51
|
KILIC A, ALSHHAB A, OKUMUS V. Preparation and spectroscopic properties of bioactive 1, 2, 3-triazole-linked boronate esters for use in antioxidant, antimicrobial, and DNA binding studies. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
52
|
Kondo N, Takada S, Hagimori M, Temma T. Development of a 2-(2-Hydroxyphenyl)-1 H-benzimidazole-Based Fluorescence Sensor Targeting Boronic Acids for Versatile Application in Boron Neutron Capture Therapy. Cancers (Basel) 2023; 15:cancers15061862. [PMID: 36980747 PMCID: PMC10046934 DOI: 10.3390/cancers15061862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an attractive approach to treating cancers. Currently, only one 10B-labeled boronoagent (Borofalan, BPA) has been approved for clinical BNCT in Japan, and methods for predicting and measuring BNCT efficacy must be established to support the development of next-generation 10B-boronoagents. Fluorescence sensors targeting boronic acids can achieve this because the amount and localization of 10B in tumor tissues directly determine BNCT efficacy; however, current sensors are nonoptimal given their slow reaction rate and weak fluorescence (quantum yield < 0.1). Herein, we designed and synthesized a novel small molecular-weight fluorescence sensor, BITQ, targeting boronic acids. In vitro qualitative and quantitative properties of BITQ were assessed using a fluorophotometer and a fluorescence microscope together with BPA quantification in blood samples. BITQ exhibited significant quantitative and selective fluorescence after reacting with BPA (post-to-pre-fluorescence ratio = 5.6; quantum yield = 0.53); the fluorescence plateaued within 1 min after BPA mixing, enabling the visualization of intracellular BPA distribution. Furthermore, BITQ quantified the BPA concentration in mouse blood with reliability comparable with that of current methods. This study identifies BITQ as a versatile fluorescence sensor for analyzing boronic acid agents. BITQ will contribute to 10B-boronoagent development and promote research in BNCT.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Shinya Takada
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya 663-8179, Hyogo, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| |
Collapse
|
53
|
Abstract
Direct borylation of benzylic alcohols has been achieved via an iodine-catalyzed process. This transition-metal-free borylation transformation is compatible with various functional groups and provides a practical and convenient method to access important and useful benzylic boronate esters from widely available benzylic alcohols. Preliminary mechanistic investigations indicated that benzylic iodide and radicals are involved as the key intermediates in this borylation reaction.
Collapse
Affiliation(s)
- Chunyu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
54
|
Yuan S, Shen DD, Bai YR, Zhang M, Zhou T, Sun C, Zhou L, Wang SQ, Liu HM. Oxazolidinone: A promising scaffold for the development of antibacterial drugs. Eur J Med Chem 2023; 250:115239. [PMID: 36893700 DOI: 10.1016/j.ejmech.2023.115239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Due to the long-term and widespread use of antibiotics in clinic, the problem of bacterial resistance is increasingly serious, and the development of new drugs to treat drug-resistant bacteria has gradually become the mainstream direction of antibiotic research. The oxazolidinone-containing drugs linezolid, tedizolid phosphate and contezolid have been approved to the market, which are effective against a variety of Gram-positive bacterium infections. Moreover, there are also many antibiotics containing oxazolidinone fragment under clinical investigation that show good pharmacokinetic and pharmacodynamic properties with unique mechanism of action against resistant bacteria. In this review, we summarized the oxazolidinone-based antibiotics already on the market or in clinical trials and the representative bioactive molecules, and mainly focused on their structural optimizations, development strategies and structure-activity relationships in hope of insight into the reasonable design for medical chemists to develop new oxazolidinone antibiotics with highly potency and fewer side effects.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Miao Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Tian Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Sun
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Sai-Qi Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, 450008, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
55
|
Yuan K, Ingleson MJ. Haloboration of o-Alkynyl Phenols Generates Halogenated Bicyclic-Boronates. Angew Chem Int Ed Engl 2023; 62:e202301463. [PMID: 36856077 DOI: 10.1002/anie.202301463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
Benzoxaborinines are intermediates en-route to bicyclic boronates that are important active pharmaceutical ingredients (APIs). Herein, the haloboration of o-alkynyl-phenols using BX3 (X=Cl or Br) is disclosed as a route to form C4-X-benzoxaborinines with good functional group tolerance. Computational studies indicated that there are two similar in barrier mechanisms: (i) double alkyne haloboration followed by retro-haloboration; (ii) concerted trans-haloboration involving an exogenous chloride source. The C4-halide in these benzoxaborinines is useful, with a one-pot haloboration-Negishi cross coupling protocol effective to form benzoxaborinines with an alkyl or an aryl at C4. Therefore this method is a useful addition to the toolbox for synthesising bicyclic-boronates that are attracting increasing attention as APIs.
Collapse
Affiliation(s)
- Kang Yuan
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | | |
Collapse
|
56
|
Luo L, Tang S, Wu J, Jin S, Zhang H. Transition Metal-Free Aromatic C-H, C-N, C-S and C-O Borylation. CHEM REC 2023; 23:e202300023. [PMID: 36850026 DOI: 10.1002/tcr.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C-H and C-Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C-H and C-Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C-H, C-N, C-S, and C-O borylation transformations and provides insights to where further developments are required.
Collapse
Affiliation(s)
- Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiangyue Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
57
|
Estevez-Fregoso E, Kilic A, Rodríguez-Vera D, Nicanor-Juárez LE, Romero-Rizo CEM, Farfán-García ED, Soriano-Ursúa MA. Effects of Boron-Containing Compounds on Liposoluble Hormone Functions. INORGANICS 2023; 11:84. [DOI: 10.3390/inorganics11020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. Additionally, some toxicology reports on mammals, including humans, sound an alert concerning damage to several systems, among which are the negative effects on the induction of male infertility. Systemic and local mechanisms to explain changes in metabolism and impaired fertility were collected and presented. Then, we presented the putative pharmacodynamic and pharmacokinetic mechanisms involved and demonstrated in these events. In addition, it is proposed that there are adducts of some oxygenated BCC with cis-diols in fructose, an essential source of energy for sperm–cell motility, an uncoupling of sex hormone-binding globulin (SHBG) and its ligands, and the modulation of the DNA synthetic rate. These effects share the reactivity of boron-containing compounds on the cis-diols of key molecules. Moreover, data reporting no DNA damage after BCC administration are included. Further studies are required to support the clear role of BCC through these events to disrupt metabolism or fertility in mammals. If such phenomena are confirmed and elucidated, an advance could be useful to design strategies for avoiding BCC toxicity after BCC administration, and possibly for designing metabolism regulators and contraceptive drugs, among other purposes. Boronic derivatives and carboranes have been proposed and studied in this field.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Ahmet Kilic
- Department of Chemistry, Harran University, 63190 Sanliurfa, Turkey
| | - Diana Rodríguez-Vera
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Luis E. Nicanor-Juárez
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - C. Elena M. Romero-Rizo
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| |
Collapse
|
58
|
Dearomative triple elementalization of quinolines driven by visible light. Nat Commun 2023; 14:652. [PMID: 36746969 PMCID: PMC9902486 DOI: 10.1038/s41467-023-36161-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Organoboron and organosilicon compounds are used not only as synthetic building blocks but also as functional materials and pharmaceuticals, and compounds with multiple boryl and silyl groups are beginning to be used for these purposes. Especially in drug discovery, methodology providing easy stereoselective access to aliphatic nitrogen heterocycles bearing multiple boryl or silyl groups from readily available aromatic nitrogen heterocycles would be attractive. However, such transformations remain challenging, and available reactions have been mostly limited to dearomative hydroboration or hydrosilylation reactions. Here, we report the dearomative triple elementalization (carbo-sila-boration) of quinolines via the addition of organolithium followed by photo-boosted silaboration, affording the desired products with complete chemo-, regio-, and stereoselectivity. The reaction proceeds via the formation of silyl radicals instead of silyl anions. We also present preliminary studies to illustrate the potential of silaboration products as synthetic platforms.
Collapse
|
59
|
Thai-Savard L, Sayes M, Perreault-Dufour J, Hong G, Wells LA, Kozlowski MC, Charette AB. Organocatalyzed Visible Light-Mediated gem-Borosilylcyclopropanation. J Org Chem 2023; 88:1515-1521. [PMID: 36655845 PMCID: PMC10106276 DOI: 10.1021/acs.joc.2c02535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The borosilylcyclopropanation of styrene derivatives using a (diiodo(trimethylsilyl)methyl)boronic ester carbene precursor is reported herein. The key reagent was synthesized in a 4-step sequence using inexpensive and commercially available starting materials. This method enabled the preparation of novel 1,1,2-tri- and 1,1,2,2-tetrasubstituted borosilylcyclopropanes up to excellent yields and diastereoselectivity. The reaction is organocatalyzed by eosin Y in the presence of visible light. A mechanism consistent with the experimental observations was postulated based on density functional theory calculations. The versatility of these entities was highlighted through post-functionalization reactions.
Collapse
Affiliation(s)
- Léa Thai-Savard
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Morgane Sayes
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Josiane Perreault-Dufour
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Gang Hong
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Lucille A. Wells
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa C. Kozlowski
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - André B. Charette
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
60
|
Design, Synthesis and Antimicrobial Evaluation of New N-(1-Hydroxy-1,3-dihydrobenzo[ c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides as Potential Inhibitors of Mycobacterial Leucyl-tRNA Synthetase. Int J Mol Sci 2023; 24:ijms24032951. [PMID: 36769275 PMCID: PMC9917560 DOI: 10.3390/ijms24032951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis remains a serious killer among infectious diseases due to its incidence, mortality, and occurrence of resistant mycobacterial strains. The challenge to discover new antimycobacterial agents forced us to prepare a series of N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides 1-19 via the acylation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol with various activated (hetero)arylcarboxylic acids. These novel compounds have been tested in vitro against a panel of clinically important fungi and bacteria, including mycobacteria. Some of the compounds inhibited the growth of mycobacteria in the range of micromolar concentrations and retained this activity also against multidrug-resistant clinical isolates. Half the maximal inhibitory concentrations against the HepG2 cell line indicated an acceptable toxicological profile. No growth inhibition of other bacteria and fungi demonstrated selectivity of the compounds against mycobacteria. The structure-activity relationships have been derived and supported with a molecular docking study, which confirmed a selectivity toward the potential target leucyl-tRNA synthetase without an impact on the human enzyme. The presented compounds can become important materials in antimycobacterial research.
Collapse
|
61
|
Abeysinghe RT, Ravenscroft AC, Knowlden SW, Akhmedov NG, Dolinar BS, Popp BV. Synthesis of Novel Multifunctional bora-Ibuprofen Derivatives. INORGANICS 2023; 11:70. [DOI: 10.3390/inorganics11020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
A unique class of β-boron-functionalized non-steroidal anti-inflammatory compound (pinB-NSAID) was previously synthesized via copper-catalyzed 1,2-difunctionalization of the respective vinyl arene with CO2 and B2pin2 reagents. Here, pinacolylboron-functionalized ibuprofen (pinB-ibuprofen) was used as a model substrate to develop the conditions for pinacol deprotection and subsequent boron functionalization. Initial pinacol-boronic ester deprotection was achieved by transesterification with diethanolamine (DEA) from the boralactonate organic salt. The resulting DEA boronate adopts a spirocyclic boralactonate structure rather than a diazaborocane–DABO boronate structure. The subsequent acid-mediated hydrolysis of DEA and transesterification/transamination provided a diverse scope of new boron-containing ibuprofen derivatives.
Collapse
Affiliation(s)
- Randika T. Abeysinghe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Alexis C. Ravenscroft
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Steven W. Knowlden
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Brian S. Dolinar
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Brian V. Popp
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
62
|
Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int J Mol Sci 2023; 24:ijms24032757. [PMID: 36769081 PMCID: PMC9917063 DOI: 10.3390/ijms24032757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Drug delivery systems, which use components at the nanoscale level as diagnostic tools or to release therapeutic drugs to particular target areas in a regulated manner, are a fast-evolving field of science. The active pharmaceutical substance can be released via the drug delivery system to produce the desired therapeutic effect. The poor bioavailability and irregular plasma drug levels of conventional drug delivery systems (tablets, capsules, syrups, etc.) prevent them from achieving sustained delivery. The entire therapy process may be ineffective without a reliable delivery system. To achieve optimal safety and effectiveness, the drug must also be administered at a precision-controlled rate and the targeted spot. The issues with traditional drug delivery are overcome by the development of stimuli-responsive controlled drug release. Over the past decades, regulated drug delivery has evolved considerably, progressing from large- and nanoscale to smart-controlled drug delivery for several diseases. The current review provides an updated overview of recent developments in the field of stimuli-responsive boron-based materials in drug delivery for various diseases. Boron-containing compounds such as boron nitride, boronic acid, and boron dipyrromethene have been developed as a moving field of research in drug delivery. Due to their ability to achieve precise control over drug release through the response to particular stimuli (pH, light, glutathione, glucose or temperature), stimuli-responsive nanoscale drug delivery systems are attracting a lot of attention. The potential of developing their capabilities to a wide range of nanoscale systems, such as nanoparticles, nanosheets/nanospheres, nanotubes, nanocarriers, microneedles, nanocapsules, hydrogel, nanoassembly, etc., is also addressed and examined. This review also provides overall design principles to include stimuli-responsive boron nanomaterial-based drug delivery systems, which might inspire new concepts and applications.
Collapse
|
63
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
64
|
Şahin Y, Çoban EP, Aygün M, Sevinçek R, Özgener H, Bıyık HH, Metin K, Gürbüz B. Synthesis and antifungal and antibacterial bioactivities of diborolanes containing arylamines. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
65
|
Farfán-García ED, Kilic A, García-Machorro J, Cuevas-Galindo ME, Rubio-Velazquez BA, García-Coronel IH, Estevez-Fregoso E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:733-754. [DOI: 10.1016/b978-0-323-85730-7.00026-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
66
|
Synthesis and Antimicrobial Activities of Boron-Containing Isoniazid Derivatives. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Ren J, Gao Y, Shi W, Xu S, Wang Q, Zhao D, Kong L, Song W, Wang X, Zhang Y, He X, Wang Y, Tong S, Lu P, Li Y, Xu H, Zhang Y. Design and synthesis of boron-containing ALK inhibitor with favorable in vivo efficacy. Bioorg Med Chem 2022; 75:117071. [PMID: 36332597 DOI: 10.1016/j.bmc.2022.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
ALK is an attractive therapeutic target for the treatment of non-small cell lung cancer. As an emerging element in medicinal chemistry, boron has achieved great success in the discovery of antitumor drugs and antibacterial agents. Through construction of a BCC (boron-containing compound) compound library and broad kinase screening, we found the ALK inhibitor hit compound 10a. Structural optimization by CADD and isosterism revealed that lead compound 10k has improved activity (ALKL1196M IC50 = 8.4 nM, NCI-H2228 cells IC50 = 520 nM) and better in vitro metabolic stability (human liver microsomes, T1/2 = 238 min). Compound 10k showed good in vivo efficacy in a nude mouse NCI-H2228 lung cancer xenograft model with a TGI of 52 %. Molecular simulation analysis results show that the hydroxyl group on the oxaborole forms a key hydrogen bond with Asn1254 or Asp1270, and this binding site provides a new idea for drug design. This is the first publicly reported lead compound for a boron-containing ALK inhibitor.
Collapse
Affiliation(s)
- Jing Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China; Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yong Gao
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wei Shi
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Sheng Xu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Qinglin Wang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Damin Zhao
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Lingming Kong
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wei Song
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiaojin Wang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Ying Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiangyi He
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Shunyu Tong
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Peng Lu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yang Li
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hongjiang Xu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| | - Yinsheng Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| |
Collapse
|
68
|
Jayarajan R, Kireilis T, Eriksson L, Szabó KJ. Asymmetric Organocatalytic Homologation: Access to Diverse Chiral Trifluoromethyl Organoboron Species. Chemistry 2022; 28:e202202059. [PMID: 35980871 DOI: 10.1002/chem.202202059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/07/2023]
Abstract
A broad range of aliphatic, aromatic, and heterocyclic boronic acids were successfully homologated using trifluorodiazoethane in the presence of BINOL derivatives to provide the corresponding chiral trifluoromethyl containing boronic acid derivatives in high yields and excellent enantioselectivity. The in situ conversion of the chiral transient boronic acids to the corresponding alcohols or β-CF3 carboxylates are also demonstrated.
Collapse
Affiliation(s)
- Ramasamy Jayarajan
- Department of Organic Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Tautvydas Kireilis
- Department of Organic Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, SE106 91, Stockholm, Sweden
| | - Kálmán J Szabó
- Department of Organic Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
69
|
Kondo N, Aoki E, Takada S, Temma T. A Red-Emitting Fluorescence Sensor for Detecting Boronic Acid-Containing Agents in Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:7671. [PMID: 36236770 PMCID: PMC9573690 DOI: 10.3390/s22197671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The amount and localization of boron-10 atoms delivered into tumor cells determines the therapeutic effect of boron neutron capture therapy (BNCT) and, consequently, efforts have been directed to develop fluorescence sensors to detect intracellular boronic acid compounds. Currently, these sensors are blue-emitting and hence are impracticable for co-staining with nucleus staining reagents, such as DAPI and Hoechst 33342. Here, we designed and synthesized a novel fluorescence boron sensor, BS-631, that emits fluorescence with a maximum emission wavelength of 631 nm after reaction with the clinically available boronic acid agent, 4-borono-l-phenylalanine (BPA). BS-631 quantitatively detected BPA with sufficiently high sensitivity (detection limit = 19.6 µM) for evaluating BNCT agents. Furthermore, BS-631 did not emit fluorescence after incubation with metal cations. Notably, red-emitting BS-631 could easily and clearly visualize the localization of BPA within cells with nuclei co-stained using Hoechst 33342. This study highlights the promising properties of BS-631 as a versatile boron sensor for evaluating and analyzing boronic acid agents in cancer therapy.
Collapse
|
70
|
Deng L, Mo J, Zhang Y, Peng K, Li H, Ouyang S, Feng Z, Fang W, Wei J, Rong D, Zhang X, Wang Y. Boronic Acid: A Novel Pharmacophore Targeting Src Homology 2 (SH2) Domain of STAT3. J Med Chem 2022; 65:13094-13111. [PMID: 36170649 DOI: 10.1021/acs.jmedchem.2c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SH2 domains have been recognized as promising targets for various human diseases. However, targeting SH2 domains with phosphopeptides or small-molecule inhibitors derived from bioisosteres of the phosphate group is still challenging. Identifying novel bioisosteres of the phosphate group to achieve favorable in vivo potency is urgently needed. Here, we report the feasibility of targeting the STAT3-SH2 domain with a boronic acid group and the identification of a highly potent inhibitor compound 7 by replacing the carboxylic acid of compound 4 with a boronic acid. Compound 7 shows higher binding affinity, better cellular potency, more favorable PK profiles, and higher in vivo antitumor activity than 4. The stronger anticancer effect of 7 partially stems from its covalent binding mode with the SH2 domain, verified by the washout experiments. The relatively high level of sequence conservation among SH2 domains makes the results presented here of general significance.
Collapse
Affiliation(s)
- Lin Deng
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianshan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Keren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huaxuan Li
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zongbo Feng
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Wei
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.,National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
71
|
KILIC A, Emin KARATAS M, BEYAZSAKAL L, OKUMUS V. Preparation and spectral studies of boronate ester modified magnetite iron nanoparticles (Fe3O4@APTES-B) as a new type of biological agents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Omeroglu Ulu Z, Bolat ZB, Sahin F. Integrated transcriptome and in vitro analysis revealed anti-proliferative effect of sodium perborate on hepatocellular carcinoma cells. J Trace Elem Med Biol 2022; 73:127011. [PMID: 35716648 DOI: 10.1016/j.jtemb.2022.127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocelular carcinoma is one of the leading cancer types with no effective cure as poor prognosis is still a challenging aspect. Thus, alternative therapeutics are necessary to control hepatocelular carcinoma. Boron derivatives such as boric acid (BA), sodium perborate tetrahydrate (SPT) and sodium pentaborate pentahydrate (NaB) have been discovered to have anti-cancer effect. This study investigated the anti-proliferative effects of SPT against hepatocelular carcinoma (HCC) using in vitro and transcriptome approaches. METHODS Cytotoxic level of SPT on cell survival were detected using MTS assay. The apoptotic cell death and cell cycle arrest was determined using Annexin V/PI and cell cycle assay, respectively. Transcriptome analysis was performed using RNA-seq, followed by functional and KEGG pathway enrichment analysis. qPCR was used to validate the different genes. RESULTS SPT treated HepG2 and Hep3B cells induced cytotoxicity having IC50 values of 1.13 mM and 0.91 mM, respectively. SPT caused mitotic arrest in G0/G1 phase at 48 h and subsequent apoptotic cell death. RNA-seq revealed a total number of 822 and 1075 differentially expressed genes (DEGs) which after SPT treatment in HepG2 and Hep3B cells, respectively. Functional and KEGG pathway enrichment results suggested that there are several genes involved to induce apoptosis related pathways. The DEGs in p53 signaling pathway may have closely relationships to the cells apoptosis caused by SPT treatment. qPCR results validated dynamic changes in p53 signaling pathway, DNA replication and cell cycle related genes, such as CDKN1A, SERPINE1, PMAIP1, MCM3, MCM5 and MCM6. CONCLUSION In vitro experiments and RNA-seq analysis show anti-proliferative and apoptotic effect of SPT in HCC cells. Further studies might help in understanding the molecular mechanisms of SPT.
Collapse
Affiliation(s)
- Zehra Omeroglu Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., Atasehir, Istanbul 34755, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., Atasehir, Istanbul 34755, Turkey; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali Cad. 281, Kucukcekmece, Istanbul 34303, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., Atasehir, Istanbul 34755, Turkey.
| |
Collapse
|
73
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space:
cis
‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022; 61:e202206687. [PMID: 35612895 PMCID: PMC9400866 DOI: 10.1002/anie.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/08/2022]
Abstract
A new class of saturated boron‐incorporated cyclic molecules has been synthesized employing an arene‐hydrogenation methodology. cis‐Selective hydrogenation of easily accessible, and biologically important molecules comprising benzoxaborole, benzoxaborinin, and benzoxaboripin derivatives is reported. Among the various catalysts tested, rhodium cyclic(alkyl)(amino)carbene [Rh‐CAAC] (1) pre‐catalyst revealed the best hydrogenation activity confirming turnover number up to 1400 with good to high diastereoselectivity. A broad range of functional groups was tolerated including sensitive substituents such as −F, −CF3, and −silyl groups. The utility of the synthesized products was demonstrated by the recognition of diols and sugars under physiological conditions. These motifs can have a substantial importance in medicinal chemistry as they possess a three‐dimensional structure, are highly stable, soluble in water, form hydrogen bonds, and interact with diols and sugars.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster Westfälische Center for Soft Nanoscience (SoN) and Organisch-Chemisches Institut Busso-Peus-Str.10 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
74
|
Liu X, Shen Y, Lu C, Jian Y, Xia S, Gao Z, Zheng Y, An Y, Wang Y. Visible-light-driven PhSSPh-catalysed regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-boranes. Chem Commun (Camb) 2022; 58:8380-8383. [PMID: 35792097 DOI: 10.1039/d2cc02846h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A photo-induced transition-metal-free regioselective hydroborylation of α,β-unsaturated carbonyl compounds is developed. The PhSSPh reagent was employed as the photocatalyst, and NHC-BH3 was used as the boron source. This transformation shows a broad substrate scope and provides a wide range of α-borylcarbonyl molecules in good to excellent yields.
Collapse
Affiliation(s)
- Xinghua Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yujing Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zhaoliang Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yihan Zheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
75
|
Synthesis and Theoretical Studies of Aromatic Azaborines. ORGANICS 2022. [DOI: 10.3390/org3030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organoboron compounds are well known for their use as synthetic building blocks in several significant reactions, e.g., palladium-catalyzed Suzuki-Miyaura cross-coupling. As an element, boron is fascinating; as part of a molecule it structurally resembles a three-valent atom, but if there is a lone pair of electrons nearby, the boron atom’s empty p-orbital may capture the lone pair and form a covalent bond. This is the main aspect that is challenging chemistry during the synthesis of boron containing molecules and may lead into unexpected reactions and products. To study this, we synthesized and studied novel aromatic azaborines for better understanding of their structures and reactions. Here, we report a one-pot method for the synthesis of substituted aromatic azaborines and computational studies of their structure to explain their observed chemical properties.
Collapse
|
76
|
Farfán-García ED, Rosales-Hernández MC, Castillo-García EL, Abad-García A, Ruiz-Maciel O, Velasco-Silveyra LM, González-Muñiz AY, Andrade-Jorge E, Soriano-Ursúa MA. Identification and evaluation of boronic compounds ameliorating cognitive deficit in orchiectomized rats. J Trace Elem Med Biol 2022; 72:126979. [PMID: 35364473 DOI: 10.1016/j.jtemb.2022.126979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is a trace element with increasing importance in drug design. In this sense, boronic acids are emerging as therapeutic agents for several diseases. METHODS Herein, 3- and 4- acetamidophenylboronic acids and 4-acetamidophenylboronic acid pinacol ester were identified as potential inhibitors of acetylcholinesterase through docking assays on eel, rat, and human acetylcholinesterases indicating binding on the gorge region of the target enzymes. Then, these compounds were evaluated in vitro and in vivo. RESULTS It was found these compounds showed ability to inhibit acetylcholinesterase as competitive and non-competitive inhibitors. But also, these compounds were non-toxic to PC12 cells at micromolar concentration, and they have the ability to protect those cells against damage by amyloid-beta. CONCLUSIONS Noticeably, intraperitoneal administration of these boronic compounds to rats with the cognitive deficit induced by orchiectomy provided ameliorative effects on disrupted behavior and neuronal damage induced by hormonal deprivation. Additional approaches are required to evaluate the possibility of multiple mechanisms of action for the observed effects in the central nervous system.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México.
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis. Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Emily L Castillo-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Omar Ruiz-Maciel
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Luz M Velasco-Silveyra
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Alejandra Y González-Muñiz
- Laboratorio de Biofísica y Biocatálisis. Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Erik Andrade-Jorge
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México.
| |
Collapse
|
77
|
Abstract
Recent synthetic achievements have led to 4,4-disubstituted-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) with varying substituents at the meso, pyrrolic and/or boron sites, with each influencing photophysical properties and utility. This Feature article gives an overview of chemistry at the boron atom in BODIPYs, highlighting our contributions that evolved from synthetic curiosities and now offer this dipyrrolic skeleton potential across a wider range of applications. We first summarise preparative routes to BODIPYs through complexation of boron with the dipyrrinato ligand. The role of boron in protecting dipyrrins is then discussed, followed by strategies by which to achieve facile substitution at the boron atom.
Collapse
Affiliation(s)
- Rosinah Liandrah Gapare
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
78
|
Das BC, Adil Shareef M, Das S, Nandwana NK, Das Y, Saito M, Weiss LM. Boron-Containing heterocycles as promising pharmacological agents. Bioorg Med Chem 2022; 63:116748. [PMID: 35453036 DOI: 10.1016/j.bmc.2022.116748] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
The incorporation of the "magic" boron atom has been established as an important new strategy in the field of medicinal chemistry as boron compounds have been shown to form various bonds with their biological targets. Currently, a number of boron-based drugs (e.g. bortezomib, crisaborole, and tavaborole) have been FDA approved and are in the clinic, and several other boron-containing compounds are in clinical trials. Boron-based heterocycles have an incredible potential in the ongoing quest for new therapeutic agents owing to their plethora of biological activities and useful pharmacokinetic profiles. The present perspective is intended to review the pharmacological applications of boron-based heterocycles that have been published. We have classified these compounds into groups exhibiting shared pharmacological activities and discussed their corresponding biological targets focusing mainly on the most potent therapeutic compounds.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA; Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Nitesh K Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Louis M Weiss
- Department of Medicine, Division of Infectious Diseases and Department of Pathology Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx NY-10461, USA
| |
Collapse
|
79
|
Ang HT, Ponich AA, Paladino M, Miskolzie M, Hall DG. Unraveling the Silent Hydrolysis of Cyclic B-X/C═C Isosteres: The Striking Impact of a Single Heteroatom on the Aromatic, Acidic, and Dynamic Properties of Hemiboronic Phenanthroids. J Am Chem Soc 2022; 144:10570-10581. [PMID: 35647809 DOI: 10.1021/jacs.2c03429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although heterocyclic hemiboronic acids are represented in several recently approved drugs, many questions remain unanswered regarding the physical properties and reactivity of these boranol (BOH)-containing compounds in aqueous media. Over the past 60 years, studies on the acidic and aromatic character of 10-hydroxy-10,9-boroxarophenanthrene and its boraza analog have been conflicting. In contradiction with the Lewis acidic behavior of arylboronic acids in aqueous conditions, it has been proposed that the central boroheterocyclic ring of these borophenanthroids confers sufficient aromatic character to compel the boranol unit to behave as a Brønsted acid and favor the boron oxy conjugate base, thereby avoiding the disruption of cyclic resonance that would otherwise occur with a tetravalent boronate anion. These questions are addressed with a combination of physical and spectroscopic characterizations, X-ray crystallographic analysis, and computational studies. Although both oxa and aza derivatives are conclusively shown to behave as Lewis acids in aqueous solutions, according to pKa measurements and MO and NICS calculations, only the boraza derivatives possess an appreciable aromatic character within the boroheterocyclic ring. For the first time, the possibility of dynamic chemical exchange via a reversible hydrolysis of the endocyclic B-heteroatom bond was examined using VT and EXSY NMR with suitable probe compounds. Whereas the boraza analog is static at neutral pH, its oxa analog undergoes a rapid hydrolytic ring opening-closing equilibrium with the transient boronic acid. Altogether, this study will guide the methodical application of these heterocycles as reaction catalysts, in bioconjugation, and as new-drug chemotypes and bioisosteres of pharmaceutically important classes of heterocycles.
Collapse
Affiliation(s)
- Hwee Ting Ang
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ashley A Ponich
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Marco Paladino
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
80
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space: cis‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry Münster GERMANY
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
81
|
Kim SH, Steere L, Zhang YK, McGregor C, Hahne C, Zhou Y, Liu C, Cai Y, Zhou H, Chen X, Puumala E, Duncan D, Wright GD, Liu CT, Whitesell L, Cowen LE. Inhibiting C-4 Methyl Sterol Oxidase with Novel Diazaborines to Target Fungal Plant Pathogens. ACS Chem Biol 2022; 17:1343-1350. [PMID: 35584803 DOI: 10.1021/acschembio.2c00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With resistance to current agricultural fungicides rising, a great need has emerged for new antifungals with unexploited targets. In response, we report a novel series of diazaborines with potent activity against representative fungal plant pathogens. To identify their mode of action, we selected for resistant isolates using the model fungus Saccharomyces cerevisiae. Whole-genome sequencing of independent diazaborine-resistant lineages identified a recurring mutation in ERG25, which encodes a C-4 methyl sterol oxidase required for ergosterol biosynthesis in fungi. Haploinsufficiency and allele-swap experiments provided additional genetic evidence for Erg25 as the most biologically relevant target of our diazaborines. Confirming Erg25 as putative target, sterol profiling of compound-treated yeast revealed marked accumulation of the Erg25 substrate, 4,4-dimethylzymosterol and depletion of both its immediate product, zymosterol, as well as ergosterol. Encouraged by these mechanistic insights, the potential utility of targeting Erg25 with a diazaborine was demonstrated in soybean-rust and grape-rot models of fungal plant disease.
Collapse
Affiliation(s)
- Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Luke Steere
- 5Metis, Inc., 5 Laboratory Drive, Ste. 2175, Durham, North Carolina 27709, United States
| | - Yong-Kang Zhang
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Cari McGregor
- 5Metis, Inc., 5 Laboratory Drive, Ste. 2175, Durham, North Carolina 27709, United States
| | - Chris Hahne
- 5Metis, Inc., 5 Laboratory Drive, Ste. 2175, Durham, North Carolina 27709, United States
| | - Yasheen Zhou
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Chunliang Liu
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Yan Cai
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Haibo Zhou
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Xuefei Chen
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Dustin Duncan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Gerard D. Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - C. Tony Liu
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
82
|
Rahimi R, Solimannejad M. B3O3 monolayer with dual application in sensing of COVID-19 biomarkers and drug delivery for treatment purposes: A periodic DFT study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
83
|
Szwetkowski C, Slebodnick C, Santos WL. Regio- and stereoselective copper-catalyzed α,β-protoboration of allenoates: access to Z-β,γ-unsaturated β-boryl esters. Org Biomol Chem 2022; 20:3287-3291. [PMID: 35383802 DOI: 10.1039/d2ob00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient regio- and stereoselective method for allenoate borylation has been developed. Using CuCl and bis(pinacolato)diboron in methanol, a variety of allenoates underwent β-boration and α-protonation to afford the corresponding Z-β,γ-unsaturated β-boryl esters under mild conditions with up to 81% yields.
Collapse
Affiliation(s)
- Connor Szwetkowski
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| |
Collapse
|
84
|
Das BC, Nandwana NK, Das S, Nandwana V, Shareef MA, Das Y, Saito M, Weiss LM, Almaguel F, Hosmane NS, Evans T. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules 2022; 27:2615. [PMID: 35565972 PMCID: PMC9104566 DOI: 10.3390/molecules27092615] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure-activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer's agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Louis M. Weiss
- Department of Pathology, Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| |
Collapse
|
85
|
Erkmen T, Serdar BS, Ateş H, Korkmaz M, Koçtürk S. Borax Pentahydrate and Disodium Pentaborate Decahydrate Are Candidates as Anti-leukemic Drug Components by Inducing Apoptosis and Changing Bax/Bcl-2 Ratio in HL-60 Cell Line. Biol Trace Elem Res 2022; 200:1608-1616. [PMID: 34184213 DOI: 10.1007/s12011-021-02802-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia and has the lowest 5-year survival rates. Current treatment strategies do not meet the expectations also. Therefore, there is a need to improve therapeutic approaches still. Boron, which is a natural trace element in human diet, is gaining attention with its important roles in cellular processes for the development of new anti-cancer drug candidates. For instance, bortezomib, a dipeptidyl boronic acid, has encouraging results in the treatment of multiple myeloma and mantle cell lymphoma. However, severe toxic effects and resistance development are the limitations to its application for AML treatment. Hence, the development of alternative boron-derived anti-AML agents is unmet need. Therefore, we aimed to evaluate anti-leukemic effect of two promising boron compounds, borax pentahydrate (BP) and disodium pentaborate decahydrate (DPD), and comparison of each other in terms of the capacity to trigger apoptosis on acute promyelocytic leukemia cells (HL-60). Cell viability was assessed by MTT assay. Apoptotic effects of the boron compounds on HL-60 cells were evaluated by annexin V/propidium iodide dyes and caspase 3/7 activity assay by flow cytometry. In addition, Bax/Bcl-2 and cleaved PARP levels were detected by western blotting. Although BP showed greater apoptosis-inducing capacity, we observed that both DPD (6 mM) and BP (24 mM) treatment showed anti-leukemic effect by triggering apoptotic pathway through increasing Bax/Bcl-2 ratio for the first time. Our study suggests that BP and DPD are the promising candidates for anti-AML drug development research, which may be confirmed by further wide-spectrum studies.
Collapse
Affiliation(s)
- Tuğba Erkmen
- Department of Medical Biochemistry, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Belgin Sert Serdar
- Department of Medical Biochemistry, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Halil Ateş
- Faculty of Medicine, Oncology Institute, Dokuz Eylül University, Izmir, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Semra Koçtürk
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| |
Collapse
|
86
|
Taniguchi T. Substituent Effects of Tetracoordinate Boron in Organic Synthesis. Chemistry 2022; 28:e202104333. [DOI: 10.1002/chem.202104333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
87
|
Barrón-González M, Rosales-Hernández MC, Abad-García A, Ocampo-Néstor AL, Santiago-Quintana JM, Pérez-Capistran T, Trujillo-Ferrara JG, Padilla-Martínez II, Farfán-García ED, Soriano-Ursúa MA. Synthesis, In Silico, and Biological Evaluation of a Borinic Tryptophan-Derivative That Induces Melatonin-like Amelioration of Cognitive Deficit in Male Rat. Int J Mol Sci 2022; 23:3229. [PMID: 35328650 PMCID: PMC8952423 DOI: 10.3390/ijms23063229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Martha C. Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Antonio Abad-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Ana L. Ocampo-Néstor
- Departamento de Nefrología, Hospital General de México, “Dr. Eduardo Liceaga”, Dr. Balmis 148, Alc. Cuauhtémoc, Mexico City 06720, Mexico;
| | - José M. Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - José G. Trujillo-Ferrara
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| |
Collapse
|
88
|
Šterman A, Sosič I, Časar Z. Primary trifluoroborate-iminiums enable facile access to chiral α-aminoboronic acids via Ru-catalyzed asymmetric hydrogenation and simple hydrolysis of the trifluoroborate moiety. Chem Sci 2022; 13:2946-2953. [PMID: 35432849 PMCID: PMC8905798 DOI: 10.1039/d1sc07065g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023] Open
Abstract
This work describes the first preparation and application of primary trifluoroborate-iminiums (pTIMs) as a new, easily accessible and valuable class of organoboron derivatives. An array of structurally diverse pTIMs was prepared from potassium acyltrifluoroborates in excellent yields. Highly efficient and enantioselective [(R,R)-TethTsDpen-RuCl] complex-catalyzed hydrogenation of pTIMs provided direct access to chiral primary trifluoroborate-ammoniums (pTAMs). Moreover, facile synthesis of a series of structurally diverse chiral α-aminoboronic acids from chiral pTAMs was accomplished through novel, operationally simple and efficient conversion using hexamethyldisiloxane/aqueous HCl. Using no chromatography at any point, this work allowed easy access to chiral α-aminoboronic acids, as exemplified by the synthesis of optically pure anti-cancer drugs bortezomib and ixazomib.
Collapse
Affiliation(s)
- Andrej Šterman
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Zdenko Časar
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia Verovškova ulica 57 SI-1526 Ljubljana Slovenia
| |
Collapse
|
89
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
90
|
Grams RJ, Hsu KL. Reactive chemistry for covalent probe and therapeutic development. Trends Pharmacol Sci 2022; 43:249-262. [PMID: 34998611 PMCID: PMC8840975 DOI: 10.1016/j.tips.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Bioactive small molecules that form covalent bonds with a target protein are important tools for basic research and can be highly effective drugs. This review highlights reactive groups found in a collection of thiophilic and oxophilic drugs that mediate pharmacological activity through a covalent mechanism of action (MOA). We describe the application of advanced proteomic and bioanalytical methodologies for assessing selectivity of these covalent agents to guide and inspire the search for additional electrophiles suitable for covalent probe and therapeutic development. While the emphasis is on chemistry for modifying catalytic serine, threonine or cysteine residues, we devote a substantial fraction of the review to a collection of exploratory reactive groups of understudied residues on proteins.
Collapse
Affiliation(s)
- R. Justin Grams
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
91
|
Ma X, Kuang Z, Song Q. Recent Advances in the Construction of Fluorinated Organoboron Compounds. JACS AU 2022; 2:261-279. [PMID: 35252978 PMCID: PMC8889561 DOI: 10.1021/jacsau.1c00129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Fluorinated organoboron compounds are important synthetic building blocks that combine the unique characteristics of a fluorinated motif with the versatile synthetic applications of organoboron moiety. This review article guides the research on fluorinated organoboron compounds mainly from four aspects in recent years: selective monodefluoroborylation of polyfluoroarenes and polyfluoroalkenes, selective borylation of fluorinated substrates, selective fluorination of organoboron compounds, and borofluorination of alkynes/olefins. In addition, this review will provide a necessary guidance and inspiration for the research on the valuable synthetic building block fluorinated organoboron compounds.
Collapse
Affiliation(s)
- Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Zhijie Kuang
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
92
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
93
|
Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts 2022. [DOI: 10.3390/catal12020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleophilic ionic sources of fluoride are essential reagents in the synthetic toolbox to access high added-value fluorinated building blocks unattainable by other means. In this review, we provide a concise description and rationale of the outstanding features of one of these reagents, tetramethylammonium fluoride (TMAF), as well as disclosing the different methods for its preparation, and how its physicochemical properties and solvation effects in different solvents are intimately associated with its reactivity. Furthermore, herein we also comprehensively describe its historic and recent utilization, up to December 2021, in C-F bond-forming reactions with special emphasis on nucleophilic aromatic substitution fluorinations with a potential sustainable application in industrial settings, as well as its use as a base capable of rendering unprecedented transformations.
Collapse
|
94
|
Grigorenko VG, Khrenova MG, Andreeva IP, Rubtsova MY, Lev AI, Novikova TS, Detusheva EV, Fursova NK, Dyatlov IA, Egorov AM. Drug Repurposing of the Unithiol: Inhibition of Metallo-β-Lactamases for the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections. Int J Mol Sci 2022; 23:ijms23031834. [PMID: 35163756 PMCID: PMC8837113 DOI: 10.3390/ijms23031834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
The increasing antibiotic resistance is a clinical problem worldwide. Numerous Gram-negative bacteria have already become resistant to the most widely used class of antibacterial drugs, β-lactams. One of the main mechanisms is inactivation of β-lactam antibiotics by bacterial β-lactamases. Appearance and spread of these enzymes represent a continuous challenge for the clinical treatment of infections and for the design of new antibiotics and inhibitors. Drug repurposing is a prospective approach for finding new targets for drugs already approved for use. We describe here the inhibitory potency of known detoxifying antidote 2,3-dimercaptopropane-1-sulfonate (unithiol) against metallo-β-lactamases. Unithiol acts as a competitive inhibitor of meropenem hydrolysis by recombinant metallo-β-lactamase NDM-1 with the KI of 16.7 µM. It is an order of magnitude lower than the KI for l-captopril, the inhibitor of angiotensin-converting enzyme approved as a drug for the treatment of hypertension. Phenotypic methods demonstrate that the unithiol inhibits natural metallo-β-lactamases NDM-1 and VIM-2 produced by carbapenem-resistant K. pneumoniae and P. aeruginosa bacterial strains. The 3D full atom structures of unithiol complexes with NDM-1 and VIM-2 are obtained using QM/MM modeling. The thiol group is located between zinc cations of the active site occupying the same place as the catalytic hydroxide anion in the enzyme–substrate complex. The sulfate group forms both a coordination bond with a zinc cation and hydrogen bonds with the positively charged residue, lysine or arginine, responsible for proper orientation of antibiotics upon binding to the active site prior to hydrolysis. Thus, we demonstrate both experimentally and theoretically that the unithiol is a prospective competitive inhibitor of metallo-β-lactamases and it can be utilized in complex therapy together with the known β-lactam antibiotics.
Collapse
Affiliation(s)
- Vitaly G. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.P.A.); (M.Y.R.); (A.M.E.)
- Correspondence: (V.G.G.); (M.G.K.)
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.P.A.); (M.Y.R.); (A.M.E.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: (V.G.G.); (M.G.K.)
| | - Irina P. Andreeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.P.A.); (M.Y.R.); (A.M.E.)
| | - Maya Yu. Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.P.A.); (M.Y.R.); (A.M.E.)
| | - Anastasia I. Lev
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.I.L.); (T.S.N.); (E.V.D.); (N.K.F.); (I.A.D.)
| | - Tatiana S. Novikova
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.I.L.); (T.S.N.); (E.V.D.); (N.K.F.); (I.A.D.)
| | - Elena V. Detusheva
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.I.L.); (T.S.N.); (E.V.D.); (N.K.F.); (I.A.D.)
| | - Nadezhda K. Fursova
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.I.L.); (T.S.N.); (E.V.D.); (N.K.F.); (I.A.D.)
| | - Ivan A. Dyatlov
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.I.L.); (T.S.N.); (E.V.D.); (N.K.F.); (I.A.D.)
| | - Alexey M. Egorov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.P.A.); (M.Y.R.); (A.M.E.)
| |
Collapse
|
95
|
Hackney HE, Hall DG. Recent Advances in the Luminescence of Arylboronic Acids and their Heteroatom Condensates. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hannah E. Hackney
- Department of Chemistry University of Alberta Centennial Centre for Interdisciplinary Science Edmonton Alberta Canada
- Current address Department of Chemistry McGill University Montreal Quebec Canada
| | - Dennis G. Hall
- Department of Chemistry University of Alberta Centennial Centre for Interdisciplinary Science Edmonton Alberta Canada
| |
Collapse
|
96
|
Ma C, Liu M, Zhang J, Cai H, Wu Y, Zhang Y, Ji Y, Shan H, Zou Z, Yang L, Liu L, Xu H, Lei H, Liu C, Zhou L, Cao Y, Zhou H, Wu Y. ZCL-082, a boron-containing compound, induces apoptosis of non-Hodgkin's lymphoma via targeting p90 ribosomal S6 kinase 1/NF-κB signaling pathway. Chem Biol Interact 2022; 351:109770. [PMID: 34861246 DOI: 10.1016/j.cbi.2021.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Despite the rapid progress in the diagnosis and treatment, the prognosis of some types of non-Hodgkin's lymphoma (NHL), especially those with double-hit or double-expressor genotypes, remains poor. Novel targets and compounds are needed to improve the prognosis of NHL. METHODS We investigated the effect of ZCL-082, a novel boron-containing compound with anti-proliferating activity against ovarian cancer cells, on NHL cells and human peripheral blood mononuclear cells by CCK-8 assay, Annexin V/PI double staining assay, RH123/PI double staining, Western blot, and immunohistochemistry. NF-κB pathway activity was analyzed using luciferase reporter gene assay and RT-PCR. The location of p65 was detected by immunofluorescence and nuclear/cytoplasmic fractionation assay. Immunoprecipitation and chromatin immunoprecipitation assays were used to detect the binding between p65 and p300. CETSA and molecular docking assay were carried out to test the interaction between ZCL-082 and p90 ribosomal S6 kinase 1 (RSK1). Kinase reaction was conducted to examine the inhibition of RSK1 kinase activity by ZCL-082. RESULTS We found that ZCL-082 can induce the apoptosis of various NHL cell lines in vitro and in vivo. ZCL-082 significantly inhibits TNFα- or LPS-induced NF-κB activation without disturbing TNFα-induced IκBα degradation or the nuclear translocation and DNA-binding ability of p65. However, ZCL-082 markedly suppresses the phosphorylation of p65 on Ser536 and the interaction between p65 and p300. The overexpression of the phosphomimetic mutant of p65 at Ser536 partially abrogates ZCL-082-induced cell death. We further found that ZCL-082 directly binds to and inhibits the activity of RSK1. RSK1 can phosphorylate RelA/p65 on Ser536 and its overexpression is associated with the poor prognosis of lymphoma. The overexpression of RSK1 partially rescues ZCL-082-induced cell death. Molecular docking studies show that ZCL-082 fits well with the N-terminal kinase domain of RSK1. Furthermore, the combination of ZCL-082 and BCL-2 inhibitor ABT-199 has a synergistic apoptosis-inducing effect against double-hit lymphoma cell line OCI-Ly10. DISCUSSION We found that ZCL-082 is a highly promising anti-lymphoma compound that targets RSK1 and interferes with the RSK1/NF-κB signaling pathway. The combination of ZCL-082 with BCL-2 inhibitor may represent a novel strategy to improve the outcome of double-hit or double-expressor lymphoma.
Collapse
Affiliation(s)
- Chunmin Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Haiyan Cai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuanxu Liu
- Department of Hematology, Xin-Hua Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Li Zhou
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, PR China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
97
|
Sak K. Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-based Drugs? Curr Cancer Drug Targets 2022; 22:741-748. [PMID: 35578889 DOI: 10.2174/1568009622666220516102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Approval of the first boronic acid group-containing drug, bortezomib, in 2003 for the treatment of multiple myeloma sparked an increased interest of medicinal chemists in boronic acidbased therapeutics. As a result, another boronic acid moiety-harboring medication, ixazomib, was approved in 2015 as a second-generation proteasome inhibitor for multiple myeloma; and dutogliptin is under clinical investigation in combination therapy against myocardial infarction. Moreover, a large number of novel agents with boronic acid elements in their structure are currently in intensive preclinical studies, allowing us to suppose that at least some of them will enter clinical trials in the near future. On the other hand, only some years after bortezomib approval, direct interactions between its boronic acid group and catechol moiety of green tea catechins as well as some other common dietary flavonoids like quercetin and myricetin were discovered, leading to the formation of stable cyclic boronate esters and abolishing the anticancer activities. Although highly relevant, to date, no reports on possible co-effects of catechol group-containing flavonoids with new-generation boronic acidbased drugs can be found. However, this issue cannot be ignored, especially considering the abundance of catechol moiety-harboring flavonoids in both plant-derived food items as well as over-thecounter dietary supplements and herbal products. Therefore, in parallel with the intensified development of boronic acid-based drugs, their possible interactions with catechol groups of plant-derived flavonoids must also be clarified to provide dietary recommendations to patients for maximizing therapeutic benefits. If concurrently consumed flavonoids can indeed antagonize drug efficacy, it may pose a real risk to clinical outcomes.
Collapse
|
98
|
Shoji Y, Kashida J, Fukushima T. Bringing out the potential of organoboron compounds by designing the chemical bonds and spaces around boron. Chem Commun (Camb) 2022; 58:4420-4434. [DOI: 10.1039/d2cc00653g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the structures, reactivity and properties of organoboron compounds stem from the electron deficiency and low electronegativity of boron, the design of the chemical bonds attached to boron as well...
Collapse
|
99
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
100
|
Abi-Ghaida F. The serendipitous integration of small boron-embedded molecules into medicinal chemistry. FUNDAMENTALS AND APPLICATIONS OF BORON CHEMISTRY 2022:321-410. [DOI: 10.1016/b978-0-12-822127-3.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|