51
|
Abuhashem A, Garg V, Hadjantonakis AK. RNA polymerase II pausing in development: orchestrating transcription. Open Biol 2022; 12:210220. [PMID: 34982944 PMCID: PMC8727152 DOI: 10.1098/rsob.210220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
52
|
Matvey DO, Ng TSC, Miller MA. Confocal Imaging of Single-Cell Signaling in Orthotopic Models of Ovarian Cancer. Methods Mol Biol 2022; 2424:295-315. [PMID: 34918302 DOI: 10.1007/978-1-0716-1956-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ovarian cancer (OVCA) is frequently detected at late stages of disease, often with dissemination throughout the peritoneal cavity surface, abdomen, and ascites fluid. Tumor signaling via mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways can promote OVCA progression and depend on local microenvironmental cues. To better study OVCA in situ within native tissue contexts, here we describe confocal microscopy techniques to image mouse models of intraperitoneal disease at a single-cell resolution. As a proof of principle demonstration, examples are highlighted for simultaneously imaging tumor vascularization, infiltrating and often immunosuppressive immune cells (tumor-associated macrophages), and OVCA kinase activity.
Collapse
Affiliation(s)
- Dylan O Matvey
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
53
|
Substratum stiffness regulates Erk signaling dynamics through receptor-level control. Cell Rep 2021; 37:110181. [PMID: 34965432 PMCID: PMC8756379 DOI: 10.1016/j.celrep.2021.110181] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 08/01/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
The EGFR/Erk pathway is triggered by extracellular ligand stimulation, leading to stimulus-dependent dynamics of pathway activity. Although mechanical properties of the microenvironment also affect Erk activity, their effects on Erk signaling dynamics are poorly understood. Here, we characterize how the stiffness of the underlying substratum affects Erk signaling dynamics in mammary epithelial cells. We find that soft microenvironments attenuate Erk signaling, both at steady state and in response to epidermal growth factor (EGF) stimulation. Optogenetic manipulation at multiple signaling nodes reveals that intracellular signal transmission is largely unaffected by substratum stiffness. Instead, we find that soft microenvironments decrease EGF receptor (EGFR) expression and alter the amount and spatial distribution of EGF binding at cell membranes. Our data demonstrate that the mechanical microenvironment tunes Erk signaling dynamics via receptor-ligand interactions, underscoring how multiple microenvironmental signals are jointly processed through a highly conserved pathway that regulates tissue development, homeostasis, and disease progression.
Collapse
|
54
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
55
|
Williaume G, de Buyl S, Sirour C, Haupaix N, Bettoni R, Imai KS, Satou Y, Dupont G, Hudson C, Yasuo H. Cell geometry, signal dampening, and a bimodal transcriptional response underlie the spatial precision of an ERK-mediated embryonic induction. Dev Cell 2021; 56:2966-2979.e10. [PMID: 34672970 DOI: 10.1016/j.devcel.2021.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.
Collapse
Affiliation(s)
- Géraldine Williaume
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Sophie de Buyl
- Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, 1050 Brussels, Belgium
| | - Cathy Sirour
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Nicolas Haupaix
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Rossana Bettoni
- Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, 1050 Brussels, Belgium; Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Clare Hudson
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France.
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France.
| |
Collapse
|
56
|
Kohrman AQ, Kim-Yip RP, Posfai E. Imaging developmental cell cycles. Biophys J 2021; 120:4149-4161. [PMID: 33964274 PMCID: PMC8516676 DOI: 10.1016/j.bpj.2021.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
The last decade has seen a major expansion in development of live biosensors, the tools needed to genetically encode them into model organisms, and the microscopic techniques used to visualize them. When combined, these offer us powerful tools with which to make fundamental discoveries about complex biological processes. In this review, we summarize the availability of biosensors to visualize an essential cellular process, the cell cycle, and the techniques for single-cell tracking and quantification of these reporters. We also highlight studies investigating the connection of cellular behavior to the cell cycle, particularly through live imaging, and anticipate exciting discoveries with the combination of these technologies in developmental contexts.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
57
|
Lebedev TD, Vagapova ER, Prassolov VS. The Different Impact of ERK Inhibition on Neuroblastoma, Astrocytoma, and Rhabdomyosarcoma Cell Differentiation. Acta Naturae 2021; 13:69-77. [PMID: 35127149 PMCID: PMC8807533 DOI: 10.32607/actanaturae.11461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Aberrant ERK activity can lead to uncontrolled cell proliferation,
immortalization, and impaired cell differentiation. Impairment of normal cell
differentiation is one of the critical stages in malignant cell transformation.
In this study, we investigated a relationship between ERK tyrosine kinase
activity and the main differentiation features (changes in cell morphology and
expression of genes encoding differentiation markers and growth factor
receptors) in SH-SY5Y neuroblastoma, U-251 astrocytoma, and TE-671
rhabdomyosarcoma cells. ERK activity was assessed using a reporter system that
enabled live measurements of ERK activity in single cells. We demonstrated that
suppression of ERK activity by selective ERK inhibitors, in contrast to a
commonly used differentiation inducer, retinoic acid, leads to significant
changes in TE-671 cell morphology and expression of the myogenic
differentiation marker genes PROM1, MYOG, and PAX7. There was a relationship
between ERK activity and morphological changes at an individual cell level. In
this case, SH-SY5Y cell differentiation induced by retinoic acid was
ERK-independent. We showed that ERK inhibition increases the sensitivity of
TE-671 cells to the EGF, IGF-1, and NGF growth factors, presumably by reducing
basal ERK activity, and to the BDNF growth factor, by increasing expression of
the TrkB receptor.
Collapse
Affiliation(s)
- T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. R. Vagapova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
58
|
Nakamura A, Goto Y, Kondo Y, Aoki K. Shedding light on developmental ERK signaling with genetically encoded biosensors. Development 2021; 148:271153. [PMID: 34338283 DOI: 10.1242/dev.199767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway governs cell proliferation, differentiation and migration, and therefore plays key roles in various developmental and regenerative processes. Recent advances in genetically encoded fluorescent biosensors have unveiled hitherto unrecognized ERK activation dynamics in space and time and their functional importance mainly in cultured cells. However, ERK dynamics during embryonic development have still only been visualized in limited numbers of model organisms, and we are far from a sufficient understanding of the roles played by developmental ERK dynamics. In this Review, we first provide an overview of the biosensors used for visualization of ERK activity in live cells. Second, we highlight the applications of the biosensors to developmental studies of model organisms and discuss the current understanding of how ERK dynamics are encoded and decoded for cell fate decision-making.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
59
|
Weterings SDC, van Oostrom MJ, Sonnen KF. Building bridges between fields: bringing together development and homeostasis. Development 2021; 148:270964. [PMID: 34279592 PMCID: PMC8326920 DOI: 10.1242/dev.193268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite striking parallels between the fields of developmental biology and adult tissue homeostasis, these are disconnected in contemporary research. Although development describes tissue generation and homeostasis describes tissue maintenance, it is the balance between stem cell proliferation and differentiation that coordinates both processes. Upstream signalling regulates this balance to achieve the required outcome at the population level. Both development and homeostasis require tight regulation of stem cells at the single-cell level and establishment of patterns at the tissue-wide level. Here, we emphasize that the general principles of embryonic development and tissue homeostasis are similar, and argue that interactions between these disciplines will be beneficial for both research fields.
Collapse
Affiliation(s)
- Sonja D C Weterings
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
60
|
Pokrass MJ, Regot S. 3D time-lapse microscopy paired with endpoint lineage analysis in mouse blastocysts. STAR Protoc 2021; 2:100446. [PMID: 33899025 PMCID: PMC8055709 DOI: 10.1016/j.xpro.2021.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Determining how signaling dynamics relate to gene expression and cell fate is essential to understanding multicellular development. We present a unified live imaging and lineage analysis method that allows integrated analysis of both techniques in the same mouse embryos. This protocol describes the embryo isolation, confocal imaging, immunofluorescence, and in silico alignment required to connect time-lapse and endpoint measurements. By utilizing different biosensors and fixed readouts, this method allows interrogation of signaling dynamics that specify cell fates in developing embryos. For complete details on the use and execution of this protocol, please refer to Pokrass et al. (2020).
Collapse
Affiliation(s)
- Michael J. Pokrass
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Baltimore, MD, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Baltimore, MD, USA
| |
Collapse
|
61
|
Covert MW, Gillies TE, Kudo T, Agmon E. A forecast for large-scale, predictive biology: Lessons from meteorology. Cell Syst 2021; 12:488-496. [PMID: 34139161 PMCID: PMC8217727 DOI: 10.1016/j.cels.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022]
Abstract
Quantitative systems biology, in which predictive mathematical models are constructed to guide the design of experiments and predict experimental outcomes, is at an exciting transition point, where the foundational scientific principles are becoming established, but the impact is not yet global. The next steps necessary for mathematical modeling to transform biological research and applications, in the same way it has already transformed other fields, is not completely clear. The purpose of this perspective is to forecast possible answers to this question-what needs to happen next-by drawing on the experience gained in another field, specifically meteorology. We review here a number of lessons learned in weather prediction that are directly relevant to biological systems modeling, and that we believe can enable the same kinds of global impact in our field as atmospheric modeling makes today.
Collapse
Affiliation(s)
- Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Taryn E Gillies
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eran Agmon
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
62
|
Okuda KS, Keyser MS, Gurevich DB, Sturtzel C, Mason EA, Paterson S, Chen H, Scott M, Condon ND, Martin P, Distel M, Hogan BM. Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis. eLife 2021; 10:62196. [PMID: 34003110 PMCID: PMC8175085 DOI: 10.7554/elife.62196] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Mikaela S Keyser
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - David B Gurevich
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Caterina Sturtzel
- Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Vienna, Austria
| | - Elizabeth A Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Huijun Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Mark Scott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Martin Distel
- Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Vienna, Austria
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| |
Collapse
|
63
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
64
|
Morris O, Jasper H. Reactive Oxygen Species in intestinal stem cell metabolism, fate and function. Free Radic Biol Med 2021; 166:140-146. [PMID: 33600942 DOI: 10.1016/j.freeradbiomed.2021.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Long dismissed as merely harmful respiratory by-products, Reactive Oxygen Species (ROS) have emerged as critical intracellular messengers during cell growth and differentiation. ROS's signaling roles are particularly prominent within the intestine, whose high regenerative capacity is maintained by Intestinal Stem Cells (ISCs). In this review, we outline roles for ROS in ISCs as revealed by studies using Drosophila and mouse model systems. We focus particularly on recent studies highlighting how ROS ties to metabolic adaptations, which ensure energy supply matches demand during ISC activation and differentiation. We describe how declines in these adaptive mechanisms, through aging or pathology, promote reciprocal changes in ISC metabolism and ROS signaling. These changes ultimately contribute to aberrant ISC function, a loss of tissue homeostasis, and a shortened lifespan.
Collapse
Affiliation(s)
- Otto Morris
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA.
| |
Collapse
|
65
|
Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. Inhibition of Nonfunctional Ras. Cell Chem Biol 2021; 28:121-133. [PMID: 33440168 PMCID: PMC7897307 DOI: 10.1016/j.chembiol.2020.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Intuitively, functional states should be targeted; not nonfunctional ones. So why could drugging the inactive K-Ras4BG12Cwork-but drugging the inactive kinase will likely not? The reason is the distinct oncogenic mechanisms. Kinase driver mutations work by stabilizing the active state and/or destabilizing the inactive state. Either way, oncogenic kinases are mostly in the active state. Ras driver mutations work by quelling its deactivation mechanisms, GTP hydrolysis, and nucleotide exchange. Covalent inhibitors that bind to the inactive GDP-bound K-Ras4BG12C conformation can thus work. By contrast, in kinases, allosteric inhibitors work by altering the active-site conformation to favor orthosteric drugs. From the translational standpoint this distinction is vital: it expedites effective pharmaceutical development and extends the drug classification based on the mechanism of action. Collectively, here we postulate that drug action relates to blocking the mechanism of activation, not to whether the protein is in the active or inactive state.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|