51
|
Hamann T. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network. PHYTOCHEMISTRY 2015; 112:100-9. [PMID: 25446233 DOI: 10.1016/j.phytochem.2014.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/07/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses.
Collapse
Affiliation(s)
- Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
52
|
Hamann T. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action. PLANT & CELL PHYSIOLOGY 2015; 56:215-23. [PMID: 25416836 DOI: 10.1093/pcp/pcu164] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One of the main differences between plant and animal cells are the walls surrounding plant cells providing structural support during development and protection like an adaptive armor against biotic and abiotic stress. During recent years it has become widely accepted that plant cells use a dedicated system to monitor and maintain the functional integrity of their walls. Maintenance of integrity is achieved by modifying the cell wall and cellular metabolism in order to permit tightly controlled changes in wall composition and structure. While a substantial amount of evidence supporting the existence of the mechanism has been reported, knowledge regarding its precise mode of action is still limited. The currently available evidence suggests similarities of the plant mechanism with respect to both design principles and molecular components involved to the very well characterized system active in the model organism Saccharomyces cerevisiae. There the system has been implicated in cell morphogenesis as well as response to abiotic stresses such as osmotic challenges. Here the currently available knowledge on the yeast system will be reviewed initially to provide a framework for the subsequent discussion of the plant cell wall integrity maintenance mechanism. The review will then end with a discussion on possible design principles for the cell wall integrity maintenance mechanism and the function of the plant turgor pressure in this context.
Collapse
Affiliation(s)
- Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
53
|
Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet 2015; 61:359-72. [PMID: 25572693 DOI: 10.1007/s00294-014-0467-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
All organisms are constantly exposed to adverse environmental conditions including mechanical damage, which may alter various physiological aspects of growth, development and reproduction. In plant and animal systems, the damage response mechanism has been widely studied. Both systems posses a conserved and sophisticated mechanism that in general is aimed at repairing and preventing future damage, and causes dramatic changes in their transcriptomes, proteomes, and metabolomes. These damage-induced changes are mediated by elaborate signaling networks, which include receptors/sensors, calcium (Ca(2+)) influx, ATP release, kinase cascades, reactive oxygen species (ROS), and oxylipin signaling pathways. In contrast, our current knowledge of how fungi respond to injury is limited, even though various reports indicate that mechanical damage triggers reproductive processes. In fungi, the damage response mechanism has been studied more in depth in Trichoderma atroviride. Interestingly, these studies indicate that the mechanical damage response involves ROS, Ca(2+), kinase cascades, and lipid signaling pathways. Here we compare the response to mechanical damage in plants, animals and fungi and provide evidence that they appear to share signaling molecules and pathways, suggesting evolutionary conservation across the three kingdoms.
Collapse
|
54
|
Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 2014; 81:806-11. [PMID: 25398859 DOI: 10.1128/aem.03273-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.
Collapse
|
55
|
Strich R, Cooper KF. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics. MICROBIAL CELL 2014; 1:318-324. [PMID: 28357211 PMCID: PMC5349174 DOI: 10.15698/mic2014.10.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following exposure to cytotoxic agents, cellular damage is first recognized by a
variety of sensor mechanisms. Thenceforth, the damage signal is transduced to
the nucleus to install the correct gene expression program including the
induction of genes whose products either detoxify destructive compounds or
repair the damage they cause. Next, the stress signal is disseminated throughout
the cell to effect the appropriate changes at organelles including the
mitochondria. The mitochondria represent an important signaling platform for the
stress response. An initial stress response of the mitochondria is extensive
fragmentation. If the damage is prodigious, the mitochondria fragment (fission)
and lose their outer membrane integrity leading to the release of pro-apoptotic
factors necessary for programmed cell death (PCD) execution. As this complex
biological process contains many moving parts, it must be exquisitely
coordinated as the ultimate decision is life or death. The conserved C-type
cyclin plays an important role in executing this molecular Rubicon by coupling
changes in gene expression to mitochondrial fission and PCD. Cyclin C, along
with its cyclin dependent kinase partner Cdk8, associates with the RNA
polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8
repress many stress responsive genes. To relieve this repression, cyclin C is
destroyed in cells exposed to pro-oxidants and other stressors. However, prior
to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor
(Med13), translocates from the nucleus to the cytoplasm where it interacts with
the fission machinery and is both necessary and sufficient to induce extensive
mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD
indicating that it mediates both mitochondrial fission and cell death pathways.
This review will summarize the role cyclin C plays in regulating
stress-responsive transcription. In addition, we will detail this new function
mediating mitochondrial fission and PCD. Although both these roles of cyclin C
are conserved, this review will concentrate on cyclin C's dual role in the
budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| |
Collapse
|
56
|
Rego A, Duarte AM, Azevedo F, Sousa MJ, Côrte-Real M, Chaves SR. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:303-314. [PMID: 28357256 PMCID: PMC5349133 DOI: 10.15698/mic2014.09.164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetic acid triggers apoptotic cell death in Saccharomyces
cerevisiae, similar to mammalian apoptosis. To uncover novel
regulators of this process, we analyzed whether impairing MAPK signaling
affected acetic acid-induced apoptosis and found the mating-pheromone response
and, especially, the cell wall integrity pathways were the major mediators,
especially the latter, which we characterized further. Screening downstream
effectors of this pathway, namely targets of the transcription factor Rlm1p,
highlighted decreased cell wall remodeling as particularly important for acetic
acid resistance. Modulation of cell surface dynamics therefore emerges as a
powerful strategy to increase acetic acid resistance, with potential application
in industrial fermentations using yeast, and in biomedicine to exploit the
higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate
produced by intestinal propionibacteria.
Collapse
Affiliation(s)
- António Rego
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Ana M Duarte
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Flávio Azevedo
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Maria J Sousa
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Susana R Chaves
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| |
Collapse
|
57
|
Cross talk between the cell wall integrity and cyclic AMP/protein kinase A pathways in Cryptococcus neoformans. mBio 2014; 5:mBio.01573-14. [PMID: 25118241 PMCID: PMC4145688 DOI: 10.1128/mbio.01573-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely, PKC1, BCK1, MKK2, and MPK1 results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions of BCK1, MKK2, and MPK1 compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis. Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall are primarily controlled by the cell wall integrity (CWI) signaling pathway. In this study, we demonstrate that deletion of any of three core kinases in the CWI pathway impacts not only the cell wall but also the amount of surface capsule. Deletion of any of the kinases results in significantly reduced cellular cyclic AMP (cAMP) levels, and addition of exogenous cAMP rescues the capsule defect and some cell wall defects, supporting a direct role for the CWI pathway in regulation of capsule in conjunction with the cAMP/protein kinase A pathway.
Collapse
|
58
|
Jin C, Strich R, Cooper KF. Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Mol Biol Cell 2014; 25:1396-407. [PMID: 24554767 PMCID: PMC3983003 DOI: 10.1091/mbc.e13-09-0550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved transcription factor cyclin C is both translocated to the cytoplasm and destroyed after oxidative stress. The signaling pathway that transmits the stress signal to cyclin C is complex and uses both the MAPK Slt2p and its pseudokinase homologue, Kdx1, via different mechanisms. The yeast C-type cyclin represses the transcription of genes required for the stress response and meiosis. To relieve this repression, cyclin C undergoes nuclear-to-cytoplasmic translocation in response to many stressors, including hydrogen peroxide, where it is destroyed by ubiquitin-mediated proteolysis. Before its destruction, cyclin C promotes stress-induced mitochondrial fission and programmed cell death, indicating that relocalization is an important cell fate regulator. Here we show that cyclin C cytoplasmic translocation requires the cell wall integrity (CWI) mitogen-activated protein kinase Slt2p, its pseudokinase paralogue, Kdx1p, and an associating transcription factor, Ask10p. Furthermore, Slt2p and Kdx1p regulate cyclin C stability through different but required mechanisms. Slt2p associates with, and directly phosphorylates, cyclin C at Ser-266. Eliminating or mimicking phosphorylation at this site restricts or enhances cyclin C cytoplasmic translocation and degradation, respectively. Conversely, Kdx1p does not bind cyclin C but instead coimmunoprecipitates with Ask10p, a transcription factor previously identified as a regulator of cyclin C destruction. These results reveal a complex regulatory circuitry involving both downstream effectors of the CWI mitogen-activated protein kinase signal transduction pathway to target the relocalization and consequent destruction of a single transcriptional repressor.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084
| | | | | |
Collapse
|
59
|
Nishida N, Jing D, Kuroda K, Ueda M. Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Curr Genet 2013; 60:149-62. [DOI: 10.1007/s00294-013-0419-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
|
60
|
Yun Y, Liu Z, Zhang J, Shim WB, Chen Y, Ma Z. The MAPKK FgMkk1 ofFusarium graminearumregulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Environ Microbiol 2013; 16:2023-37. [DOI: 10.1111/1462-2920.12334] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yingzi Yun
- Institute of Biotechnology; Zhejiang University; 866 Yuhangtang Road Hangzhou 310058 China
| | - Zunyong Liu
- Institute of Biotechnology; Zhejiang University; 866 Yuhangtang Road Hangzhou 310058 China
| | - Jingze Zhang
- Institute of Biotechnology; Zhejiang University; 866 Yuhangtang Road Hangzhou 310058 China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station TX USA
| | - Yun Chen
- Institute of Biotechnology; Zhejiang University; 866 Yuhangtang Road Hangzhou 310058 China
| | - Zhonghua Ma
- Institute of Biotechnology; Zhejiang University; 866 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
61
|
Mutations in SNF1 complex genes affect yeast cell wall strength. Eur J Cell Biol 2013; 92:383-95. [DOI: 10.1016/j.ejcb.2014.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 01/01/2023] Open
|
62
|
Monshausen GB, Haswell ES. A force of nature: molecular mechanisms of mechanoperception in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4663-80. [PMID: 23913953 PMCID: PMC3817949 DOI: 10.1093/jxb/ert204] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ability to sense and respond to a wide variety of mechanical stimuli-gravity, touch, osmotic pressure, or the resistance of the cell wall-is a critical feature of every plant cell, whether or not it is specialized for mechanotransduction. Mechanoperceptive events are an essential part of plant life, required for normal growth and development at the cell, tissue, and whole-plant level and for the proper response to an array of biotic and abiotic stresses. One current challenge for plant mechanobiologists is to link these physiological responses to specific mechanoreceptors and signal transduction pathways. Here, we describe recent progress in the identification and characterization of two classes of putative mechanoreceptors, ion channels and receptor-like kinases. We also discuss how the secondary messenger Ca(2+) operates at the centre of many of these mechanical signal transduction pathways.
Collapse
Affiliation(s)
| | - Elizabeth S. Haswell
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
63
|
The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:320823. [PMID: 24260614 PMCID: PMC3821959 DOI: 10.1155/2013/320823] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022]
Abstract
Mtl1 is a member of a cell wall sensor family that monitors cell wall integrity in budding yeast. In response to cell wall stress, Mtl1 activates the cell wall integrity (CWI) MAP kinase pathway which transmits this signal to the nucleus to effect changes in gene expression. One target of the CWI MAP kinase is cyclin C, a negative regulator of stress response genes. CWI activation results in cyclin C relocalization from the nucleus to the cytoplasm where it stimulates programmed cell death (PCD) before it is destroyed. This report demonstrates that under low oxidative stress conditions, a combination of membrane sensors, Mtl1 and either Wsc1 or Mid2, are required jointly to transmit the oxidative stress signal to initiate cyclin C destruction. However, when exposed to elevated oxidative stress, additional pathways independent of these three sensor proteins are activated to destroy cyclin C. In addition, N-glycosylation is important for Mtl1 function as mutating the receptor residue (Asn42) or an enzyme required for synthesis of N-acetylglucosamine (Gfa1) reduces sensor activity. Finally, combining gfa1-1 with the cyclin C null allele induces a severe synthetic growth defect. This surprising result reveals a previously unknown genetic interaction between cyclin C and plasma membrane integrity.
Collapse
|
64
|
Rodríguez-Peña JM, Díez-Muñiz S, Bermejo C, Nombela C, Arroyo J. Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin-like protein Hkr1 but not Msb2. FEBS Lett 2013; 587:3675-80. [DOI: 10.1016/j.febslet.2013.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
|
65
|
Francois JM, Formosa C, Schiavone M, Pillet F, Martin-Yken H, Dague E. Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae. Curr Genet 2013; 59:187-96. [PMID: 24071902 DOI: 10.1007/s00294-013-0411-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022]
Abstract
Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure-function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells.
Collapse
Affiliation(s)
- Jean Marie Francois
- Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, 31077, Toulouse, France,
| | | | | | | | | | | |
Collapse
|
66
|
Cruz S, Muñoz S, Manjón E, García P, Sanchez Y. The fission yeast cell wall stress sensor-like proteins Mtl2 and Wsc1 act by turning on the GTPase Rho1p but act independently of the cell wall integrity pathway. Microbiologyopen 2013; 2:778-94. [PMID: 23907979 PMCID: PMC3831639 DOI: 10.1002/mbo3.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/27/2022] Open
Abstract
Sensing stressful conditions that affect the cell wall reorganization is important for yeast survival. Here, we studied two proteins SpWsc1p and SpMtl2p with structural features indicative of plasma membrane-associated cell wall sensors. We found that Mtl2p and Wsc1p act by turning on the Rho1p GTPase. Each gene could be deleted individually without affecting viability, but the deletion of both was lethal and this phenotype was rescued by overexpression of the genes encoding either Rho1p or its GDP/GTP exchange factors (GEFs). In addition, wsc1Δ and mtl2Δ cells showed a low level of Rho1p-GTP under cell wall stress. Mtl2p-GFP (green fluorescent protein) localized to the cell periphery and was necessary for survival under different types of cell wall stress. Wsc1p-GFP was concentrated in patches at the cell tips, it interacted with the Rho-GEF Rgf2p, and its overexpression activated cell wall biosynthesis. Our results are consistent with the notion that cell wall assembly is regulated by two different networks involving Rho1p. One includes signaling from Mtl2p through Rho1p to Pck1p, while the second one implicates signaling from Wsc1p and Rgf2p through Rho1p to activate glucan synthase (GS). Finally, signaling through the mitogen-activated protein kinase (MAPK) Pmk1p remained active in mtl2Δ and wsc1Δ disruptants exposed to cell wall stress, suggesting that the cell wall stress-sensing spectrum of Schizosaccharomyces pombe sensor-like proteins differs from that of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Sandra Cruz
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/Zacarías González s/n., Salamanca, Spain
| | | | | | | | | |
Collapse
|
67
|
Cvelbar D, Zist V, Kobal K, Zigon D, Zakelj-Mavrič M. Steroid toxicity and detoxification in ascomycetous fungi. Chem Biol Interact 2013; 202:243-58. [PMID: 23257178 DOI: 10.1016/j.cbi.2012.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
In the last couple of decades fungal infections have become a significant clinical problem. A major interest into fungal steroid action has been provoked since research has proven that steroid hormones are toxic to fungi and affect the host/fungus relationship. Steroid hormones were found to differ in their antifungal activity in ascomycetous fungi Hortaea werneckii, Saccharomyces cerevisiae and Aspergillus oryzae. Dehydroepiandrosterone was shown to be the strongest inhibitor of growth in all three varieties of fungi followed by androstenedione and testosterone. For their protection, fungi use several mechanisms to lower the toxic effects of steroids. The efficiency of biotransformation in detoxification depended on the microorganism and steroid substrate used. Biotransformation was a relatively slow process as it also depended on the growth phase of the fungus. In addition to biotransformation, steroid extrusion out of the cells contributed to the lowering of the active intracellular steroid concentration. Plasma membrane Pdr5 transporter was found to be the most effective, followed by Snq2 transporter and vacuolar transporters Ybt1 and Ycf1. Proteins Aus1 and Dan1 were not found to be involved in steroid import. The research of possible targets of steroid hormone action in fungi suggests that steroid hormones inhibit ergosterol biosynthesis in S. cerevisiae and H. werneckii. Results of this inhibition caused changes in the sterol content of the cellular membrane. The presence of steroid hormones most probably causes the degradation of the Tat2 permease and impairment of tryptophan import.
Collapse
Affiliation(s)
- Damjana Cvelbar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
68
|
Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev 2013; 113:3391-406. [PMID: 23428231 DOI: 10.1021/cr3002627] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
69
|
Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae. Biochem J 2012; 446:477-88. [PMID: 22747505 DOI: 10.1042/bj20120634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike other stresses, the physiological significance and molecular mechanisms involved in the yeast cold response are largely unknown. In the present study, we show that the CWI (cell wall integrity) pathway plays an important role in the growth of Saccharomyces cerevisiae at low temperatures. Cells lacking the Wsc1p (wall integrity and stress response component 1) membrane sensor or the MAPKs (mitogen-activated protein kinases) Bck1p (bypass of C kinase 1), Mkk (Mapk kinase) 1p/Mkk2p or Slt2p (suppressor of lyt2) exhibited cold sensitivity. However, there was no evidence of either a cold-provoked perturbation of the cell wall or a differential cold expression program mediated by Slt2p. The results of the present study suggest that Slt2p is activated by different inputs in response to nutrient signals and mediates growth control through TORC1 (target of rapamycin 1 complex)-Sch9p (suppressor of cdc25) and PKA (protein kinase A) at low temperatures. We found that absence of TOR1 (target of rapamycin 1) causes cold sensitivity, whereas a ras2Δ mutant shows increased cold growth. Lack of Sch9p alleviates the phenotype of slt2Δ and bck1Δ mutant cells, as well as attenuation of PKA activity by overexpression of BCY1 (bypass of cyclase mutations 1). Interestingly, swi4Δ mutant cells display cold sensitivity, but the phenotype is neither mediated by the Slt2p-regulated induction of Swi4p (switching deficient 4)-responsive promoters nor influenced by osmotic stabilization. Hence, cold signalling through the CWI pathway has distinct features and might mediate still unknown effectors and targets.
Collapse
|
70
|
Dupres V, Heinisch JJ, Dufrêne YF. Atomic force microscopy demonstrates that disulfide bridges are required for clustering of the yeast cell wall integrity sensor Wsc1. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15129-15134. [PMID: 22107047 DOI: 10.1021/la203679s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In yeasts, cell surface stresses are detected by a family of plasma membrane sensors. Among these, Wsc1 contains an extracellular cysteine-rich domain (CRD), which mediates sensor clustering and is believed to anchor the sensor in the cell wall. Although the formation of Wsc1 clusters and their interaction with the intracellular pathway components are important for proper stress signaling, the molecular mechanisms underlying clustering remain poorly understood. Here, we used the combination of single-molecule atomic force microscopy (AFM) with genetic manipulations to demonstrate that Wsc1 clustering involves disulfide bridges of the CRD. Using AFM tips carrying nitrilotriacetate groups, we mapped the distribution of individual His-tagged sensors on living yeast cells. While Wsc1 formed nanoscale clusters on native cells, clustering was no longer observed after treatment with the reducing agent dithiothreitol (DTT), indicating that intra- or intermolecular disulfide bridges are required for clustering. Moreover, DTT treatment resulted in a significant increase in cell surface roughness, suggesting that disulfide bridges between other cell-wall proteins are crucial for proper cell surface topology. The remarkable sensor properties unravelled here may well apply to other sensors and receptors with cysteine-rich domains throughout biology. Our combined method of AFM with genetic manipulations offers great prospects to explore the mechanisms underlying the clustering of cell surface proteins.
Collapse
Affiliation(s)
- Vincent Dupres
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
71
|
Milk and sugar: Regulation of cell wall synthesis in the milk yeast Kluyveromyces lactis. Eur J Cell Biol 2011; 90:745-50. [DOI: 10.1016/j.ejcb.2011.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|