51
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
52
|
Yao Z, Chen P, Fan L, Chen P, Zhang X, Yu B. CCL2 is a critical mechano-responsive mediator in crosstalk between osteoblasts and bone mesenchymal stromal cells. FASEB J 2021; 35:e21851. [PMID: 34547121 DOI: 10.1096/fj.202002808rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.
Collapse
Affiliation(s)
- Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pengyu Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liuyi Fan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Peisheng Chen
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
53
|
He Y, Li Z, Ding X, Xu B, Wang J, Li Y, Chen F, Meng F, Song W, Zhang Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact Mater 2021; 8:109-123. [PMID: 34541390 PMCID: PMC8424426 DOI: 10.1016/j.bioactmat.2021.06.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages and osteoclasts are both derived from monocyte/macrophage lineage, which plays as the osteoclastic part of bone metabolism. Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration, the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring. Here, the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated. The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure. The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo. Meanwhile, the macrophage recruitment and osteoclast formation are increased and decreased respectively. Mechanistically, the integrin mediated FAK phosphorylation and its downstream MAPK pathway (p-p38) are significantly downregulated by the nanoporous surface, which account for the inhibition of osteoclastogenesis. In addition, the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines, and accelerate bone regeneration by macrophage cytokine profiles. In conclusion, these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment, which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis. Nanoporous implant inhibits osteoclastogenesis via integrin β1/FAKpY397/MAPK. Nanoporous implant with larger diameter inhibits osteoclastogenesis more strongly. Nanoporous implant increases osteogenic cytokines of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xin Ding
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Huaian Stomatological Hospital, Nanjing, China
| | - Boya Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jinjin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fanhui Meng
- State Key Laboratory of Military Stomatology, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
54
|
The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol 2021; 17:608-620. [PMID: 34480164 DOI: 10.1038/s41584-021-00682-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 01/20/2023]
Abstract
Blood vessels form a versatile transport network that is best known for its critical roles in processes such as tissue oxygenation, metabolism and immune surveillance. The vasculature also provides local, often organ-specific, molecular signals that control the behaviour of other cell types in their vicinity during development, homeostasis and regeneration, and also in disease processes. In the skeletal system, the local vasculature is actively involved in both bone formation and resorption. In addition, blood vessels participate in inflammatory processes and contribute to the pathogenesis of diseases that affect the joints, such as rheumatoid arthritis and osteoarthritis. This Review summarizes the current understanding of the architecture, angiogenic growth and functional properties of the bone vasculature. The effects of ageing and pathological conditions, including arthritis and osteoporosis, are also discussed.
Collapse
|
55
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
56
|
Andrés Sastre E, Maly K, Zhu M, Witte-Bouma J, Trompet D, Böhm AM, Brachvogel B, van Nieuwenhoven CA, Maes C, van Osch GJVM, Zaucke F, Farrell E. Spatiotemporal distribution of thrombospondin-4 and -5 in cartilage during endochondral bone formation and repair. Bone 2021; 150:115999. [PMID: 33971315 DOI: 10.1016/j.bone.2021.115999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
During skeletal development most bones are first formed as cartilage templates, which are gradually replaced by bone. If later in life those bones break, temporary cartilage structures emerge to bridge the fractured ends, guiding the regenerative process. This bone formation process, known as endochondral ossification (EO), has been widely studied for its potential to reveal factors that might be used to treat patients with large bone defects. The extracellular matrix of cartilage consists of different types of collagens, proteoglycans and a variety of non-collagenous proteins that organise the collagen fibers in complex networks. Thrombospondin-5, also known as cartilage oligomeric matrix protein (TSP-5/COMP) is abundant in cartilage, where it has been described to enhance collagen fibrillogenesis and to interact with a variety of growth factors, matrix proteins and cellular receptors. However, very little is known about the skeletal distribution of its homologue thrombospondin-4 (TSP-4). In our study, we compared the spatiotemporal expression of TSP-5 and TSP-4 during postnatal bone formation and fracture healing. Our results indicate that in both these settings, TSP-5 distributes across all layers of the transient cartilage, while the localisation of TSP-4 is restricted to the population of hypertrophic chondrocytes. Furthermore, in fractured bones we observed TSP-4 sparsely distributed in the periosteum, while TSP-5 was absent. Last, we analysed the chemoattractant effects of the two proteins on endothelial cells and bone marrow stem cells and hypothesised that, of the two thrombospondins, only TSP-4 might promote blood vessel invasion during ossification. We conclude that TSP-4 is a novel factor involved in bone formation. These findings reveal TSP-4 as an attractive candidate to be evaluated for bone tissue engineering purposes.
Collapse
Affiliation(s)
- E Andrés Sastre
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - K Maly
- Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - M Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Germany
| | - J Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - D Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - A M Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - B Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Germany
| | - C A van Nieuwenhoven
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC-Sophia, University Medical Center, Rotterdam, the Netherlands
| | - C Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - G J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - F Zaucke
- Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - E Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
57
|
Mesnieres M, Böhm AM, Peredo N, Trompet D, Valle-Tenney R, Bajaj M, Corthout N, Nefyodova E, Cardoen R, Baatsen P, Munck S, Nagy A, Haigh JJ, Khurana S, Verfaillie CM, Maes C. Fetal hematopoietic stem cell homing is controlled by VEGF regulating the integrity and oxidative status of the stromal-vascular bone marrow niches. Cell Rep 2021; 36:109618. [PMID: 34433017 PMCID: PMC8411121 DOI: 10.1016/j.celrep.2021.109618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture. Concomitantly, HSPC homing and survival are drastically impaired. Transcriptome profiling, flow cytometry, and high-resolution imaging indicate alterations in perivascular and endothelial cell characteristics, vascular function and cellular metabolism, associated with increased oxidative stress within the VEGF-enriched BM environment. Thus, developmental HSPC homing to bone is controlled by local stromal-vascular integrity and the oxidative-metabolic status of the recipient milieu. Interestingly, irradiation of adult mice also induces stromal VEGF expression and similar osteo-angiogenic niche changes, underscoring that our findings may contribute targets for improving stem cell therapies. Establishment of BM hematopoiesis is coupled to development of the skeletal niches Primary HSPC seeding of bone depends on balanced molecular crosstalk in the niche Stromal VEGF triggers EC activation and controls stromal-vascular niche integrity Excessive skeletal VEGF deranges cell metabolism and induces oxidative stress in BM
Collapse
Affiliation(s)
- Marion Mesnieres
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anna-Marei Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nicolas Peredo
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Roger Valle-Tenney
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Manmohan Bajaj
- Stem Cell and Developmental Biology Unit, Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, VIB BioImaging Center, KU Leuven, 3000 Leuven, Belgium; Research Group Molecular Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Nefyodova
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ruben Cardoen
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, VIB BioImaging Center, KU Leuven, 3000 Leuven, Belgium; Research Group Molecular Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research, VIB BioImaging Center, KU Leuven, 3000 Leuven, Belgium; Research Group Molecular Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Obstetrics and Gynecology, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Satish Khurana
- Stem Cell and Developmental Biology Unit, Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, 695551 Kerala, India
| | - Catherine M Verfaillie
- Stem Cell and Developmental Biology Unit, Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
58
|
Zhang Y, Xing F, Luo R, Duan X. Platelet-Rich Plasma for Bone Fracture Treatment: A Systematic Review of Current Evidence in Preclinical and Clinical Studies. Front Med (Lausanne) 2021; 8:676033. [PMID: 34414200 PMCID: PMC8369153 DOI: 10.3389/fmed.2021.676033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Recently, there is an increasing interest in the therapeutic potential of platelet-rich plasma (PRP) for bone fracture treatment. Nevertheless, the effect of PRP for bone fracture treatment remains controversial and is still a matter of discussion. Therefore, we performed a systematic review to evaluate the efficacy and safety of PRP injection for treatment of bone fracture. Methods: The main bibliographic databases, including Medline, PubMed, Embase, Web of Science, and the Cochrane library, were comprehensively searched for studies focusing on the application of platelet-rich plasma (PRP) on bone fracture treatment. All relevant articles were screened for eligibility and subdivided into the preclinical and clinical studies. Data were extracted and presented systematically. Results: Finally, twenty-six in vitro preclinical studies (basic studies), nine in vivo preclinical studies (animal studies), and nine clinical studies, met the selection criteria, and were included in the present systematic review. Preclinical studies showed an overall positive effect of PRP on osteoblast-like cells in vitro and bone healing in animal models. The most used treatment for bone fracture in animal and clinical studies is fixation surgery combined with PRP injection. The clinical studies reported PRP shortened bony healing duration, and had no positive effect on improving the healing rate of closed fractures. However, the results of functional outcomes are controversial. Additionally, compared with control group, PRP would not increase the rate of postoperative wound infection. Conclusion: The present systematic review confirmed the continuing interests of PRP as an additional treatment for bone fracture. Preclinical studies highlighted the potential value of PRP as promising therapy for bone fracture. However, the preclinical evidence did not translate into a similar result in the clinical studies. In addition, types of fractures and procedures of PRP preparation are heterogeneous in enrolled studies, which might result in controversial results. Meanwhile, characteristics of PRP, such as platelet concentration, the numbers of leukocytes, still need to be determined and further research is required.
Collapse
Affiliation(s)
- Yangming Zhang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Duan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
59
|
Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res 2021; 36:1432-1447. [PMID: 34213032 PMCID: PMC8338797 DOI: 10.1002/jbmr.4410] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Osteoblasts are the only cells that can give rise to bones in vertebrates. Thus, one of the most important functions of these metabolically active cells is mineralized matrix production. Because osteoblasts have a limited lifespan, they must be constantly replenished by preosteoblasts, their immediate precursors. Because disruption of the regulation of bone-forming osteoblasts results in a variety of bone diseases, a better understanding of the origin of these cells by defining the mechanisms of bone development, remodeling, and regeneration is central to the development of novel therapeutic approaches. In recent years, substantial new insights into the origin of osteoblasts-largely owing to rapid technological advances in murine lineage-tracing approaches and other single-cell technologies-have been obtained. Collectively, these findings indicate that osteoblasts involved in bone formation under various physiological, pathological, and therapeutic conditions can be obtained from numerous sources. The origins of osteoblasts include, but are not limited to, chondrocytes in the growth plate, stromal cells in the bone marrow, quiescent bone-lining cells on the bone surface, and specialized fibroblasts in the craniofacial structures, such as sutures and periodontal ligaments. Because osteoblasts can be generated from local cellular sources, bones can flexibly respond to regenerative and anabolic cues. However, whether osteoblasts derived from different cellular sources have distinct functions remains to be investigated. Currently, we are at the initial stage to aptly unravel the incredible diversity of the origins of bone-forming osteoblasts. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
60
|
Sivaraj KK, Jeong HW, Dharmalingam B, Zeuschner D, Adams S, Potente M, Adams RH. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep 2021; 36:109352. [PMID: 34260921 PMCID: PMC8293626 DOI: 10.1016/j.celrep.2021.109352] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/30/2020] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Bone stroma contributes to the regulation of osteogenesis and hematopoiesis but also to fracture healing and disease processes. Mesenchymal stromal cells from bone (BMSCs) represent a heterogenous mixture of different subpopulations with distinct molecular and functional properties. The lineage relationship between BMSC subsets and their regulation by intrinsic and extrinsic factors are not well understood. Here, we show with mouse genetics, ex vivo cell differentiation assays, and transcriptional profiling that BMSCs from metaphysis (mpMSCs) and diaphysis (dpMSCs) are fundamentally distinct. Fate-tracking experiments and single-cell RNA sequencing indicate that bone-forming osteoblast lineage cells and dpMSCs, including leptin receptor-positive (LepR+) reticular cells in bone marrow, emerge from mpMSCs in the postnatal metaphysis. Finally, we show that BMSC fate is controlled by platelet-derived growth factor receptor β (PDGFRβ) signaling and the transcription factor Jun-B. The sum of our findings improves our understanding of BMSC development, lineage relationships, and differentiation.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Backialakshmi Dharmalingam
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Susanne Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany
| | - Michael Potente
- Max Planck Institute for Heart and Lung Research, Angiogenesis and Metabolism Laboratory, 61231 Bad Nauheim, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Münster, Germany.
| |
Collapse
|
61
|
The Cellular Choreography of Osteoblast Angiotropism in Bone Development and Homeostasis. Int J Mol Sci 2021; 22:ijms22147253. [PMID: 34298886 PMCID: PMC8305002 DOI: 10.3390/ijms22147253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form "type H" capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.
Collapse
|
62
|
Kwang D, Tjin G, Purton LE. Regulation of murine B lymphopoiesis by stromal cells. Immunol Rev 2021; 302:47-67. [PMID: 34002391 DOI: 10.1111/imr.12973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
B lymphocytes are crucial for the body's humoral immune response, secreting antibodies generated against foreign antigens to fight infection. Adult murine B lymphopoiesis is initiated in the bone marrow and additional maturation occurs in the spleen. In both these organs, B lymphopoiesis involves interactions with numerous different non-hematopoietic cells, also known as stromal or microenvironment cells, which provide migratory, maturation, and survival signals. A variety of conditional knockout and transgenic mouse models have been used to identify the roles of distinct microenvironment cell types in the regulation of B lymphopoiesis. These studies have revealed that mesenchymal lineage cells and endothelial cells comprise the non-hematopoietic microenvironment cell types that support B lymphopoiesis in the bone marrow. In the spleen, various types of stromal cells and endothelial cells contribute to B lymphocyte maturation. More recently, comprehensive single cell RNA-seq studies have also been used to identify clusters of stromal cell types in the bone marrow and spleen, which will aid in further identifying key regulators of B lymphopoiesis. Here, we review the different types of microenvironment cells and key extrinsic regulators that are known to be involved in the regulation of murine B lymphopoiesis in the bone marrow and spleen.
Collapse
Affiliation(s)
- Diannita Kwang
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Gavin Tjin
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Vic., Australia
| |
Collapse
|
63
|
Guérit E, Arts F, Dachy G, Boulouadnine B, Demoulin JB. PDGF receptor mutations in human diseases. Cell Mol Life Sci 2021; 78:3867-3881. [PMID: 33449152 PMCID: PMC11072557 DOI: 10.1007/s00018-020-03753-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
PDGFRA and PDGFRB are classical proto-oncogenes that encode receptor tyrosine kinases responding to platelet-derived growth factor (PDGF). PDGFRA mutations are found in gastrointestinal stromal tumors (GISTs), inflammatory fibroid polyps and gliomas, and PDGFRB mutations drive myofibroma development. In addition, chromosomal rearrangement of either gene causes myeloid neoplasms associated with hypereosinophilia. Recently, mutations in PDGFRB were linked to several noncancerous diseases. Germline heterozygous variants that reduce receptor activity have been identified in primary familial brain calcification, whereas gain-of-function mutants are present in patients with fusiform aneurysms, Kosaki overgrowth syndrome or Penttinen premature aging syndrome. Functional analysis of these variants has led to the preclinical validation of tyrosine kinase inhibitors targeting PDGF receptors, such as imatinib, as a treatment for some of these conditions. This review summarizes the rapidly expanding knowledge in this field.
Collapse
Affiliation(s)
- Emilie Guérit
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Florence Arts
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Guillaume Dachy
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Boutaina Boulouadnine
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium.
| |
Collapse
|
64
|
The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis. Blood 2021; 138:304-317. [PMID: 33786586 DOI: 10.1182/blood.2020005865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hematopoiesis is extrinsically controlled by cells of the bone marrow microenvironment, including skeletal lineage cells. The identification and subsequent studies of distinct subpopulations of maturing skeletal cells is currently limited due to a lack of methods to isolate these cells. We found that murine Lineage-CD31-Sca-1-CD51+ cells can be divided into four subpopulations using flow cytometry, based on their expression of the platelet derived growth factor receptors ⍺ and β (PDGFR⍺ and PDGFRβ). The use of different skeletal lineage reporters confirmed the skeletal origin of the four populations. Multiplex immunohistochemistry studies revealed that all four populations were localized near the growth plate and trabecular bone and were rarely found near cortical bone regions or in central bone marrow. Functional studies revealed differences in their abundance, colony-forming unit-fibroblast capacity and potential to differentiate into mineralized osteoblasts or adipocytes in vitro. Furthermore, the four populations had distinct gene expression profiles and differential cell surface expression of leptin receptor (LEPR) and vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we discovered that one of these four different skeletal populations showed the highest expression of genes involved in the extrinsic regulation of B lymphopoiesis. This cell population varied in abundance between distinct hematopoietically active skeletal sites, and significant differences in the proportions of B lymphocyte precursors were also observed in these distinct skeletal sites. It also supported pre-B lymphopoiesis in culture. Our method to isolate four distinct maturing skeletal populations will assist in elucidating the roles of distinct skeletal niche cells in regulating hematopoiesis and bone.
Collapse
|
65
|
Kegelman CD, Nijsure MP, Moharrer Y, Pearson HB, Dawahare JH, Jordan KM, Qin L, Boerckel JD. YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair. J Bone Miner Res 2021; 36:143-157. [PMID: 32835424 PMCID: PMC7988482 DOI: 10.1002/jbmr.4166] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
In response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing in mice. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture or by developmental deficiencies in the progenitor cell pool before fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx-CretetOff ) in which YAP and TAZ were deleted before fracture but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf before the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Christopher D Kegelman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Kelsey M Jordan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
66
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
67
|
Brun J, Andreasen CM, Ejersted C, Andersen TL, Caverzasio J, Thouverey C. PDGF Receptor Signaling in Osteoblast Lineage Cells Controls Bone Resorption Through Upregulation of Csf1 Expression. J Bone Miner Res 2020; 35:2458-2469. [PMID: 32777109 DOI: 10.1002/jbmr.4150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
The physiological functions of platelet-derived growth factor receptors (PDGFRs) α and β in osteoblast biology and bone metabolism remain to be established. Here, we show that PDGFRA and PDGFRB genes are expressed by osteoblast-lineage canopy and reversal cells in close proximity to PDGFB-expressing osteoclasts within human trabecular bone remodeling units. We also report that, although removal of only one of the two PDGFRs in Osterix-positive cells does not affect bone phenotype, suppression of both PDGFRs in those osteoblast lineage cells increases trabecular bone volume in male mice as well as in female gonad-intact and ovariectomized mice. Furthermore, osteoblast lineage-specific suppression of PDGFRs reduces Csf1 expression, bone marrow level of macrophage colony-stimulating factor (M-CSF), number of osteoclasts, and, therefore, bone resorption, but does not change bone formation. Finally, abrogation of PDGFR signaling in osteoblasts blocks PDGF-induced ERK1/2-mediated Csf1 expression and M-CSF secretion in osteoblast cultures and calcitriol-mediated osteoclastogenesis in co-cultures. In conclusion, our results indicate that PDGFR signaling in osteoblast lineage cells controls bone resorption through ERK1/2-mediated Csf1 expression. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julia Brun
- Service of Bone Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Christina Møller Andreasen
- Clinical Cell Biology, Pathology Research Unit, Odense University Hospital, Odense C, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - Thomas Levin Andersen
- Clinical Cell Biology, Pathology Research Unit, Odense University Hospital, Odense C, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Cyril Thouverey
- Service of Bone Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
68
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
69
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Zhu W, Guo M, Yang W, Tang M, Chen T, Gan D, Zhang D, Ding X, Zhao A, Zhao P, Yan W, Zhang J. CD41-deficient exosomes from non-traumatic femoral head necrosis tissues impair osteogenic differentiation and migration of mesenchymal stem cells. Cell Death Dis 2020; 11:293. [PMID: 32341357 PMCID: PMC7184624 DOI: 10.1038/s41419-020-2496-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Non-traumatic osteonecrosis of the femoral head (ONFH) is clinically a devastating and progressive disease without an effective treatment. Mesenchymal stem cells (MSCs) transplantation has been used to treat ONFH in early stage, but the failure rate of this therapy is high due to the reduced osteogenic differentiation and migration of the transplanted MSCs related with pathological bone tissues. However, the mechanism responsible for this decrease is still unclear. Therefore, we assume that the implanted MSCs might be influenced by signals delivered from pathological bone tissue, where the exosomes might play a critical role in this delivery. This study showed that exosomes from ONFH bone tissues (ONFH-exos) were able to induce GC-induced ONFH-like damage, in vivo and impair osteogenic differentiation and migration of MSCs, in vitro. Then, we analyzed the differentially expressed proteins (DEPs) in ONFH-exos using proteomic technology and identified 842 differentially expressed proteins (DEPs). On the basis of gene ontology (GO) enrichment analysis of DEPs, fold-changes and previous report, cell adhesion-related CD41 (integrin α2b) was selected for further investigation. Our study showed that the CD41 (integrin α2b) was distinctly decreased in ONFH-exos, compared to NOR-exos, and downregulation of CD41 could impair osteogenic differentiation and migration of the MSCs, where CD41-integrin β3-FAK-Akt-Runx2 pathway was involved. Finally, our study further suggested that CD41-affluent NOR-exos could restore the glucocorticoid-induced decline of osteogenic differentiation and migration in MSCs, and prevent GC-induced ONFH-like damage in rat models. Taken together, our study results revealed that in the progress of ONFH, exosomes from the pathological bone brought about the failure of MSCs repairing the necrotic bone for lack of some critical proteins, like integrin CD41, and prompted the progression of experimentally induced ONFH-like status in the rat. CD41 could be considered as the target of early diagnosis and therapy in ONFH.
Collapse
Affiliation(s)
- Weiwen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - MinKang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Min Tang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Delu Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dian Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojuan Ding
- Department of Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anping Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pei Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
71
|
Serowoky MA, Arata CE, Crump JG, Mariani FV. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 2020; 147:147/5/dev179325. [PMID: 32161063 DOI: 10.1242/dev.179325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E Arata
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|