51
|
Abstract
Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.
Collapse
Affiliation(s)
- Rahul Langhe
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
52
|
Lo Giudice Q, Leleu M, La Manno G, Fabre PJ. Single-cell transcriptional logic of cell-fate specification and axon guidance in early-born retinal neurons. Development 2019; 146:dev.178103. [PMID: 31399471 DOI: 10.1242/dev.178103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs), cone photoreceptors (cones), horizontal cells and amacrine cells are the first classes of neurons produced in the retina. However, an important question is how this diversity of cell states is transcriptionally produced. Here, we profiled 6067 single retinal cells to provide a comprehensive transcriptomic atlas showing the diversity of the early developing mouse retina. RNA velocities unveiled the dynamics of cell cycle coordination of early retinogenesis and define the transcriptional sequences at work during the hierarchical production of early cell-fate specification. We show that RGC maturation follows six waves of gene expression, with older-generated RGCs transcribing increasing amounts of guidance cues for young peripheral RGC axons that express the matching receptors. Spatial transcriptionally deduced features in subpopulations of RGCs allowed us to define novel molecular markers that are spatially restricted. Finally, the isolation of such a spatially restricted population, ipsilateral RGCs, allowed us to identify their molecular identity at the time they execute axon guidance decisions. Together, these data represent a valuable resource shedding light on transcription factor sequences and guidance cue dynamics during mouse retinal development.
Collapse
Affiliation(s)
- Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Marion Leleu
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gioele La Manno
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre J Fabre
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
53
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
54
|
Wert KJ, Bakall B, Bassuk AG, Tsang SH, Mahajan VB. Insights into Retinal Development Using Live Imaging in Female Carriers of Choroideremia. Ophthalmic Surg Lasers Imaging Retina 2019; 50:e158-e162. [PMID: 31100169 DOI: 10.3928/23258160-20190503-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022]
Abstract
Lineage tracing can provide key insights into the development of tissues, such as the retina. Yet it is not possible to manipulate human cells during embryogenesis. The authors observed a distinct phenotype in female carriers of X-linked disorders, in particular, carriers of choroideremia caused by mutations in CHM, encoding Rab escort protein-1. The authors found that X chromosome inactivation provides a method for retinal lineage tracing in human patients. Live imaging of female carriers displays a developmental pattern that is different within the peripheral retina compared with the posterior retina and provides important insights into the development and migration of retinal cells. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:e158-e162.].
Collapse
|
55
|
Ferent J, Giguère F, Jolicoeur C, Morin S, Michaud JF, Makihara S, Yam PT, Cayouette M, Charron F. Boc Acts via Numb as a Shh-Dependent Endocytic Platform for Ptch1 Internalization and Shh-Mediated Axon Guidance. Neuron 2019; 102:1157-1171.e5. [PMID: 31054872 DOI: 10.1016/j.neuron.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/08/2019] [Accepted: 03/28/2019] [Indexed: 01/14/2023]
Abstract
During development, Shh attracts commissural axons toward the floor plate through a non-canonical, transcription-independent signaling pathway that requires the receptor Boc. Here, we find that Shh induces Boc internalization into early endosomes and that endocytosis is required for Shh-mediated growth-cone turning. Numb, an endocytic adaptor, binds to Boc and is required for Boc internalization, Shh-mediated growth-cone turning in vitro, and commissural axon guidance in vivo. Similar to Boc, Ptch1 is also internalized by Shh in a Numb-dependent manner; however, the binding of Shh to Ptch1 alone is not sufficient to induce Ptch1 internalization nor growth-cone turning. Therefore, the binding of Shh to Boc is required for Ptch1 internalization and growth-cone turning. Our data support a model where Boc endocytosis via Numb is required for Ptch1 internalization and Shh signaling in axon guidance. Thus, Boc acts as a Shh-dependent endocytic platform gating Ptch1 internalization and Shh signaling.
Collapse
Affiliation(s)
- Julien Ferent
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Neuroscience, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Fanny Giguère
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Shirin Makihara
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Michel Cayouette
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
56
|
Ghazale H, Ripoll C, Leventoux N, Jacob L, Azar S, Mamaeva D, Glasson Y, Calvo CF, Thomas JL, Meneceur S, Lallemand Y, Rigau V, Perrin FE, Noristani HN, Rocamonde B, Huillard E, Bauchet L, Hugnot JP. RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1 + Roof-Plate-Derived Cells. Stem Cell Reports 2019; 12:1159-1177. [PMID: 31031189 PMCID: PMC6524006 DOI: 10.1016/j.stemcr.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors. A molecular resource for the human and mouse spinal cord ependymal zone Identification of 120 transcription factors in the human and mouse ependymal zone Embryonic-like organization of the adult spinal cord ependymal zone Dorsal ependymal cells expressing Msx1 are derived from the embryonic roof plate
Collapse
Affiliation(s)
- Hussein Ghazale
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Chantal Ripoll
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Nicolas Leventoux
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Laurent Jacob
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Safa Azar
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Daria Mamaeva
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Yael Glasson
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Charles-Felix Calvo
- Neuroglial Interactions in Cerebral Physiopathology. CIRB, CNRS UMR 7241/INSERM U1050 Collège de France 11, Place Marcelin Berthelot, 75005 Paris, France
| | - Jean-Leon Thomas
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Sarah Meneceur
- Institut Pasteur, Department of Developmental and Stem Cell Biology, UMR3738 CNRS, Paris 75015, France
| | - Yvan Lallemand
- Institut Pasteur, Department of Developmental and Stem Cell Biology, UMR3738 CNRS, Paris 75015, France
| | - Valérie Rigau
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France; CHU of Montpellier, Hopital Gui de Chaulliac, Pathology Department, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Florence E Perrin
- University of Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Harun N Noristani
- University of Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Brenda Rocamonde
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Emmanuelle Huillard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Luc Bauchet
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France; CHU of Montpellier, Hopital Gui de Chaulliac, Neurosurgery Department, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Jean-Philippe Hugnot
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France; University of Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
57
|
Mason C, Guillery R. Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development. Eur J Neurosci 2019; 49:913-927. [PMID: 30801828 DOI: 10.1111/ejn.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.
Collapse
Affiliation(s)
- Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| | - Ray Guillery
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| |
Collapse
|
58
|
Eymann J, Salomies L, Macrì S, Di-Poï N. Variations in the proliferative activity of the peripheral retina correlate with postnatal ocular growth in squamate reptiles. J Comp Neurol 2019; 527:2356-2370. [PMID: 30860599 PMCID: PMC6766921 DOI: 10.1002/cne.24677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
The retina is a complex, multilayered tissue responsible for the perception of visual stimuli from the environment. Contrary to mammals, the capacity for postnatal eye growth in fish and amphibians, and to a lower extent in birds, is coordinated with a progenitor population residing in the ciliary marginal zone (CMZ) at the retinal peripheral margin. However, little is known about embryonic retinogenesis and postnatal retinal growth in squamates (lizards, snakes), despite their exceptional array of ecologies and ocular morphologies. Here, we address this gap by performing the first large‐scale study assessing both ontogenetic and adult changes in the stem/progenitor activity of the squamate peripheral retina. Our study reveals for the first time that squamates exhibit a source of proliferating progenitors persisting post embryogenesis in a newly identified retinociliary junction anteriorly adjacent to the retina. This region is strikingly similar to the vertebrate CMZ by its peripheral location and pseudostratified nature, and shares a common pattern of slow‐cycling cells, spatial differentiation gradient, and response to postnatal ocular growth. Additionally, its proliferative activity varies considerably among squamate species, in correlation with embryonic and postnatal differences in eye size and growth. Together our data indicate that squamates possess a proliferative peripheral retina that acts as a source of progenitors to compensate, at least in part, for postnatal ocular growth. Our findings also highlight the remarkable variation in activity and location of vertebrate retinal progenitors, indicating that the currently accepted scenario of reduced CMZ activity over the course of evolution is too simplistic.
Collapse
Affiliation(s)
- Julia Eymann
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lotta Salomies
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Simone Macrì
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
59
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
60
|
Abstract
Cell-to-cell communication is fundamental for embryo development and subsequent tissue homeostasis. This communication is often mediated by a small number of signaling pathways in which a secreted ligand binds to the surface of a target cell, thereby activating signal transduction. In vertebrate neural development, these signaling mechanisms are repeatedly used to obtain different and context-dependent outcomes. Part of the versatility of these communication mechanisms depends on their finely tuned regulation that controls timing, spatial localization, and duration of the signaling. The existence of secreted antagonists, which prevent ligand–receptor interaction, is an efficient mechanism to regulate some of these pathways. The Hedgehog family of signaling proteins, however, activates a pathway that is controlled largely by the positive or negative activity of membrane-bound proteins such as Cdon, Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the vertebrate retina, from its early specification to neurogenesis, to discuss whether there is an advantage to the use of such regulators, pointing to unresolved or controversial issues.
Collapse
Affiliation(s)
- Viviana Gallardo
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| |
Collapse
|
61
|
Diacou R, Zhao Y, Zheng D, Cvekl A, Liu W. Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep 2018; 25:2510-2523.e4. [PMID: 30485816 PMCID: PMC6317371 DOI: 10.1016/j.celrep.2018.10.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/19/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Gene regulation of multipotent neuroretinal progenitors is partially understood. Through characterizing Six3 and Six6 double knockout retinas (DKOs), we demonstrate Six3 and Six6 are jointly required for the maintenance of multipotent neuroretinal progenitors. Phenotypes in DKOs were not found in either Six3 nulls or Six6 nulls. At the far periphery, ciliary margin (CM) markers Otx1 and Cdon together with Wnt3a and Fzd1 were ectopically upregulated, whereas neuroretinal progenitor markers Sox2, Notch1, and Otx2 were absent or reduced. At the mid periphery, multi-lineage differentiation was defective. The gene set jointly regulated by Six3 and Six6 significantly overlapped with the gene networks regulated by WNT3A, CTNNB1, POU4F2, or SOX2. Stimulation of Wnt/β-catenin signaling by either Wnt-3a or a GS3Kβ inhibitor promoted CM progenitors at the cost of neuroretinal identity at the periphery of eyecups. Therefore, Six3 and Six6 together directly or indirectly suppress Wnt/β-catenin signaling but promote retinogenic factors for the maintenance of multipotent neuroretinal progenitors.
Collapse
Affiliation(s)
- Raven Diacou
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yilin Zhao
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Deyou Zheng
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Wei Liu
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
62
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
63
|
Moon KH, Kim JW. Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye. Mol Cells 2018; 41:257-263. [PMID: 29665674 PMCID: PMC5935098 DOI: 10.14348/molcells.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
Abstract
Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
64
|
Abstract
The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.
Collapse
|
65
|
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW. Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev Cell 2017; 44:13-28.e3. [PMID: 29249622 DOI: 10.1016/j.devcel.2017.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mahesh B Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
66
|
Todd L, Suarez L, Quinn C, Fischer AJ. Retinoic Acid-Signaling Regulates the Proliferative and Neurogenic Capacity of Müller Glia-Derived Progenitor Cells in the Avian Retina. Stem Cells 2017; 36:392-405. [PMID: 29193451 DOI: 10.1002/stem.2742] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Abstract
In the retina, Müller glia have the potential to become progenitor cells with the ability to proliferate and regenerate neurons. However, the ability of Müller glia-derived progenitor cells (MGPCs) to proliferate and produce neurons is limited in higher vertebrates. Using the chick model system, we investigate how retinoic acid (RA)-signaling influences the proliferation and the formation of MGPCs. We observed an upregulation of cellular RA binding proteins (CRABP) in the Müller glia of damaged retinas where the formation of MGPCs is known to occur. Activation of RA-signaling was stimulated, whereas inhibition suppressed the proliferation of MGPCs in damaged retinas and in fibroblast growth factor 2-treated undamaged retinas. Furthermore, inhibition of RA-degradation stimulated the proliferation of MGPCs. Levels of Pax6, Klf4, and cFos were upregulated in MGPCs by RA agonists and downregulated in MGPCs by RA antagonists. Activation of RA-signaling following MGPC proliferation increased the percentage of progeny that differentiated as neurons. Similarly, the combination of RA and insulin-like growth factor 1 (IGF1) significantly increased neurogenesis from retinal progenitors in the circumferential marginal zone (CMZ). In summary, RA-signaling stimulates the formation of proliferating MGPCs and enhances the neurogenic potential of MGPCs and stem cells in the CMZ. Stem Cells 2018;36:392-405.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Colin Quinn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
67
|
Marcucci F, Murcia-Belmonte V, Wang Q, Coca Y, Ferreiro-Galve S, Kuwajima T, Khalid S, Ross ME, Mason C, Herrera E. The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells. Cell Rep 2017; 17:3153-3164. [PMID: 28009286 DOI: 10.1016/j.celrep.2016.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022] Open
Abstract
The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. Because Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2-/- mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Veronica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Qing Wang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Susana Ferreiro-Galve
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Takaaki Kuwajima
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sania Khalid
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain.
| |
Collapse
|
68
|
Tang X, Gao J, Jia X, Zhao W, Zhang Y, Pan W, He J. Bipotent progenitors as embryonic origin of retinal stem cells. J Cell Biol 2017; 216:1833-1847. [PMID: 28465291 PMCID: PMC5461025 DOI: 10.1083/jcb.201611057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
In lower vertebrates, retinal stem cells (RSCs) capable of producing all retinal cell types are a resource for retinal tissue growth throughout life. However, the embryonic origin of RSCs remains largely elusive. Using a Zebrabow-based clonal analysis, we characterized the RSC niche in the ciliary marginal zone of zebrafish retina and illustrate that blood vessels associated with RSCs are required for the maintenance of actively proliferating RSCs. Full lineage analysis of RSC progenitors reveals lineage patterns of RSC production. Moreover, in vivo lineage analysis demonstrates that these RSC progenitors are the direct descendants of a set of bipotent progenitors in the medial epithelial layer of developing optic vesicles, suggesting the involvement of the mixed-lineage states in the RSC lineage specification.
Collapse
Affiliation(s)
- Xia Tang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianan Gao
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinling Jia
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencao Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yijie Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijun Pan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
69
|
Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C. SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System. Neuron 2017; 93:1110-1125.e5. [PMID: 28215559 DOI: 10.1016/j.neuron.2017.01.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 12/06/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
Transcription factors control cell identity by regulating diverse developmental steps such as differentiation and axon guidance. The mammalian binocular visual circuit is comprised of projections of retinal ganglion cells (RGCs) to ipsilateral and contralateral targets in the brain. A transcriptional code for ipsilateral RGC identity has been identified, but less is known about the transcriptional regulation of contralateral RGC development. Here we demonstrate that SoxC genes (Sox4, 11, and 12) act on the progenitor-to-postmitotic transition to implement contralateral, but not ipsilateral, RGC differentiation, by binding to Hes5 and thus repressing Notch signaling. When SoxC genes are deleted in postmitotic RGCs, contralateral RGC axons grow poorly on chiasm cells in vitro and project ipsilaterally at the chiasm midline in vivo, and Plexin-A1 and Nr-CAM expression in RGCs is downregulated. These data implicate SoxC transcription factors in the regulation of contralateral RGC differentiation and axon guidance.
Collapse
Affiliation(s)
- Takaaki Kuwajima
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Célia A Soares
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Austen A Sitko
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|