51
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
52
|
Cussiol JRR, Soares BL, Oliveira FMBD. From yeast to humans: Understanding the biology of DNA Damage Response (DDR) kinases. Genet Mol Biol 2019; 43:e20190071. [PMID: 31930279 PMCID: PMC7198005 DOI: 10.1590/1678-4685-gmb-2019-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex network of biological processes that protect cells from accumulating aberrant DNA structures, thereby maintaining genomic stability and, as a consequence, preventing the development of cancer and other diseases. The DDR pathway is coordinated by a signaling cascade mediated by the PI3K-like kinases (PIKK) ATM and ATR and by their downstream kinases CHK2 and CHK1, respectively. Together, these kinases regulate several aspects of the cellular program in response to genomic stress. Much of our understanding of these kinases came from studies performed in the 1990s using yeast as a model organism. The purpose of this review is to present a historical perspective on the discovery of the DDR kinases in yeast and the importance of this model for the identification and functional understanding of their mammalian orthologues.
Collapse
Affiliation(s)
| | - Bárbara Luísa Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
53
|
Recent Insights into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3809308. [PMID: 31781334 PMCID: PMC6875203 DOI: 10.1155/2019/3809308] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a self-digestive process that degrades intracellular components, including damaged organelles, to maintain energy homeostasis and to cope with cellular stress. Autophagy plays a key role during development and adult tissue homeostasis, and growing evidence indicates that this catalytic process also has a direct role in modulating aging. Although autophagy is essentially protective, depending on the cellular context and stimuli, autophagy outcome can lead to either abnormal cell growth or cell death. The autophagic process requires a tight regulation, with cellular events following distinct stages and governed by a wide molecular machinery. Reactive oxygen species (ROS) have been involved in autophagy regulation through multiple signaling pathways, and mitochondria, the main source of endogenous ROS, have emerged as essential signal transducers that mediate autophagy. In the present review, we aim to summarize the regulatory function of mitochondria in the autophagic process, particularly regarding the mitochondrial role as the coordination node in the autophagy signaling pathway, involving mitochondrial oxidative stress, and their participation as membrane donors in the initial steps of autophagosome assembly.
Collapse
|
54
|
Zhang Y, Xie Y, Liu W, Deng W, Peng D, Wang C, Xu H, Ruan C, Deng Y, Guo Y, Lu C, Yi C, Ren J, Xue Y. DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in Saccharomyces cerevisiae. Autophagy 2019; 16:626-640. [PMID: 31204567 DOI: 10.1080/15548627.2019.1632622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seeing is believing. The direct observation of GFP-Atg8 vacuolar delivery under confocal microscopy is one of the most useful end-point measurements for monitoring yeast macroautophagy/autophagy. However, manually labelling individual cells from large-scale sets of images is time-consuming and labor-intensive, which has greatly hampered its extensive use in functional screens. Herein, we conducted a time-course analysis of nitrogen starvation-induced autophagy in wild-type and knockout mutants of 35 AuTophaGy-related (ATG) genes in Saccharomyces cerevisiae and obtained 1,944 confocal images containing > 200,000 cells. We manually labelled 8,078 autophagic and 18,493 non-autophagic cells as a benchmark dataset and developed a new deep learning tool for autophagy (DeepPhagy), which exhibited superior accuracy in recognizing autophagic cells compared to other existing methods, with an area under the curve (AUC) value of 0.9710 from 10-fold cross-validations. We further used DeepPhagy to automatically analyze all the images and quantitatively classified the autophagic phenotypes of the 35 atg knockout mutants into 3 classes. The high consistency in our computational and biochemical results indicated the reliability of DeepPhagy for measuring autophagic activity. Moreover, we used DeepPhagy to analyze 3 additional types of autophagic phenotypes, including the targeting of Atg1-GFP to the vacuole, the vacuolar delivery of GFP-Atg19, and the disintegration of autophagic bodies indicated by GFP-Atg8, all with satisfying accuracies. Taken together, our study not only enables the GFP-Atg8 fluorescence assay to become a quantitative measurement for analyzing autophagic phenotypes in S. cerevisiae but also demonstrates that deep learning-based methods could potentially be applied to different types of autophagy.Abbreviations: Ac: accuracy; ALP: alkaline phosphatase; ALR: autophagic lysosomal reformation; ATG: AuTophaGy-related; AUC: area under the curve; CNN: convolutional neural network; Cvt: cytoplasm-to-vacuole targeting; DeepPhagy: deep learning for autophagy; fc_2: second fully connected; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3 beta; HAT: histone acetyltransferase; HemI: Heat map Illustrator; JRE: Java Runtime Environment; KO: knockout; LRN: local response normalization; MCC: Mathew Correlation Coefficient; OS: operating system; PAS: phagophore assembly site; PC: principal component; PCA: principal component analysis; PPI: protein-protein interaction; Pr: precision; QPSO: Quantum-behaved Particle Swarm Optimization; ReLU: rectified linear unit; RF: random forest; ROC: receiver operating characteristic; ROI: region of interest; SD: systematic derivation; SGD: stochastic gradient descent; Sn: sensitivity; Sp: specificity; SRG: seeded region growing; t-SNE: t-distributed stochastic neighbor embedding; 2D: 2-dimensional; WT: wild-type.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yubin Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenzhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wankun Deng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chenwei Wang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haodong Xu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ruan
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaping Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjun Lu
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
Corcoles-Saez I, Ferat JL, Costanzo M, Boone CM, Cha RS. Functional link between mitochondria and Rnr3, the minor catalytic subunit of yeast ribonucleotide reductase. MICROBIAL CELL 2019; 6:286-294. [PMID: 31172013 PMCID: PMC6545439 DOI: 10.15698/mic2019.06.680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribonucleotide reductase (RNR) is an essential holoenzyme required for de novo synthesis of dNTPs. The Saccharomyces cerevisiae genome encodes for two catalytic subunits, Rnr1 and Rnr3. While Rnr1 is required for DNA replication and DNA damage repair, the function(s) of Rnr3 is unknown. Here, we show that carbon source, an essential nutrient, impacts Rnr1 and Rnr3 abundance: Non-fermentable carbon sources or limiting concentrations of glucose down regulate Rnr1 and induce Rnr3 expression. Oppositely, abundant glucose induces Rnr1 expression and down regulates Rnr3. The carbon source dependent regulation of Rnr3 is mediated by Mec1, the budding yeast ATM/ATR checkpoint response kinase. Unexpectedly, this regulation is independent of all currently known components of the Mec1 DNA damage response network, including Rad53, Dun1, and Tel1, implicating a novel Mec1 signalling axis. rnr3Δ leads to growth defects under respiratory conditions and rescues temperature sensitivity conferred by the absence of Tom6, a component of the mitochondrial TOM (translocase of outer membrane) complex responsible for mitochondrial protein import. Together, these results unveil involvement of Rnr3 in mitochondrial functions and Mec1 in mediating the carbon source dependent regulation of Rnr3.
Collapse
Affiliation(s)
- Isaac Corcoles-Saez
- School of Medical Sciences, North West Cancer Research Institute, Bangor University, Deniol Road, Bangor, LL57 2UW, United Kingdom
| | - Jean-Luc Ferat
- Institute of Integrative Biology of the Cell (I2BC), Avenue de la Terrasse, Paris, France
| | - Michael Costanzo
- University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Charles M Boone
- University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Rita S Cha
- School of Medical Sciences, North West Cancer Research Institute, Bangor University, Deniol Road, Bangor, LL57 2UW, United Kingdom
| |
Collapse
|
56
|
Zong Y, Zhang CS, Li M, Wang W, Wang Z, Hawley SA, Ma T, Feng JW, Tian X, Qi Q, Wu YQ, Zhang C, Ye Z, Lin SY, Piao HL, Hardie DG, Lin SC. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res 2019; 29:460-473. [PMID: 30948787 DOI: 10.1038/s41422-019-0163-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/15/2019] [Indexed: 01/17/2023] Open
Abstract
AMPK, a master regulator of metabolic homeostasis, is activated by both AMP-dependent and AMP-independent mechanisms. The conditions under which these different mechanisms operate, and their biological implications are unclear. Here, we show that, depending on the degree of elevation of cellular AMP, distinct compartmentalized pools of AMPK are activated, phosphorylating different sets of targets. Low glucose activates AMPK exclusively through the AMP-independent, AXIN-based pathway in lysosomes to phosphorylate targets such as ACC1 and SREBP1c, exerting early anti-anabolic and pro-catabolic roles. Moderate increases in AMP expand this to activate cytosolic AMPK also in an AXIN-dependent manner. In contrast, high concentrations of AMP, arising from severe nutrient stress, activate all pools of AMPK independently of AXIN. Surprisingly, mitochondrion-localized AMPK is activated to phosphorylate ACC2 and mitochondrial fission factor (MFF) only during severe nutrient stress. Our findings reveal a spatiotemporal basis for hierarchical activation of different pools of AMPK during differing degrees of stress severity.
Collapse
Affiliation(s)
- Yue Zong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Simon A Hawley
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, DD1 5EH, Dundee, Scotland, UK
| | - Teng Ma
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Qu Qi
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Yu-Qing Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhiyun Ye
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, DD1 5EH, Dundee, Scotland, UK
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China.
| |
Collapse
|
57
|
Pedroza-García JA, Nájera-Martínez M, Mazubert C, Aguilera-Alvarado P, Drouin-Wahbi J, Sánchez-Nieto S, Gualberto JM, Raynaud C, Plasencia J. Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:430-446. [PMID: 30317699 DOI: 10.1111/tpj.14128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Nucleotide biosynthesis proceeds through a de novo pathway and a salvage route. In the salvage route, free bases and/or nucleosides are recycled to generate the corresponding nucleotides. Thymidine kinase (TK) is the first enzyme in the salvage pathway to recycle thymidine nucleosides as it phosphorylates thymidine to yield thymidine monophosphate. The Arabidopsis genome contains two TK genes -TK1a and TK1b- that show similar expression patterns during development. In this work, we studied the respective roles of the two genes during early development and in response to genotoxic agents targeting the organellar or the nuclear genome. We found that the pyrimidine salvage pathway is crucial for chloroplast development and genome replication, as well as for the maintenance of its integrity, and is thus likely to play a crucial role during the transition from heterotrophy to autotrophy after germination. Interestingly, defects in TK activity could be partially compensated by supplementation of the medium with sugar, and this effect resulted from both the availability of a carbon source and the activation of the nucleotide de novo synthesis pathway, providing evidence for a compensation mechanism between two routes of nucleotide biosynthesis that depend on nutrient availability. Finally, we found differential roles of the TK1a and TK1b genes during the plant response to genotoxic stress, suggesting that different pools of nucleotides exist within the cells and are required to respond to different types of DNA damage. Altogether, our results highlight the importance of the pyrimidine salvage pathway, both during plant development and in response to genotoxic stress.
Collapse
Affiliation(s)
- José-Antonio Pedroza-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Manuela Nájera-Martínez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| |
Collapse
|
58
|
Umekawa M. Regulation and Physiology of Autophagy Induced by Glucose Starvation “The role of autophagy for the degradation of intracellular mannosyl glycan in yeast”. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1748.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
59
|
Umekawa M. Regulation and Physiology of Autophagy Induced by Glucose Starvation “The role of autophagy for the degradation of intracellular mannosyl glycan in yeast”. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1748.1j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
61
|
Corcoles-Saez I, Dong K, Johnson AL, Waskiewicz E, Costanzo M, Boone C, Cha RS. Essential Function of Mec1, the Budding Yeast ATM/ATR Checkpoint-Response Kinase, in Protein Homeostasis. Dev Cell 2018; 46:495-503.e2. [DOI: 10.1016/j.devcel.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022]
|
62
|
Till Death Do Us Part: The Marriage of Autophagy and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4701275. [PMID: 29854084 PMCID: PMC5964578 DOI: 10.1155/2018/4701275] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, it lowers cellular ROS thereby restoring cellular homeostasis. However, if cellular homeostasis cannot be reached, the cells can switch back and choose a regulated cell death response. Intriguingly, the autophagic and cell death machines both respond to the same stresses and share key regulatory proteins, suggesting that the pathways are intricately connected. Here, the intersection between autophagy and apoptosis is discussed with a particular focus on the role ROS plays.
Collapse
|
63
|
Fletcher J, Griffiths L, Caspari T. Nutrient Limitation Inactivates Mrc1-to-Cds1 Checkpoint Signalling in Schizosaccharomyces pombe. Cells 2018; 7:cells7020015. [PMID: 29473861 PMCID: PMC5850103 DOI: 10.3390/cells7020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Abstract
The S. pombe checkpoint kinase, Cds1, protects the integrity of stalled DNA replication forks after its phosphorylation at threonine-11 by Rad3 (ATR). Modified Cds1 associates through its N-terminal forkhead-associated domain (FHA)-domain with Mrc1 (Claspin) at stalled forks. We report here that nutrient starvation results in post-translational changes to Cds1 and the loss of Mrc1. A drop in glucose after a down-shift from 3% to 0.1–0.3%, or when cells enter the stationary phase, triggers a sharp decline in Mrc1 and the accumulation of insoluble Cds1. Before this transition, Cds1 is transiently activated and phosphorylated by Rad3 when glucose levels fall. Because this coincides with the phosphorylation of histone 2AX at S129 by Rad3, an event that occurs towards the end of every unperturbed S phase, we suggest that a glucose limitation promotes the exit from the S phase. Since nitrogen starvation also depletes Mrc1 while Cds1 is post-translationally modified, we suggest that nutrient limitation is the general signal that promotes exit from S phase before it inactivates the Mrc1–Cds1 signalling component. Why Cds1 accumulates in resting cells while its activator Mrc1 declines is, as yet, unclear but suggests a novel function of Cds1 in non-replicating cells.
Collapse
Affiliation(s)
- Jessica Fletcher
- School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK.
- Medical School, Swansea University, Swansea SA2 8PP, UK.
| | - Liam Griffiths
- School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Thomas Caspari
- School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK.
- Postgraduate Doctoral Studies, Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
64
|
Adachi A, Koizumi M, Ohsumi Y. Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression. J Biol Chem 2017; 292:19905-19918. [PMID: 29042435 DOI: 10.1074/jbc.m117.817510] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a conserved process in which cytoplasmic components are sequestered for degradation in the vacuole/lysosomes in eukaryotic cells. Autophagy is induced under a variety of starvation conditions, such as the depletion of nitrogen, carbon, phosphorus, zinc, and others. However, apart from nitrogen starvation, it remains unclear how these stimuli induce autophagy. In yeast, for example, it remains contentious whether autophagy is induced under carbon starvation conditions, with reports variously suggesting both induction and lack of induction upon depletion of carbon. We therefore undertook an analysis to account for these inconsistencies, concluding that autophagy is induced in response to abrupt carbon starvation when cells are grown with glycerol but not glucose as the carbon source. We found that autophagy under these conditions is mediated by nonselective degradation that is highly dependent on the autophagosome-associated scaffold proteins Atg11 and Atg17. We also found that the extent of carbon starvation-induced autophagy is positively correlated with cells' oxygen consumption rate, drawing a link between autophagy induction and respiratory metabolism. Further biochemical analyses indicated that maintenance of intracellular ATP levels is also required for carbon starvation-induced autophagy and that autophagy plays an important role in cell viability during prolonged carbon starvation. Our findings suggest that carbon starvation-induced autophagy is negatively regulated by carbon catabolite repression.
Collapse
Affiliation(s)
- Atsuhiro Adachi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Michiko Koizumi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
65
|
Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M. Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 2017; 591:3625-3636. [PMID: 28940407 PMCID: PMC5698759 DOI: 10.1002/1873-3468.12852] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/30/2023]
Abstract
The evolutionarily highly conserved SNF1‐related protein kinase (SnRK1) protein kinase is a metabolic master regulator in plants, balancing the critical energy consumption between growth‐ and stress response‐related metabolic pathways. While the regulation of the mammalian [AMP‐activated protein kinase (AMPK)] and yeast (SNF1) orthologues of SnRK1 is well‐characterised, the regulation of SnRK1 kinase activity in plants is still an open question. Here we report that the activity and T‐loop phosphorylation of AKIN10, the kinase subunit of the SnRK1 complex, is regulated by the redox status. Although this regulation is dependent on a conserved cysteine residue, the underlying mechanism is different to the redox regulation of animal AMPK and has functional implications for the regulation of the kinase complex in plants under stress conditions.
Collapse
Affiliation(s)
- Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Katrin Fischer-Schrader
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Ella Nukarinen
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| |
Collapse
|