells8101148. [PMID: 31557964 PMCID: PMC6829497 DOI: 10.3390/cells8101148] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022] Open
Abstract
In contrast to non-canonical ligands, canonical Wnts promote the stabilization of β-catenin, which is a prerequisite for formation of the TCF4/β-catenin transcriptional complex and activation of its target genes. This pathway is initiated by binding of Wnt ligands to the Frizzled/LRP5/6 receptor complex, and it increases the half-life of β-catenin by precluding the phosphorylation of β-catenin by GSK3 and its binding to the βTrCP1 ubiquitin ligase. Other intercellular signals are also activated by Wnt ligands that do not inhibit GSK3 and increase β-catenin protein but that either facilitate β-catenin transcriptional activity or stimulate other transcriptional factors that cooperate with it. In this review, we describe the layers of complexity of these signals and discuss their crosstalk with β-catenin in activation of transcriptional targets.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
60
|
Soshnikova N. Functions of SETD7 during development, homeostasis and cancer. Stem Cell Investig 2019; 6:26. [PMID: 31620473 DOI: 10.21037/sci.2019.06.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Natalia Soshnikova
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
61
|
Holtan SG, Shabaneh A, Betts BC, Rashidi A, MacMillan ML, Ustun C, Amin K, Vaughn BP, Howard J, Khoruts A, Arora M, DeFor TE, Johnson D, Blazar BR, Weisdorf DJ, Wang J. Stress responses, M2 macrophages, and a distinct microbial signature in fatal intestinal acute graft-versus-host disease. JCI Insight 2019; 5:129762. [PMID: 31393854 DOI: 10.1172/jci.insight.129762] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Steroid-refractory intestinal acute graft-versus-host disease (aGVHD) is a frequently fatal condition with little known about mechanisms driving failed steroid responses in gut mucosa. To uncover novel molecular insights in steroid-refractory aGVHD, we compared gene expression profiles of rectosigmoid biopsies from patients at diagnosis of clinical stage 3-4 lower intestinal aGVHD (N=22), to repeat biopsies when the patients became steroid refractory (N=22), and normal controls (N=10). We also performed single gene analyses of factors associated with tolerance (programmed death ligand-1 [PDL1], indoleamine 2,3 dioxygenase [IDO1], and T cell immunoreceptor with Ig and ITIM domains [TIGIT]) and found that significantly higher expression levels of these aGVHD inhibitory genes (PDL1, IDO1, TIGIT) at aGVHD onset became decreased in the steroid-refractory state. We examined genes triggered by microbial ligands to stimulate gut repair, amphiregulin (AREG) and the aryl hydrocarbon receptor (AhR), and found that both AREG and AhR gene expression levels were increased at aGVHD onset and remained elevated in steroid-refractory aGVHD. We also identified higher expression levels of metallothioneines, metal-binding enzymes induced in stress responses, and M2 macrophage genes in steroid-refractory aGVHD. We observed no differences in T-cell subsets between onset and steroid-refractory aGVHD. Patients with a rapidly fatal course showed greater DNA damage and a distinct microbial signature at aGVHD onset, whereas patients with more prolonged survival exhibited a gene expression profile consistent with activation of Smoothened. Our results extend the paradigm beyond T cell-centric therapies for steroid-refractory GI aGVHD and highlight new mechanisms for therapeutic exploration.
Collapse
Affiliation(s)
| | | | - Brian C Betts
- Blood and Marrow Transplant Program, Department of Medicine
| | - Armin Rashidi
- Blood and Marrow Transplant Program, Department of Medicine
| | - Margaret L MacMillan
- Blood and Marrow Transplant Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Celalletin Ustun
- Rush University Blood and Marrow Transplant Program, Chicago, Illinois, USA
| | | | | | - Justin Howard
- Division of Gastroenterology, Department of Medicine
| | | | - Mukta Arora
- Blood and Marrow Transplant Program, Department of Medicine
| | | | | | - Bruce R Blazar
- Blood and Marrow Transplant Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jinhua Wang
- Cancer Bioinformatics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
62
|
Levy D. Lysine methylation signaling of non-histone proteins in the nucleus. Cell Mol Life Sci 2019; 76:2873-2883. [PMID: 31123776 PMCID: PMC11105312 DOI: 10.1007/s00018-019-03142-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Lysine methylation, catalyzed by protein lysine methyltransferases (PKMTs), is a central post-translational modification regulating many signaling pathways. It has direct and indirect effects on chromatin structure and transcription. Accumulating evidence suggests that dysregulation of PKMT activity has a fundamental impact on the development of many pathologies. While most of these works involve in-depth analysis of methylation events in the context of histones, in recent years, it has become evident that methylation of non-histone proteins also plays a pivotal role in cell processes. This review highlights the importance of non-histone methylation, with focus on methylation events taking place in the nucleus. Known experimental platforms which were developed to identify new methylation events, as well as examples of specific lysine methylation signaling events which regulate key transcription factors, are presented. In addition, the role of these methylation events in normal and disease states is emphasized.
Collapse
Affiliation(s)
- Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beersheba, Israel.
| |
Collapse
|
63
|
Wang S, Ma K, Zhou C, Wang Y, Hu G, Chen L, Li Z, Hu C, Xu Q, Zhu H, Liu M, Xu N. LKB1 and YAP phosphorylation play important roles in Celastrol-induced β-catenin degradation in colorectal cancer. Ther Adv Med Oncol 2019; 11:1758835919843736. [PMID: 31040884 PMCID: PMC6477772 DOI: 10.1177/1758835919843736] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
Wnt/β-catenin and Hippo pathways play essential roles in the tumorigenesis and
development of colorectal cancer. We found that Celastrol, isolated from
Tripterygium wilfordii plant, exerted a significant
inhibitory effect on colorectal cancer cell growth in vitro and
in vivo, and further unraveled the molecular mechanisms.
Celastrol induced β-catenin degradation through phosphorylation of
Yes-associated protein (YAP), a major downstream effector of Hippo pathway, and
also Celastrol-induced β-catenin degradation was dependent on liver kinase B1
(LKB1). Celastrol increased the transcriptional activation of LKB1, partially
through the heat shock factor 1 (HSF1). Moreover, LKB1 activated AMP-activated
protein kinase α (AMPKα) and further phosphorylated YAP, which eventually
promoted the degradation of β-catenin. In addition, LKB1 deficiency promoted
colorectal cancer cell growth and attenuated the inhibitory effect of Celastrol
on colorectal cancer growth both in vitro and in
vivo. Taken together, Celastrol inhibited colorectal cancer cell
growth by promoting β-catenin degradation via the
HSF1–LKB1–AMPKα–YAP pathway. These results suggested that Celastrol may
potentially serve as a future drug for colorectal cancer treatment.
Collapse
Affiliation(s)
- Shuren Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuiqi Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanghui Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 PanjiayuanNanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, P. R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 PanjiayuanNanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, P. R. China State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
| |
Collapse
|
64
|
Ou H, Chen Z, Xiang L, Fang Y, Xu Y, Liu Q, Hu Z, Li X, Huang Y, Yang D. Frizzled 2-induced epithelial-mesenchymal transition correlates with vasculogenic mimicry, stemness, and Hippo signaling in hepatocellular carcinoma. Cancer Sci 2019; 110:1169-1182. [PMID: 30677195 PMCID: PMC6447835 DOI: 10.1111/cas.13949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/21/2022] Open
Abstract
Prior observation has indicated that Frizzled 2 (FZD2)‐induced epithelial‐mesenchymal transition (EMT) could be a key step in metastasis and early recurrence of hepatocellular carcinoma (HCC). However, the mechanism underlying tumor development and progression due to aberrant FZD2 expression is poorly defined. Here, we provide evidence that FZD2 is a driver for EMT, cancer stem cell properties, and vasculogenic mimicry (VM) in HCC. We found that FZD2 was highly expressed in two cohorts of Chinese hepatitis B virus‐related HCC patients, and that high FZD2 expression was associated with poor prognosis. Concerning the mechanism, gain‐ and loss‐of‐function experiments showed the oncogenic action of FZD2 in HCC cell proliferation, apoptosis, migration, and invasion. Further investigations in vitro and in vivo suggested that FZD2 promotes the EMT process, enhances stem‐like properties, and confers VM capacity to HCC cells. Notably, integrative RNA sequencing analysis of FZD2‐knockdown cells indicated the enrichment of Hippo signaling pathway. Taken together, our data suggest for the first time that FZD2 could promote clinically relevant EMT, CD44+ stem‐like properties, and the VM phenotype in HCC involving a potential Hippo signaling pathway‐dependent mechanism, and should be considered as a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Huohui Ou
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhanjun Chen
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yinghao Fang
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyan Xu
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qin Liu
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhigang Hu
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xianghong Li
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yu Huang
- Department of Laboratory Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
65
|
Slow Your Roll: Inhibiting SETD7 Activity Permits Ex Vivo Expansion of Muscle Stem Cells. Cell Stem Cell 2019; 22:146-147. [PMID: 29395050 DOI: 10.1016/j.stem.2018.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muscle stem cell regenerative capacity is rapidly lost during ex vivo culture. In this issue of Cell Stem Cell, Judson et al. (2018) show that inhibition of cytoplasmic SETD7, a lysine methyltransferase, potently expands naive, undifferentiated mouse and human muscle stem cells by restricting their progression through the myogenic program.
Collapse
|
66
|
Duan B, Bai J, Qiu J, Wang J, Tong C, Wang X, Miao J, Li Z, Li W, Yang J, Huang C. Histone-lysine N-methyltransferase SETD7 is a potential serum biomarker for colorectal cancer patients. EBioMedicine 2018; 37:134-143. [PMID: 30361067 PMCID: PMC6284455 DOI: 10.1016/j.ebiom.2018.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
Background There is an urgent need for the identification of new, clinically useful biomarkers of CRC to enhance diagnostic and prognostic capabilities. Methods We performed proteomic profiling on serum samples from paired pre- and post-operative CRC patients, colorectal polyps patients and healthy controls using an approach combining magnetic bead-based weak cation exchange and matrix-assisted laser desorption ionization-time of flight mass spectrometry. We next performed liquid chromatography-electrospray ionization-tandem mass spectrometry to identify the proteins and selected potential biomarker based on bioinformatics analysis of the TCGA and GEO dataset. We examined SETD7 expression in serum and tissue samples by ELISA and immunohistochemistry respectively and explored the biological function of SETD7 in vitro. Findings 85 differentially expressed peptides were identified. Five peptides showing the most significant changes in abundance across paired pre- and post-operation CRC patients, colorectal polyps patients and healthy controls were identified as peptide regions of FGA, MUC5AC and SETD7. Bioinformatics analysis suggested that the up-regulation of SETD7 in CRC is relatively specific. Validation studies showed that SETD7 expression increased from healthy controls to those with colorectal polyps and finally CRC patients, and decreased after surgery. The sensitivity and specificity of SETD7 were 92.17% and 81.08%, with a high diagnostic value (AUC = 0.9477). In addition, SETD7 expression was significantly correlated with tumor stage and microsatellite instability. Knockdown of SETD7 inhibited cancer cell proliferation, induced G1/S cell cycle arrest and increased apoptosis. Interpretation Our data indicate that SETD7 could serve as a potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Baojun Duan
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, China; Department of Medical Oncology of Shaanxi Provincial People's Hospital, Shaanxi, Xi'an 710068, China
| | - Jun Bai
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Shaanxi, Xi'an 710068, China
| | - Jian Qiu
- Department of General Surgery of Shaanxi Provincial People's Hospital, Shaanxi, Xi'an 710068, China
| | - Jianhua Wang
- Department of General Surgery of Shaanxi Provincial People's Hospital, Shaanxi, Xi'an 710068, China
| | - Cong Tong
- Department of General Surgery of Shaanxi Provincial People's Hospital, Shaanxi, Xi'an 710068, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, China
| | - Jiyu Miao
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an 710004, China
| | - Wensheng Li
- Department of Pathology of Shaanxi Provincial People's Hospital, Shaanxi, Xi'an 710068, China
| | - Juan Yang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, China.
| | - Chen Huang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, China.
| |
Collapse
|
67
|
Dang Y, Ma X, Li Y, Hao Q, Xie Y, Zhang Q, Zhang F, Qi X. Inhibition of SETD7 protects cardiomyocytes against hypoxia/reoxygenation-induced injury through regulating Keap1/Nrf2 signaling. Biomed Pharmacother 2018; 106:842-849. [DOI: 10.1016/j.biopha.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 12/25/2022] Open
|
68
|
Yang C, Xu W, Meng X, Zhou S, Zhang M, Cui D. SCC-S2 Facilitates Tumor Proliferation and Invasion via Activating Wnt Signaling and Depressing Hippo Signaling in Colorectal Cancer Cells and Predicts Poor Prognosis of Patients. J Histochem Cytochem 2018; 67:65-75. [PMID: 30216108 DOI: 10.1369/0022155418799957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SCC-S2 overexpression has been implicated in several human cancers, its correlation with prognosis and the mechanism how it reserved biological roles are still uncertain. The current study demonstrated that, in 142 archived colorectal carcinoma (CRC) tissue samples, SCC-S2 expression was significantly correlated with higher histological grade ( p=0.001), tumor invasion ( p=0.001), advanced Dukes staging ( p=0.002), positive regional lymph node metastasis ( p=0.024), and poor overall survival ( p<0.001). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Transwell assays showed that SCC-S2 significantly promoted the proliferation and invasion. SCC-S2 expression was also accompanied by the overexpression CyclinD1, matrix metalloproteinase-7 (MMP-7), active-β-catenin, yes-associated protein (YAP), and connective tissue growth factor (CTGF), as well as the depression of p-large tumor suppressor kinase 1 (p-LATS1) and p-YAP. Moreover, SCC-S2 interacted and colocalized with LATS1, the interaction may interrupt Hippo signaling and thereafter activate canonical Wnt signaling. In conclusion, our data suggested that SCC-S2 was associated with the progression and unfavorable prognosis of CRCs. Meanwhile, SCC-S2 facilitated canonical Wnt signaling and its downstream effectors (CyclinD1, MMP-7) and promoted tumor proliferation and invasion, which depended on the inhibition of Hippo signaling induced by SCC-S2-LATS1 interaction. These results indicated that SCC-S2 might be used as a novel target for the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiangzhen Meng
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Siqi Zhou
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Minglu Zhang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dongxu Cui
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
69
|
Oshima H, Kok SY, Nakayama M, Murakami K, Voon DCC, Kimura T, Oshima M. Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis. FASEB J 2018; 33:1873-1886. [PMID: 30156908 PMCID: PMC6338624 DOI: 10.1096/fj.201801176r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signal transducer and activator of transcription 3 (Stat3) has been shown to play a role in intestinal regeneration and colitis-associated colon carcinogenesis. However, the role of Stat3 in the Wnt-driven sporadic intestinal tumorigenesis remains poorly understood. We examined the roles of Stat3 in intestinal regeneration and tumorigenesis by organoid culture experiments using Stat3∆IEC mouse–derived intestinal epithelial cells in which Stat3 was disrupted. The regeneration of intestinal mucosa and organoid formation were significantly suppressed by Stat3 disruption, which was compensated by Wnt activation. Furthermore, once organoids were recovered, Stat3 was no longer required for organoid growth. These results indicate that Stat3 and Wnt signaling cooperatively protect epithelial cells at the early phase of intestinal regeneration. In contrast, intestinal tumorigenesis was not suppressed by Stat3 disruption in adenomatous polyposis coli (Apc)Δ716 and Apc∆716 Tgfbr2∆IEC mice, thus indicating that Stat3 is not required for Wnt activation–driven intestinal tumorigenesis. Mechanistically, Itga5 and Itga6 were down-regulated by Stat3 disruption, and focal adhesion kinase (FAK) activation was also suppressed. Notably, FAK inhibitor suppressed the organoid formation of wild-type epithelial cells. These results indicate that Stat3 is indispensable for the survival of epithelial cells through the activation of integrin signaling and the downstream FAK pathway; however, it is not required for the Wnt signaling-activated normal or tumor epithelial cells.—Oshima, H., Kok, S.-Y., Nakayama, M., Murakami, K., Voon, D. C.-C., Kimura, T., Oshima, M. Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,World Premier International Research Center Initiative (WPI) Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Sau-Yee Kok
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,World Premier International Research Center Initiative (WPI) Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | | | - Dominic Chih-Cheng Voon
- Cancer Research Core, Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kanazawa, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,World Premier International Research Center Initiative (WPI) Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
70
|
YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 2018; 20:888-899. [PMID: 30050119 DOI: 10.1038/s41556-018-0142-z] [Citation(s) in RCA: 678] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Cell behaviour is strongly influenced by physical, mechanical contacts between cells and their extracellular matrix. We review how the transcriptional regulators YAP and TAZ integrate mechanical cues with the response to soluble signals and metabolic pathways to control multiple aspects of cell behaviour, including proliferation, cell plasticity and stemness essential for tissue regeneration. Corruption of cell-environment interplay leads to aberrant YAP and TAZ activation that is instrumental for multiple diseases, including cancer.
Collapse
|
71
|
WIPF1 antagonizes the tumor suppressive effect of miR-141/200c and is associated with poor survival in patients with PDAC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:167. [PMID: 30041660 PMCID: PMC6056910 DOI: 10.1186/s13046-018-0848-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
Background Aberrant expression of Wiskott–Aldrich syndrome protein interacting protein family member 1 (WIPF1) contributes to the invasion and metastasis of several malignancies. However, the role of WIPF1 in human pancreatic ductal adenocarcinoma (PDAC) remains poorly understood. Methods Human pancreatic cancer samples from PDAC patients were collected for methylation analysis. Bioinformatic prediction program and luciferase reporter assay were used to identify microRNAs regulating WIPF1 expression. The association between WIPF1 expression and the overall survival (OS) of patients with PDAC was evaluated by using The Cancer Genome Atlas (TCGA) database. The roles of miR-141/200c and WIPF1 on the invasion and metastasis of PDAC cells were investigated both in vitro and in vivo. Results We found that compared to the surrounding non-cancerous tissues, there was significantly increased methylation of miR-200c and miR-141 in human PDAC tissues that resulted in their silencing, whereas the members of the other cluster of miR-200 family including miR-200a, miR-200b and miR-429 were hypomethylated. Our data show that forced expression of miR-141 or miR-200c suppressed invasion and metastasis of PDAC cells both in vitro and in xenograft and identified WIPF1 as a direct target of miR-141 and miR-200c. Both miR-141 and miR-200c inhibit WIPF1 by directly interacting with its 3′-untranslated region. Remarkably, silencing of WIPF1 blocked PDAC growth and metastasis both in vitro and in vivo, whereas forced WIPF1 overexpression antagonized the tumor suppressive effect of miR-141/200c. Additionally, by using TCGA database we showed that high expression of WIPF1 correlated with poor survival in patients with PDAC. Moreover, we show that miR-141 and miR-200c blocked YAP/TAZ expression by suppressing WIPF1. Conclusions We have identified WIPF1 as an oncoprotein in PDAC and a direct target of miR-141/miR-200c. We have also defined the miR-141/200c-WIPF1-YAP/TAZ as a novel signaling pathway that is involved in the regulation of the invasion and metastasis of human PDAC cells. Electronic supplementary material The online version of this article (10.1186/s13046-018-0848-6) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther 2018; 3:19. [PMID: 30013796 PMCID: PMC6043541 DOI: 10.1038/s41392-018-0017-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferases have been shown to methylate histone and non-histone proteins, leading to regulation of several biological processes that control cell homeostasis. Over the past few years, the histone-lysine N-methyltransferase SETD7 (SETD7; also known as SET7/9, KIAA1717, KMT7, SET7, SET9) has emerged as an important regulator of at least 30 non-histone proteins and a potential target for the treatment of several human diseases. This review discusses current knowledge of the structure and subcellular localization of SETD7, as well as its function as a histone and non-histone methyltransferase. This work also underlines the putative contribution of SETD7 to the regulation of gene expression, control of cell proliferation, differentiation and endoplasmic reticulum stress, which indicate that SETD7 is a candidate for novel targeted therapies with the aim of either stimulating or inhibiting its activity, depending on the cell signaling context.
Collapse
|
73
|
Hamidi T, Singh AK, Veland N, Vemulapalli V, Chen J, Hardikar S, Bao J, Fry CJ, Yang V, Lee KA, Guo A, Arrowsmith CH, Bedford MT, Chen T. Identification of Rpl29 as a major substrate of the lysine methyltransferase Set7/9. J Biol Chem 2018; 293:12770-12780. [PMID: 29959229 DOI: 10.1074/jbc.ra118.002890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/11/2018] [Indexed: 11/06/2022] Open
Abstract
Set7/9 (also known as Set7, Set9, Setd7, and Kmt7) is a lysine methyltransferase that catalyzes the methylation of multiple substrates, including histone H3 and non-histone proteins. Although not essential for normal development and physiology, Set7/9-mediated methylation events play important roles in regulating cellular pathways involved in various human diseases, making Set7/9 a promising therapeutic target. Multiple Set7/9 inhibitors have been developed, which exhibit varying degrees of potency and selectivity in vitro However, validation of these compounds in vivo has been hampered by the lack of a reliable cellular biomarker for Set7/9 activity. Here, we report the identification of Rpl29, a ribosomal protein abundantly expressed in all cell types, as a major substrate of Set7/9. We show that Rpl29 lysine 5 (Rpl29K5) is methylated exclusively by Set7/9 and can be demethylated by Lsd1 (also known as Kdm1a). Rpl29 is not a core component of the ribosome translational machinery and plays a regulatory role in translation efficiency. Our results indicate that Rpl29 methylation has no effect on global protein synthesis but affects Rpl29 subcellular localization. Using an Rpl29 methylation-specific antibody, we demonstrate that Rpl29K5 methylation is present ubiquitously and validate that (R)-PFI-2, a Set7/9 inhibitor, efficiently reduces Rpl29K5 methylation in cell lines. Thus, Rpl29 methylation can serve as a specific cellular biomarker for measuring Set7/9 activity.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Anup Kumar Singh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Nicolas Veland
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Vidyasiri Vemulapalli
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | | | - Vicky Yang
- Cell Signaling Technology Inc., Danvers, Massachusetts 01923
| | - Kimberly A Lee
- Cell Signaling Technology Inc., Danvers, Massachusetts 01923
| | - Ailan Guo
- Cell Signaling Technology Inc., Danvers, Massachusetts 01923
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas 77030.
| |
Collapse
|
74
|
Epidermal YAP activity drives canonical WNT16/β-catenin signaling to promote keratinocyte proliferation in vitro and in the murine skin. Stem Cell Res 2018; 29:15-23. [PMID: 29562208 DOI: 10.1016/j.scr.2018.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
The skin constantly self-renews throughout adult life. Wnt/β-catenin signaling plays a key role in promoting keratinocyte proliferation in the hair follicles and in the interfollicular epidermis. A recent report demonstrated that epidermal YAP activity drives β-catenin activation to promote keratinocyte proliferation in the murine skin. However, it remains unclear whether this is caused by paracrine activation of canonical Wnt signaling or through other YAP/β-catenin regulatory interactions. In the present study, we found that XAV939-inhibition of canonical WNT signaling in skin of YAP2-5SA-ΔC mice resulted in diminished β-catenin activation, reduced keratinocyte proliferation, and a mitigation of the hyperplastic abnormalities in the interfollicular epidermis, signifying a canonical WNT ligand-dependent mechanism. Our subsequent analyses determined that WNT16 is produced in response to YAP activity in keratinocytes both in vitro and in vivo, and that WNT16 drives HaCaT keratinocyte proliferation via canonical WNT16/β-catenin signaling. We conclude that under normal physiological conditions WNT16 is the paracrine WNT ligand secreted in response to epidermal YAP activity that promotes cell proliferation in the interfollicular epidermis. This study delineates a fundamental YAP-driven mechanism that controls normal skin regeneration, and that may be perturbed in human regenerative disease displaying increased YAP and WNT signaling activity.
Collapse
|
75
|
Ding H, Lu WC, Hu JC, Liu YC, Zhang CH, Lian FL, Zhang NX, Meng FW, Luo C, Chen KX. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search. Molecules 2018; 23:567. [PMID: 29498708 PMCID: PMC6017732 DOI: 10.3390/molecules23030567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
SET7, serving as the only histone methyltransferase that monomethylates 'Lys-4' of histone H3, has been proved to function as a key regulator in diverse biological processes, such as cell proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein stability, heart morphogenesis and development. What's more, SET7 is involved inthe pathogenesis of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors. In this paper, based on DC-S239 which has been previously reported in our group, we employed scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit compound targeting SET7 (IC50 = 9.3 μM). Both radioactive tracing and NMR experiments validated the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to the identification ofDC-S303 with the IC50 value of 1.1 μM. In cellular level, DC-S285 retarded tumor cell proliferation and showed selectivity against MCF7 (IC50 = 21.4 μM), Jurkat (IC50 = 2.2 μM), THP1 (IC50 = 3.5 μM), U937 (IC50 = 3.9 μM) cell lines. Docking calculations suggested that DC-S303 share similar binding mode with the parent compoundDC-S239. What's more, it presented good selectivity against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can serve as a drug-like scaffold which may need further optimization for drug development, and can be used as chemical probe to help the community to better understand the SET7 biology.
Collapse
Affiliation(s)
- Hong Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Wen Chao Lu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jun Chi Hu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Chen Hua Zhang
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Fu Lin Lian
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Nai Xia Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Fan Wang Meng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cheng Luo
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Kai Xian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
76
|
Zhou X, Su J, Feng S, Wang L, Yin X, Yan J, Wang Z. Antitumor activity of curcumin is involved in down-regulation of YAP/TAZ expression in pancreatic cancer cells. Oncotarget 2018; 7:79076-79088. [PMID: 27738325 PMCID: PMC5346699 DOI: 10.18632/oncotarget.12596] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients.
Collapse
Affiliation(s)
- Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Shaoyan Feng
- Department of Otolaryngology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519020, China
| | - Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Jingzhe Yan
- Department of Abdominal Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, 130012, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
77
|
Sharif AA, Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 2018; 48:104-114. [PMID: 28579171 DOI: 10.1016/j.semcancer.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
78
|
Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell 2018; 22:177-190.e7. [PMID: 29395054 DOI: 10.1016/j.stem.2017.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.
Collapse
|
79
|
Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells. Genes (Basel) 2018; 9:genes9010020. [PMID: 29316729 PMCID: PMC5793173 DOI: 10.3390/genes9010020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL pool. Wnt ligands can trigger alternative signalling that directly involves some of the Hippo pathway components such as YAP1, TAZ and TEADs. By upregulating Wnt pathway agonists, the alternative Wnt signalling can inhibit the canonical Wnt pathway activity.
Collapse
|
80
|
Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 2018; 49:99-107. [PMID: 29316535 DOI: 10.1016/j.ceb.2017.12.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
The Hippo pathway is a universal governor of organ size, tissue homeostasis, and regeneration. A growing body of work has advanced our understanding of Hippo pathway regulation of cell proliferation, differentiation, and spatial patterning not only in organ development but also upon injury-induced regeneration. The pathway's central role in stem cell biology thus implicates its potential for therapeutic manipulation in mammalian organ regeneration. In this review, we survey recent literature linking the Hippo pathway to the development, homeostasis, and regeneration of various organs, including Hippo-independent roles for YAP, defined here as YAP functions that are not regulated by the Hippo pathway kinases LATS1/2.
Collapse
Affiliation(s)
- Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
81
|
Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang Y, Chan G, Huang Z, Hu B, Li H, Jablons DM, You L. YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget 2017; 8:114576-114587. [PMID: 29383103 PMCID: PMC5777715 DOI: 10.18632/oncotarget.23051] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a membrane protein on tumor cells that binds to the PD-1 receptor expressed on immune cells, leading to the immune escape of tumor cells. Yes-associated protein (YAP) is a main effector of the Hippo/YAP signaling pathway, which plays important roles in cancer development. Here we show that YAP regulates PD-L1 expression in human non-small cell lung cancer (NSCLC) cells. First, we investigated YAP and PD-L1 expression at the protein level in 142 NSCLC samples and 15 normal lung samples. In tumor tissue, immunohistochemistry showed positive staining for YAP and PD-L1, which correlated significantly (n = 142, r = 0.514, P < 0.001). Second, in cell lines that express high levels of PD-L1 (H460, SKLU-1, and H1299), the ratio of p-YAP/YAP was lower and GTIIC reporter activity of the Hippo pathway was higher than those in three cell lines expressing low levels of PD-L1 (A549, H2030, and PC9) (P < 0.05). Third, in the same three cell lines, inhibition of YAP by two small interfering RNAs (siRNAs) decreased the mRNA and protein level of PD-L1 (P < 0.05). Fourth, forced overexpression of the YAP gene rescued the PD-L1 mRNA and protein level after siRNA knockdown targeting 3′UTR of the endogenous YAP gene. Finally, chromatin immunoprecipitation (ChIP) assays using a YAP-specific monoclonal antibody resulted in the precipitation of PD-L1 enhancer region encompassing two putative TEAD binding sites. Our results indicate that YAP regulates the transcription of PD-L1 in NSCLC.
Collapse
Affiliation(s)
- Jinbai Miao
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital Medical University, Beijing, People's Republic of China
| | - Ping-Chih Hsu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Class of 2020, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhen Huang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital Medical University, Beijing, People's Republic of China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital Medical University, Beijing, People's Republic of China
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
82
|
Andl T, Zhang Y. Reaping Wnt after calming Hippo: Wnt and Hippo signaling cross paths in lung cancer. J Thorac Dis 2017; 9:4174-4179. [PMID: 29268463 DOI: 10.21037/jtd.2017.10.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
83
|
Dai LN, Yan JK, Xiao YT, Wen J, Zhang T, Zhou KJ, Wang Y, Cai W. Butyrate stimulates the growth of human intestinal smooth muscle cells by activation of yes-associated protein. J Cell Physiol 2017; 233:3119-3128. [PMID: 28834539 DOI: 10.1002/jcp.26149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 01/15/2023]
Abstract
Intestinal smooth muscle cells play a critical role in the remodeling of intestinal structure and functional adaptation after bowel resection. Recent studies have shown that supplementation of butyrate (Bu) contributes to the compensatory expansion of a muscular layer of the residual intestine in a rodent model of short-bowel syndrome (SBS). However, the underlying mechanism remains elusive. In this study, we found that the growth of human intestinal smooth muscle cells (HISMCs) was significantly stimulated by Bu via activation of Yes-Associated Protein (YAP). Incubation with 0.5 mM Bu induced a distinct proliferative effect on HISMCs, as indicated by the promotion of cell cycle progression and increased DNA replication. Notably, YAP silencing by RNA interference or its specific inhibitor significantly abolished the proliferative effect of Bu on HISMCs. Furthermore, Bu induced YAP expression and enhanced the translocation of YAP from the cytoplasm to the nucleus, which led to changes in the expression of mitogenesis genes, including TEAD1, TEAD4, CTGF, and Cyr61. These results provide evidence that Bu stimulates the growth of human intestinal muscle cells by activation of YAP, which may be a potential treatment for improving intestinal adaptation.
Collapse
Affiliation(s)
- Li-Na Dai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Shanghai, P.R. China
| | - Jun-Kai Yan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, P.R. China
| | - Yong-Tao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, P.R. China
| | - Jie Wen
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, P.R. China
| | - Tian Zhang
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Shanghai, P.R. China
| | - Ke-Jun Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, P.R. China
| | - Yang Wang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, P.R. China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Shanghai, P.R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, P.R. China
| |
Collapse
|
84
|
SETD7 is a prognosis predicting factor of breast cancer and regulates redox homeostasis. Oncotarget 2017; 8:94080-94090. [PMID: 29212211 PMCID: PMC5706857 DOI: 10.18632/oncotarget.21583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
SETD7 is a methyltransferase that specifically catalyzes the monomethylation of lysine 4 on histone H3. A variety of studies has revealed the role of SETD7 in posttranslational modifications of non-histone proteins. However, the prognostic value of SETD7 on breast cancer and the ability of SETD7 of regulating intrinsic redox homeostasis has never been investigated. In this study, using The Cancer Genome Atlas (TCGA) database, we revealed that SETD7 was a potential prognostic marker of breast cancer. Median survival time of patients with low SETD7 expression (18.1 years) was twice than that of SETD7 low-expressed patients (9.5 years). We demonstrated that SETD7 promoted tumor cell proliferation and prevented cell apoptosis and that SETD7 delicately maintained the redox homeostasis through regulating the levels of GSH/GSSG and ROS. Further studies indicated that SETD7 was a positive activator of KEAP1-NRF2 pathway. Using dual luciferase assay, we revealed the role of SETD7 as a transcriptional activator of antioxidant enzymes. Downregulation of SETD7 in MCF7 and MDA-MB-231 cells impaired the expression of antioxidant enzymes and induces imbalance of redox status. Together, we proposed SETD7 as a prognostic marker of breast cancer and a novel antioxidant promoter under oxidative stress in breast cancer.
Collapse
|
85
|
Hippo signalling in intestinal regeneration and cancer. Curr Opin Cell Biol 2017; 48:17-25. [DOI: 10.1016/j.ceb.2017.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022]
|
86
|
Abstract
In this issue of Cancer Cell, Diamantopoulou et al. uncover dual mechanisms of inhibiting YAP/TAZ by TIAM1 that oppose invasiveness of colorectal cancer cells: TIAM1 interacts with TAZ in the cytoplasm to promote TAZ degradation by the destruction complex, whereas it antagonizes binding of TAZ/YAP to TEAD in the nucleus.
Collapse
Affiliation(s)
- Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| |
Collapse
|
87
|
Horiguchi H, Endo M, Kawane K, Kadomatsu T, Terada K, Morinaga J, Araki K, Miyata K, Oike Y. ANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. EMBO J 2017; 36:409-424. [PMID: 28043948 PMCID: PMC5694950 DOI: 10.15252/embj.201695690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
The intestinal epithelium continually self-renews and can rapidly regenerate after damage. Dysregulation of intestinal epithelial homeostasis leads to severe inflammatory bowel disease. Additionally, aberrant signaling by the secreted protein angiopoietin-like protein 2 (ANGPTL2) causes chronic inflammation in a variety of diseases. However, little is known about the physiologic role of ANGPTL2 in normal tissue homeostasis and during wound repair following injury. Here, we assessed ANGPTL2 function in intestinal physiology and disease in vivo Although intestinal development proceeded normally in Angptl2-deficient mice, expression levels of the intestinal stem cell (ISC) marker gene Lgr5 decreased, which was associated with decreased transcriptional activity of β-catenin in Angptl2-deficient mice. Epithelial regeneration after injury was significantly impaired in Angptl2-deficient relative to wild-type mice. ANGPTL2 was expressed and functioned within the mesenchymal compartment cells known as intestinal subepithelial myofibroblasts (ISEMFs). ANGPTL2 derived from ISEMFs maintained the intestinal stem cell niche by modulating levels of competing signaling between bone morphogenetic protein (BMP) and β-catenin. These results support the importance of ANGPTL2 in the stem cell niche in regulating stemness and epithelial wound healing in the intestine.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Kohki Kawane
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku Kyoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| |
Collapse
|
88
|
Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2017. [PMID: 27869648 DOI: 10.1172/jci88486.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.
Collapse
|
89
|
Shuttleworth VG, Gaughan L, Nawafa L, Mooney CA, Cobb SL, Sheerin NS, Logan IR. The methyltransferase SET9 regulates TGF B-1 activation of renal fibroblasts via interaction with SMAD3. J Cell Sci 2017; 131:jcs.207761. [DOI: 10.1242/jcs.207761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is a global socioeconomic problem. It is characterised by the presence of differentiated myofibroblasts that, in response to TGF B-1, produce tissue fibrosis, leading to renal failure. Here we define a novel interaction between the SET9 lysine methyltransferase and SMAD3, the principle mediator of TGF B-1 signalling in myofibroblasts. We show that SET9 deficient fibroblasts exhibit globally altered gene expression profiles in response to TGF B-1, whilst overexpression of SET9 enhances SMAD3 transcriptional activity. We also show that SET9 facilitates SMAD3 nuclear import and controls SMAD3 protein degradation, in a manner involving ubiquitination. On a cellular level, we demonstrate that SET9 is broadly required for TGF B-1 effects in diseased primary renal fibroblasts; SET9 promotes fibroblast migration into wounds, expression of extracellular matrix proteins, collagen contractility and myofibroblast differentiation. Finally, we demonstrate that SET9 is recruited to the α-smooth muscle actin gene in response to TGF B-1, providing a mechanism by which SET9 regulates myofibroblast contractility and differentiation. Together with previous studies, we make the case for SET9 inhibition in the treatment of progressive CKD.
Collapse
Affiliation(s)
- Victoria G. Shuttleworth
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, Paul O'Gorman Building, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lotfia Nawafa
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Caitlin A. Mooney
- Dept of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, UK
| | - Steven L. Cobb
- Dept of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, UK
| | - Neil S. Sheerin
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian R. Logan
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
90
|
Xu Y, Zhao Y, Xu Y, Guan Y, Zhang X, Chen Y, Wu Q, Zhu G, Chen Y, Sun F, Wang J, Yu Y. Blocking inhibition to YAP by ActinomycinD enhances anti-tumor efficacy of Corosolic acid in treating liver cancer. Cell Signal 2017; 29:209-217. [DOI: 10.1016/j.cellsig.2016.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 01/02/2023]
|
91
|
Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2016; 127:137-152. [PMID: 27869648 DOI: 10.1172/jci88486] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Cycle Proteins
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Hippo Signaling Pathway
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Serine-Threonine Kinase 3
- Wnt Signaling Pathway
- YAP-Signaling Proteins
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
|
92
|
Akladios B, Mendoza-Reinoso V, Samuel MS, Hardeman EC, Khosrotehrani K, Key B, Beverdam A. Epidermal YAP2-5SA-ΔC Drives β-Catenin Activation to Promote Keratinocyte Proliferation in Mouse Skin In Vivo. J Invest Dermatol 2016; 137:716-726. [PMID: 27816394 DOI: 10.1016/j.jid.2016.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022]
Abstract
The epidermis is a highly regenerative tissue. YAP is a pivotal regulator of stem/progenitor cells in tissue regeneration, including in the epidermis. The molecular mechanisms downstream of YAP that activate epidermal cell proliferation remain largely unknown. We found that YAP and β-catenin co-localize in the nuclei of keratinocytes in the regenerating epidermis in vivo and in proliferating HaCaT keratinocytes in vitro. Inactivation of YAP in HaCaT keratinocytes resulted in reduced activated β-catenin and reduced keratinocyte numbers in vitro. In addition, we found that in the hyperplastic epidermis of YAP2-5SA-ΔC mice, the mutant YAP2-5SA-ΔC protein was predominantly localized in the keratinocyte nuclei and caused increased expression of activated nuclear β-catenin. Accordingly, β-catenin transcriptional activity was elevated in the skin of live YAP2-5SA-ΔC/TOPFLASH mice. Lastly, loss of β-catenin in basal keratinocytes of YAP2-5SA-ΔC/K14-creERT/CtnnB1-/- mice resulted in reduced proliferation of basal keratinocytes and a striking rescue of the hyperplastic abnormalities. Taken together, our work shows that YAP2-5SA-ΔC drives β-catenin activity to promote basal keratinocyte proliferation in the mouse skin in vivo. Our data shine new light on the etiology of regenerative dermatological disorders and other human diseases that display increased YAP and β-catenin activity.
Collapse
Affiliation(s)
- Bassem Akladios
- School of Medical Sciences, UNSW Australia, Sydney, Australia
| | | | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Australia, Sydney, Australia
| | - Kiarash Khosrotehrani
- University of Queensland Centre for Clinical Research and the Diamantina Institute, Brisbane, Australia
| | - Brian Key
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Annemiek Beverdam
- School of Medical Sciences, UNSW Australia, Sydney, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
93
|
Oudhoff MJ, Antignano F, Chenery AL, Burrows K, Redpath SA, Braam MJ, Perona-Wright G, Zaph C. Intestinal Epithelial Cell-Intrinsic Deletion of Setd7 Identifies Role for Developmental Pathways in Immunity to Helminth Infection. PLoS Pathog 2016; 12:e1005876. [PMID: 27598373 PMCID: PMC5012677 DOI: 10.1371/journal.ppat.1005876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/17/2016] [Indexed: 01/30/2023] Open
Abstract
The intestine is a common site for a variety of pathogenic infections. Helminth infections continue to be major causes of disease worldwide, and are a significant burden on health care systems. Lysine methyltransferases are part of a family of novel attractive targets for drug discovery. SETD7 is a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax (SET) domain-containing family of lysine methyltransferases, and has been shown to methylate and alter the function of a wide variety of proteins in vitro. A few of these putative methylation targets have been shown to be important in resistance against pathogens. We therefore sought to study the role of SETD7 during parasitic infections. We find that Setd7-/- mice display increased resistance to infection with the helminth Trichuris muris but not Heligmosomoides polygyrus bakeri. Resistance to T. muris relies on an appropriate type 2 immune response that in turn prompts intestinal epithelial cells (IECs) to alter differentiation and proliferation kinetics. Here we show that SETD7 does not affect immune cell responses during infection. Instead, we found that IEC-specific deletion of Setd7 renders mice resistant to T. muris by controlling IEC turnover, an important aspect of anti-helminth immune responses. We further show that SETD7 controls IEC turnover by modulating developmental signaling pathways such as Hippo/YAP and Wnt/β-Catenin. We show that the Hippo pathway specifically is relevant during T. muris infection as verteporfin (a YAP inhibitor) treated mice became susceptible to T. muris. We conclude that SETD7 plays an important role in IEC biology during infection.
Collapse
Affiliation(s)
- Menno J. Oudhoff
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (MJO); (CZ)
| | - Frann Antignano
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alistair L. Chenery
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyle Burrows
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen A. Redpath
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mitchell J. Braam
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Perona-Wright
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colby Zaph
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (MJO); (CZ)
| |
Collapse
|