51
|
Varillas JI, Zhang J, Chen K, Barnes II, Liu C, George TJ, Fan ZH. Microfluidic Isolation of Circulating Tumor Cells and Cancer Stem-Like Cells from Patients with Pancreatic Ductal Adenocarcinoma. Theranostics 2019; 9:1417-1425. [PMID: 30867841 PMCID: PMC6401494 DOI: 10.7150/thno.28745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) requires multimodal therapeutic approaches and disease monitoring for effective treatment. Liquid biopsy biomarkers, including circulating tumor cells (CTCs) and cancer stem-like cells (CSCs), hold promise for evaluating treatment response promptly and guiding therapeutic modifications. Methods: From 24 patients with metastatic PDAC (stage IV, M1) undergoing active systemic treatment, we collected 78 blood samples at different time points for CTC and CSC isolation using a microfluidic platform functionalized with antibodies against a CTC biomarker, epithelial cell adhesion molecule (EpCAM), or a CSC biomarker, CD133. These isolated cells were further verified, via fluorescent staining and imaging, using cytokeratin (CK), CD45, and nucleic acid stain 4',6-diamidino-2-phenylindole (DAPI). Results: The majority (84.4%) of patient blood samples were positive for CTCs (EpCAM+CK+CD45-DAPI+) and 70.8% of patient blood samples were positive for CSCs (CD133+CK+CD45-DAPI+), using the highest baseline value of healthy samples as threshold. The CTC subtypes (EpCAM+CK+CD45-DAPI+CD133+ and EpCAM+CK+CD45-DAPI+CD133-) and CSC subtypes (CD133+CK+CD45-DAPI+EpCAM+ and CD133+CK+CD45-DAPI+EpCAM-) were also analyzed using immunochemical methods. In several cases, CSCs exhibited cytokeratin expression that did not express EpCAM, indicating that they will not be detected using EpCAM-based isolation. Conclusion: The microfluidic platform enabled the reliable isolation of CTCs and CSCs from PDAC patient samples, as well as their subtypes. Complementary assessment of both CTCs and CSCs appears advantageous to assess the profile of tumor progressing in some cases. This research has important implications for the application and interpretation of approved methods to detect CTCs.
Collapse
|
52
|
Maccalli C, Tasian SK, Rutella S. Targeting Leukemia Stem Cells and the Immunological Bone Marrow Microenvironment. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2019. [DOI: 10.1007/978-3-030-16624-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Maccalli C, Rasul KI, Elawad M, Ferrone S. The role of cancer stem cells in the modulation of anti-tumor immune responses. Semin Cancer Biol 2018; 53:189-200. [DOI: 10.1016/j.semcancer.2018.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
|
54
|
Wu CT, Lin WY, Chen WC, Chen MF. Predictive Value of CD44 in Muscle-Invasive Bladder Cancer and Its Relationship with IL-6 Signaling. Ann Surg Oncol 2018; 25:3518-3526. [PMID: 30128900 DOI: 10.1245/s10434-018-6706-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND CD44, a cancer stem cell surface marker, is associated with treatment resistance and prognosis in some cancers. In the present study, we examined the predictive value of CD44 in muscle-invasive bladder cancer (MIBC). METHODS We retrospectively analyzed the clinical outcomes of 105 MIBC patients and correlated these outcomes with the expression of CD44. Furthermore, the bladder cancer cell lines HT1197 and MB49 were selected for cellular and animal experiments to investigate the correlation between CD44 and tumor aggressiveness. RESULTS Analysis of clinical specimens indicated that CD44 staining was significantly associated with a higher clinical stage, higher locoregional failure rate, and lower disease-specific survival rate for MIBC patients. Using cellular experiments and orthotopic tumor models, we showed that CD44+ bladder cancer cells had a higher invasion ability and augmented epithelial-mesenchymal transition (EMT) compared with CD44 cells. There was a significant correlation between interleukin (IL)-6 and CD44 levels noted by in vitro testing, and clinical samples. Blockade of IL-6 attenuated the expression of CD44, cancer stem-cell-like properties, and aggressive tumor behavior in vitro and in vivo. The related changes included the attenuated STAT3 activation and EMT, and decreased programmed death ligand 1-mediated T-cell suppression. CONCLUSION Our findings suggest that CD44 expression is positively associated with tumor aggressiveness in bladder cancer, and activated IL-6 signaling provides a suitable microenvironment for the induction of CD44 expression.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Yu Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Wen-Cheng Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Putz City, Chia-Yi Hsien, Taiwan
| | - Miao-Fen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Putz City, Chia-Yi Hsien, Taiwan.
| |
Collapse
|
55
|
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52:94-106. [PMID: 29752993 DOI: 10.1016/j.semcancer.2018.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Key Lab of Agricultural Animal Genetics, Breeding & Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
56
|
Tasian SK, Bornhäuser M, Rutella S. Targeting Leukemia Stem Cells in the Bone Marrow Niche. Biomedicines 2018; 6:biomedicines6010022. [PMID: 29466292 PMCID: PMC5874679 DOI: 10.3390/biomedicines6010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/06/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
Abstract: The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic.
Collapse
Affiliation(s)
- Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden 01069, Germany.
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
57
|
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2017; 153:304-314. [PMID: 29150846 DOI: 10.1111/imm.12866] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies target the bulk of the tumour, while a population of highly resistant tumour cells may be able to repopulate the tumour and metastasize to new sites. Cancer cells with such stem cell-like characteristics can be identified based on their phenotypical and/or functional features which may open up ways for their targeted elimination. In this review we discuss potential off-target effects of inhibiting cancer stem-cell self-renewal pathways on immune cells, and summarize some recent immunological studies specifically targeting cancer stem cells based on their unique antigen expression.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Toshihiko Torigo
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
58
|
Xiao G, Li X, Li G, Zhang B, Xu C, Qin S, Du N, Wang J, Tang SC, Zhang J, Ren H, Chen K, Sun X. MiR-129 blocks estrogen induction of NOTCH signaling activity in breast cancer stem-like cells. Oncotarget 2017; 8:103261-103273. [PMID: 29262559 PMCID: PMC5732725 DOI: 10.18632/oncotarget.21143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Stem-like cells in tumor group featured the major role in the chemotherapy resistance of breast cancer, and the reduction of stem-like cells helped to perish the tumor when receiving chemotherapy. Smaller stem cells number indicated better therapeutic effect in vitro and in clinics, but how did miR-129 and Notch signaling function in breast cancer stem-like cells (BrCSCs) were unclear yet. Through using sphere forming assay and FACS sorting, we found that miR-129 decreased the proportion of stem-like cells in breast cancer cells. Results further indicated that miR-129 degraded the Estrogen Receptor 1 (ESR1) mRNA through a post-translational manner and contributed to the decline of stem-like cells number, preventing tumor regeneration. Cyclin d1 and DICER 1 were proved to promote Let-7 maturation, and in present study, we proved that miR-129 exhibited inhibition on ESR1 and halted the cyclin d1/DICER 1 sustaining of Let-7, which consequently released the Let-7 degradation of NUMB. The restoration of suppressive NUMB by upregulating miR-129 resulted in NOTCH signaling inhibition. In conclusion, we demonstrated the negative regulation of miR-129 on NOTCH signaling activation in BrCSCs' renewal, which was achieved via continuous suppression on cyclin d1/DICER1 sustaining of Let-7 level, and eventually rescued the targeted inhibition of NUMB. The miR-129/ESR1 signaling played pivotal role in controlling DICER1/Let-7/NOTCH cascade via cyclin d1, revealing the novel mechanism of dual Let-7 in non-coding genes network.
Collapse
Affiliation(s)
- Guodong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Gang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Boxiang Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jichang Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| | - Shou-Ching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia 30912, United States
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
59
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|
60
|
Singh D, Minz AP, Sahoo SK. Nanomedicine-mediated drug targeting of cancer stem cells. Drug Discov Today 2017; 22:952-959. [DOI: 10.1016/j.drudis.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
|
61
|
Reducing interferon'ce in stem cells. Nat Cell Biol 2017; 19:597-599. [PMID: 28561058 DOI: 10.1038/ncb3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Little is known regarding how the interactions of stem cells with the immune system regulate their plasticity. A study now describes a mechanism by which normal breast and cancer stem cells utilize miR-199a to downregulate the corepressor LCOR and minimize responses to type I interferon.
Collapse
|
62
|
Mennonna D, Maccalli C, Romano MC, Garavaglia C, Capocefalo F, Bordoni R, Severgnini M, De Bellis G, Sidney J, Sette A, Gori A, Longhi R, Braga M, Ghirardelli L, Baldari L, Orsenigo E, Albarello L, Zino E, Fleischhauer K, Mazzola G, Ferrero N, Amoroso A, Casorati G, Parmiani G, Dellabona P. T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut 2017; 66:454-463. [PMID: 26681737 PMCID: PMC5534766 DOI: 10.1136/gutjnl-2015-309453] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Patient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies. DESIGN We undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions. RESULTS Several unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+ and CD4+ T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+ T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo. CONCLUSIONS These results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.
Collapse
Affiliation(s)
- Daniele Mennonna
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Maccalli
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Michele C Romano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Garavaglia
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Capocefalo
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Marco Severgnini
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - John Sidney
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | - Alessandro Gori
- Institute of Molecular Recognition Chemistry, National Research Council, Milan, Italy
| | - Renato Longhi
- Institute of Molecular Recognition Chemistry, National Research Council, Milan, Italy
| | - Marco Braga
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Ghirardelli
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Baldari
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Orsenigo
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Department of Pathology, San Raffaele Scientific Institute, Milano, Italy
| | - Elisabetta Zino
- Unit of Molecular and Functional Immunogenetics, San Raffaele Scientific Institute, Milan, Italy
| | - Katharina Fleischhauer
- Unit of Molecular and Functional Immunogenetics, San Raffaele Scientific Institute, Milan, Italy,Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Gina Mazzola
- Department of Medical Sciences, Center for Transplantation Biology and Immunogenetics, University of Turin, Turin, Italy
| | - Norma Ferrero
- Department of Medical Sciences, Center for Transplantation Biology and Immunogenetics, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, Center for Transplantation Biology and Immunogenetics, University of Turin, Turin, Italy
| | - Giulia Casorati
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Parmiani
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
63
|
Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, Alves V, Sousa V, Chijioke O, Münz C, Reis F, Rodrigues-Santos P, Gomes C. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med 2016; 14:163. [PMID: 27769244 PMCID: PMC5075212 DOI: 10.1186/s12916-016-0715-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. METHODS Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. RESULTS NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. CONCLUSION Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.
Collapse
Affiliation(s)
- Margarida Ferreira-Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Daniela Paiva-Oliveira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Belmiro Parada
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal.,Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
64
|
Codd AS, Al-Taei S, Tabi Z. Cross-talk between cancer-initiating cells and immune cells: considerations for combination therapies. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S56. [PMID: 27868024 DOI: 10.21037/atm.2016.10.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Amy S Codd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 2TL, UK
| | - Saly Al-Taei
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 2TL, UK
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 2TL, UK
| |
Collapse
|
65
|
Tseng WW, Chopra S, Engleman EG, Pollock RE. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma. Front Oncol 2016; 6:134. [PMID: 27376027 PMCID: PMC4901033 DOI: 10.3389/fonc.2016.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022] Open
Abstract
Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin (“fat cancer”). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers.
Collapse
Affiliation(s)
- William W Tseng
- Section of Surgical Oncology, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Sarcoma Program, Hoag Family Cancer Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, USA
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine , Palo Alto, CA , USA
| | - Raphael E Pollock
- Division of Surgical Oncology, Department of Surgery, The James Comprehensive Cancer Center, Ohio State University , Columbus, OH , USA
| |
Collapse
|
66
|
Parmiani G. Melanoma Cancer Stem Cells: Markers and Functions. Cancers (Basel) 2016; 8:cancers8030034. [PMID: 26978405 PMCID: PMC4810118 DOI: 10.3390/cancers8030034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023] Open
Abstract
The discovery of cancer stem cells (CSCs) in human solid tumors has allowed a better understanding of the biology and neoplastic transformation of normal melanocytes, and the possible mechanisms by which melanoma cells acquire tumorigenicity. In this review I summarize the literature findings on the potential biomarkers of melanoma CSCs, their presence in the melanoma cell populations, the interaction with the immune system (with both T and NK cells) and the role of melanoma CSCs in the clinics. Given the extraordinary progress in the therapy of melanoma caused by immune checkpoint antibodies blockade, I discuss how these antibodies can work by the activation of melanoma infiltrating T cells specifically recognizing neo-antigens expressed even by melanoma CSCs. This is the mechanism that can induce a regression of the metastatic melanomas.
Collapse
Affiliation(s)
- Giorgio Parmiani
- Italian Network for Bioimmunotherapy of Tumors, Division of Medical Oncology and Immunotherapy, University Hospital, Viale Bracci, 16, 53100 Siena, Italy.
| |
Collapse
|
67
|
Lin S, Xu Y, Gan Z, Han K, Hu H, Yao Y, Huang M, Min D. Monitoring cancer stem cells: insights into clinical oncology. Onco Targets Ther 2016; 9:731-40. [PMID: 26929644 PMCID: PMC4755432 DOI: 10.2147/ott.s96645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a small, characteristically distinctive subset of tumor cells responsible for tumor initiation and progression. Several treatment modalities, such as surgery, glycolytic inhibition, driving CSC proliferation, immunotherapy, and hypofractionated radiotherapy, may have the potential to eradicate CSCs. We propose that monitoring CSCs is important in clinical oncology as CSC populations may reflect true treatment response and assist with managing treatment strategies, such as defining optimal chemotherapy cycles, permitting pretreatment cancer surveillance, conducting a comprehensive treatment plan, modifying radiation treatment, and deploying rechallenge chemotherapy. Then, we describe methods for monitoring CSCs.
Collapse
Affiliation(s)
- ShuChen Lin
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| | - YingChun Xu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, People's Republic of China
| | - ZhiHua Gan
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| | - Kun Han
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| | - HaiYan Hu
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, People's Republic of China
| | - Yang Yao
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, People's Republic of China
| | - MingZhu Huang
- Department of Medical Oncology, Cancer Hospital of Fudan University, Shanghai, People's Republic of China
| | - DaLiu Min
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| |
Collapse
|
68
|
Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY, Sunwoo JB. CD44+ Cells in Head and Neck Squamous Cell Carcinoma Suppress T-Cell-Mediated Immunity by Selective Constitutive and Inducible Expression of PD-L1. Clin Cancer Res 2016; 22:3571-81. [PMID: 26864211 DOI: 10.1158/1078-0432.ccr-15-2665] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Human tumors consist of heterogeneous populations of cells with distinct marker expression and functional properties. In squamous cell carcinoma of the head and neck (SCCHN), CD44 is a well-characterized marker of a resilient subpopulation of cells associated with increased tumorigenesis, radioresistance, and chemoresistance. Evidence indicates that these cells have an immunosuppressive phenotype; however, mechanisms have been elusive. EXPERIMENTAL DESIGN Using primary human SCCHN tumor samples and patient-derived xenografts, we examined the phenotypes of subsets of tumor cells and investigated mechanisms regulating their immunogenicity. RESULTS CD44(+) cells in primary human SCCHN were found to have an epithelial-to-mesenchymal (EMT) phenotype and were less immunogenic than CD44(-) cells when cultured with autologous CD8(+) tumor-infiltrating T cells. Selective expression of the programmed death-ligand 1 (PD-L1) was observed on CD44(+) cells compared with CD44(-) cells and was associated with constitutive phosphorylation of STAT3 on CD44(+) cells. Importantly, inhibition of STAT3 decreased expression of PD-L1 on CD44(+) cells. IFNγ treatment preferentially induced even further PD-L1 expression on CD44(+) cells and was associated with enhanced IFNγ receptor expression and phosphorylation of STAT1. Finally, the decreased immunogenicity of CD44(+) cells was partially reversed by antibody blockade of the programmed death 1 (PD-1) receptor, indicating that the differences in PD-L1 expression between CD44(+) and CD44(-) cells are biologically and clinically relevant. CONCLUSIONS Our findings provide a mechanism by which long-lived CD44(+) tumor-initiating cells can selectively evade host immune responses and provide rationale for targeting the PD-1 pathway in the adjuvant therapy setting of SCCHN. Clin Cancer Res; 22(14); 3571-81. ©2016 AACR.
Collapse
Affiliation(s)
- Yunqin Lee
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford Cancer Institute, Stanford, California. Program in Immunology, Stanford University School of Medicine, Stanford, California. Stanford Cancer Institute, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - June Ho Shin
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford Cancer Institute, Stanford, California. Program in Immunology, Stanford University School of Medicine, Stanford, California. Stanford Cancer Institute, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Michelle Longmire
- Stanford Cancer Institute, Stanford, California. Program in Epithelial Biology, Stanford Cancer Institute, Stanford, California
| | - Hua Wang
- Stanford Cancer Institute, Stanford, California. Program in Epithelial Biology, Stanford Cancer Institute, Stanford, California
| | - Holbrook E Kohrt
- Program in Immunology, Stanford University School of Medicine, Stanford, California. Stanford Cancer Institute, Stanford, California. Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford, California
| | - Howard Y Chang
- Stanford Cancer Institute, Stanford, California. Program in Epithelial Biology, Stanford Cancer Institute, Stanford, California. Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford, California. Howard Hughes Medical Institute, Stanford, California
| | - John B Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford Cancer Institute, Stanford, California. Program in Immunology, Stanford University School of Medicine, Stanford, California. Stanford Cancer Institute, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
69
|
Codony-Servat J, Rosell R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res 2016; 4:689-703. [PMID: 26798578 DOI: 10.3978/j.issn.2218-6751.2015.12.11] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tumor cells can be contained, but not eliminated, by traditional cancer therapies. A cell minor subpopulation is able to evade attack from therapies and may have cancer stem cell (CSC) characteristics, including self-renewal, multiple differentiation and tumor initiation (tumor initiating cells, or TICs). Thus, CSCs/TICs, aided by the microenvironment, produce more differentiated, metastatic cancer cells which the immune system detects and interacts with. There are three phases to this process: elimination, equilibrium and escape. In the elimination phase the immune system recognizes and destroys most of the tumor cells. Then the latency phase begins, consisting of equilibrium between immunological elimination and tumor cell growth. Finally, a minor attack-resistant subpopulation escapes and forms a clinically detectable tumor mass. Herein we review current knowledge of immunological characterization of CSCs/TICs. Due to the correlation between CTCs/TICs and drug resistance and metastasis, we also comment on the crucial role of key molecules involved in controlling CSCs/TICs properties; such molecules are essential to detect and destroy CSCs/TICs. Monoclonal antibodies, antibody constructs and vaccines have been designed to act against CSCs/TICs, with demonstrated efficacy in human cancer xenografts and some antitumor activity in human clinical studies. Therefore, therapeutic strategies that selectively target CSCs/TICs warrant further investigation. Better understanding of the interaction between CSCs and tumor immunology may help to identify strategies to eradicate the minor subpopulation that escapes conventional therapy attack, thus providing a solution to the problem of drug resistance and metastasis.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- 1 Pangaea Biotech S.L., Quirón-Dexeus University Hospital, Barcelona, Spain ; 2 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 3 Instituto Oncológico Dr Rosell, Quirón-Dexeus University Hospital, Barcelona, Spain ; 4 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Rafael Rosell
- 1 Pangaea Biotech S.L., Quirón-Dexeus University Hospital, Barcelona, Spain ; 2 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 3 Instituto Oncológico Dr Rosell, Quirón-Dexeus University Hospital, Barcelona, Spain ; 4 Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
70
|
Lee SJ, Kang WY, Yoon Y, Jin JY, Song HJ, Her JH, Kang SM, Hwang YK, Kang KJ, Joo KM, Nam DH. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain. BMC Cancer 2015; 15:1011. [PMID: 26704632 PMCID: PMC4690248 DOI: 10.1186/s12885-015-2034-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. METHODS Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. RESULTS Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. CONCLUSIONS Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.
Collapse
Affiliation(s)
- Se Jeong Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Won Young Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Yeup Yoon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Ju Youn Jin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Jung Hyun Her
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Sang Mi Kang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Yu Kyeong Hwang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Kyeong Jin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
71
|
Salem ML, El-Badawy AS, Li Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology 2015; 67:749-759. [PMID: 25516358 PMCID: PMC4545436 DOI: 10.1007/s10616-014-9830-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.
Collapse
Affiliation(s)
- Mohamed L Salem
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt,
| | | | | |
Collapse
|
72
|
Parmiani G, Maccalli C, Maio M. Integrating Immune Checkpoint Blockade with Anti-Neo/Mutated Antigens Reactivity to Increase the Clinical Outcome of Immunotherapy. Vaccines (Basel) 2015; 3:420-8. [PMID: 26343195 PMCID: PMC4494352 DOI: 10.3390/vaccines3020420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
Abstract
Antibodies to immune checkpoints have entered the clinical arena and have been shown to provide a clinical benefit for metastatic melanoma and, possibly, for other tumors as well. In this review paper we summarize this therapeutic activity and underline the functional mechanisms that may be involved. Among them, we discuss the so far neglected role of tumor-associated antigens (TAAs) deriving from tumor somatic mutations and summarize the results of recent trials showing the immunogenic strength of such TAAs which can be specifically targeted by T cells activated by immune checkpoint antibodies. Finally we discuss new immunotherapy approaches that involve the combination of self/shared- or neo-TAAs-based vaccines and immune checkpoint blockade antibodies, to increase the clinical response of metastatic melanoma patients.
Collapse
Affiliation(s)
- Giorgio Parmiani
- Italian Network for Bio-therapy of Tumors-(NIBIT)-Laboratory, c/o University Hospital of Siena, V. le Bracci, 16, Siena 53100, Italy.
- Division of Medical Oncology and Immunotherapy, University Hospital of Siena, V. le Bracci, 16, Siena 53100, Italy.
| | - Cristina Maccalli
- Italian Network for Bio-therapy of Tumors-(NIBIT)-Laboratory, c/o University Hospital of Siena, V. le Bracci, 16, Siena 53100, Italy.
- Division of Medical Oncology and Immunotherapy, University Hospital of Siena, V. le Bracci, 16, Siena 53100, Italy.
| | - Michele Maio
- Division of Medical Oncology and Immunotherapy, University Hospital of Siena, V. le Bracci, 16, Siena 53100, Italy.
| |
Collapse
|
73
|
Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y, Chang AE, Wicha MS. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches. Stem Cells 2015; 33:2085-92. [PMID: 25873269 DOI: 10.1002/stem.2039] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid-derived suppressor cells, and cytokines, for example, IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs.
Collapse
Affiliation(s)
- Qin Pan
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shuang Liu
- Department of Neurosurgery, Navy General Hospital, Beijing, People's Republic of China
| | - Ning Ning
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yingxin Xu
- Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
74
|
Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells 2015; 7:27-36. [PMID: 25621103 PMCID: PMC4300934 DOI: 10.4252/wjsc.v7.i1.27] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/23/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell (CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cells harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.
Collapse
|
75
|
Resistance of Cancer Stem Cells to Cell-Mediated Immune Responses. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-17807-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Maccalli C, De Maria R. Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunol Immunother 2015; 64:91-7. [PMID: 25104304 PMCID: PMC11028671 DOI: 10.1007/s00262-014-1592-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/25/2014] [Indexed: 01/05/2023]
Abstract
Cells with "stemness" and tumor-initiating properties have been isolated from both hematological and solid tumors. These cells denominated as cancer stem cells (CSCs), representing rare populations within tumors, have the ability to metastasize and are resistant to standard therapies and immunotherapy. Heterogeneity and plasticity in the phenotype of CSCs have been described in relation to their tissue origin. Few definitive markers have been isolated for CSCs from human solid tumors, limiting their usage for in vivo identification of these cells. Nevertheless, progress in the emerging CSCs concept has been achieved gaining, at least for some type of tumors, their biological and immunological characterization. The recent identification of molecules and signaling pathways that are up-regulated or aberrantly induced in CSCs allowed the development of small agents for specifically targeting of CSCs. A general low immunogenic profile has been reported for CSCs with, in some cases, the identification of the mechanisms responsible of the impairment of cell-mediated immune responses. These concepts are discussed in the context of this review. Although CSCs still need to be fully characterized, potential candidate markers and/or signaling pathways, to be exploited for the design of novel CSC-targeting therapeutic strategies, are described in this review.
Collapse
Affiliation(s)
- Cristina Maccalli
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Centre, Milan, Italy,
| | | |
Collapse
|
77
|
COX-2- and endoplasmic reticulum stress-independent induction of ULBP-1 and enhancement of sensitivity to NK cell-mediated cytotoxicity by celecoxib in colon cancer cells. Exp Cell Res 2015; 330:451-459. [DOI: 10.1016/j.yexcr.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/25/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
|
78
|
Are cancer stem cells the sole source of tumor? ACTA ACUST UNITED AC 2014; 34:621-625. [PMID: 25318868 DOI: 10.1007/s11596-014-1327-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 06/26/2014] [Indexed: 12/11/2022]
Abstract
Tumors are believed to consist of a heterogeneous population of tumor cells originating from rare cancer stem cells (CSCs). However, emerging evidence suggests that tumor may also originate from non-CSCs. To support this viewpoint, we are here to present definitive evidence indicating that the number of tumorigenic tumor cells is greater than that of CSCs in tumor, and tumor can also derive from non-CSCs. To achieve this, an idealized mathematical model was employed in the present study and theoretical calculation revealed that non-CSCs could initiate the occurrence of tumor if their proliferation potential was adequate. Further, experimental studies demonstrated that 17.7%, 38.6% and 5.2% of tumor cells in murine B16 solid melanoma, H22 hepatoma and Lewis lung carcinoma, respectively, were potentially tumorigenic. Thus, based on the aforementioned findings, we propose that the scarce CSCs, if exist, are not the sole source of a tumor.
Collapse
|
79
|
Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance. Biomaterials 2014; 35:9668-77. [PMID: 25176061 DOI: 10.1016/j.biomaterials.2014.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 12/15/2022]
Abstract
The development of pancreatic ductal adenocarcinoma (PDAC) is heavily influenced by local stromal tissues, or desmoplasia. Biomimetic hydrogels capable of mimicking tumor niches are particularly useful for discovering the role of independent matrix cues on cancer cell development. Here, we report a photo-curable and bio-orthogonal thiol-ene (i.e., cross-linked by mutually reactive norbornene and thiol groups via photoinitiation) hydrogel platform for studying the growth, morphogenesis, drug resistance, and cancer stem cell marker expression in PDAC cells cultured in 3D. The hydrogels were prepared from multi-arm poly(ethylene glycol)-norbornene cross-linked with protease-sensitive peptide to permit cell-mediated matrix remodeling. Collagen 1 fibrils were incorporated into the covalent network while cytokines (e.g., EGF and TGF-β1) were supplemented in the culture media for controlling cell fate. We found that the presence of collagen 1 enhanced cell proliferation and Yes-associated protein (YAP) translocation to cell nuclei. Cytokines and collagen 1 synergistically up-regulated MT1-MMP expression and induced cell spreading, suggestive of epithelial-mesenchymal transition (EMT) in the encapsulated cells. Furthermore, PDAC cells cultured in 3D developed chemo-resistance even in the absence of collagen 1 and cytokines. This phenotype is likely a consequence of the enrichment of pancreatic cancer stem cells that expressed high levels of CD24, sonic hedgehog (SHH), and vascular endothelial growth factor (VEGF).
Collapse
|
80
|
Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 2014; 5:360. [PMID: 25120546 PMCID: PMC4114188 DOI: 10.3389/fimmu.2014.00360] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/13/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation. Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow straight into overt tumors. These criteria would be fulfilled by CSCs. Stem cells are pluripotent, immune-privileged, and long-living, but depend on specialized niches. Thus, latent tumors may be maintained by a niche-constrained reservoir of long-living CSCs that are exempt from immunosurveillance while niche-independent and more immunogenic daughter cells are constantly eliminated. The small subpopulation of CSCs is often held responsible for tumor initiation, metastasis, and recurrence. Experimentally, this hypothesis was supported by the observation that only this subset can propagate tumors in non-obese diabetic/scid mice, which lack T and B cells. Yet, the concept was challenged when an unexpectedly large proportion of melanoma cells were found to be capable of seeding complex tumors in mice which further lack NK cells. Moreover, the link between stem cell-like properties and tumorigenicity was not sustained in these highly immunodeficient animals. In humans, however, tumor-propagating cells must also escape from immune-mediated destruction. The ability to persist and to initiate neoplastic growth in the presence of immunosurveillance – which would be lost in a maximally immunodeficient animal model – could hence be a decisive criterion for CSCs. Consequently, integrating scientific insight from stem cell biology and tumor immunology to build a new concept of “CSC immunology” may help to reconcile the outlined contradictions and to improve our understanding of tumorigenesis.
Collapse
Affiliation(s)
- Valentin S Bruttel
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, School of Medicine, University of Würzburg , Würzburg , Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, School of Medicine, University of Würzburg , Würzburg , Germany
| |
Collapse
|
81
|
|