51
|
Foster BM, Zaidi D, Young TR, Mobley ME, Kerr BA. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance. Biomedicines 2018. [PMID: 29518044 PMCID: PMC5874688 DOI: 10.3390/biomedicines6010031] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Danish Zaidi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Tyler R Young
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mary E Mobley
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
52
|
Raghav PK, Singh AK, Gangenahalli G. A change in structural integrity of c-Kit mutant D816V causes constitutive signaling. Mutat Res 2018; 808:28-38. [PMID: 29482074 DOI: 10.1016/j.mrfmmm.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Several signaling pathways, ligands, and genes that regulate proliferative and self-renewal properties of the Hematopoietic Stem Cells (HSCs) have been studied meticulously. One of the signaling pathways that play a crucial role in the process of hematopoiesis is the Stem Cell Factor (SCF) mediated c-Kit pathway. The c-Kit is a Receptor Tyrosine Kinase (RTK), which is expressed in the cells including HSCs. It undergoes dimerization upon binding with its cognate ligand SCF. As a result, phosphorylation of the Juxtamembrane (JM) domain of c-Kit takes place at Tyr568 and Tyr570 residues. These phosphorylated residues become the docking sites for protein tyrosine phosphatases (PTPs) namely SHP-1 and SHP-2, which in turn cause dephosphorylation and negative regulation of the downstream signaling responsible for the cell proliferation. Interestingly, it has been reported that the mutation of c-Kit at D816V makes it independent of SCF stimulation and SHP-1/SHP-2 inhibition, thereby, causing its constitutive activation. The present study was commenced to elucidate the structural behavior of this mutation in the JM and A-loop region of c-Kit using Molecular Dynamics (MD) simulations of the wild-type and mutant c-Kit in unphosphorylated and phosphorylated states. The energy difference computed between the wild type and mutant (D816V) c-Kit, and protein-protein docking and complex analysis revealed the impact of this single residue mutation on the integrity dynamics of c-Kit that makes it independent of SHP-1/SHP-2 negative regulation.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Ajay Kumar Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India.
| |
Collapse
|
53
|
Capuzzi SJ, Thornton TE, Liu K, Baker N, Lam WI, O’Banion CP, Muratov EN, Pozefsky D, Tropsha A. Chemotext: A Publicly Available Web Server for Mining Drug-Target-Disease Relationships in PubMed. J Chem Inf Model 2018; 58:212-218. [PMID: 29300482 PMCID: PMC6063520 DOI: 10.1021/acs.jcim.7b00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Elucidation of the mechanistic relationships between drugs, their targets, and diseases is at the core of modern drug discovery research. Thousands of studies relevant to the drug-target-disease (DTD) triangle have been published and annotated in the Medline/PubMed database. Mining this database affords rapid identification of all published studies that confirm connections between vertices of this triangle or enable new inferences of such connections. To this end, we describe the development of Chemotext, a publicly available Web server that mines the entire compendium of published literature in PubMed annotated by Medline Subject Heading (MeSH) terms. The goal of Chemotext is to identify all known DTD relationships and infer missing links between vertices of the DTD triangle. As a proof-of-concept, we show that Chemotext could be instrumental in generating new drug repurposing hypotheses or annotating clinical outcomes pathways for known drugs. The Chemotext Web server is freely available at http://chemotext.mml.unc.edu .
Collapse
Affiliation(s)
- Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Thomas E. Thornton
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kammy Liu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nancy Baker
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wai In Lam
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin P. O’Banion
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Diane Pozefsky
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
54
|
Kim SW, Kim JH, Park CK, Kim TJ, Lee SY, Kim YK, Kwon SS, Rhee CK, Yoon HK. Effect of roflumilast on airway remodelling in a murine model of chronic asthma. Clin Exp Allergy 2017; 46:754-63. [PMID: 26542330 DOI: 10.1111/cea.12670] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/16/2015] [Accepted: 10/17/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Airway remodelling is associated with irreversible, or partially reversible, airflow obstruction and ultimately unresponsiveness to asthma therapies such as corticosteroids. Roflumilast is a selective phosphodiesterase-4 inhibitor that has an anti-inflammatory effect in chronic obstructive pulmonary disease (COPD). OBJECTIVE The objective of this study was to study the effect of roflumilast on airway inflammation and remodelling in a murine model of chronic asthma. METHODS BALB/c mice sensitized to ovalbumin (OVA) were chronically exposed to intranasal OVA administration twice a week for additional 3 months. Roflumilast was administered orally during the intranasal OVA challenge. A lung fibroblast cell line was used in the proliferation assay. RESULTS Compared with control mice, mice chronically exposed to OVA developed eosinophilic airway inflammation, airway hyper-responsiveness (AHR), and exhibited features of airway remodelling. Administration of roflumilast significantly inhibited airway inflammation and AHR. Roflumilast also significantly decreased goblet cell hyperplasia and pulmonary fibrosis, which are parameters of airway remodelling. The levels of interleukin (IL)-4, IL-5, and IL-13 in the bronchoalveolar lavage (BAL) fluids were significantly lower in the roflumilast group. In vitro, roflumilast significantly inhibited stem cell factor (SCF)-induced cell proliferation of fibroblasts. The SCF concentration and mRNA expression in a murine model also significantly decreased with roflumilast treatment. CONCLUSIONS These results suggest that the administration of roflumilast regulates airway inflammation, AHR, and airway remodelling in a model of chronic asthma. The beneficial effects from roflumilast may be related to the SCF/c-kit pathway.
Collapse
Affiliation(s)
- S W Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - J H Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - C K Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - T J Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - S Y Lee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Y K Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - S S Kwon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - C K Rhee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - H K Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
55
|
Bais S, Kumari R, Prashar Y, Gill NS. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes Metab Syndr 2017; 11 Suppl 2:S1001-S1007. [PMID: 28778429 DOI: 10.1016/j.dsx.2017.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 01/02/2023]
Abstract
Mast cells are stimulatory factors in prognosis of various immunogenic and allergic diseases in human body. These cells play an important role in various immunological and metabolic diseases. The aim of present article is to explore the molecular targets to suppress the over expression of mast cells in obesity. The last 20 years literature were searched by various bibliographic data bases like Pubmed, google Scholar, Scopus and web of Science. The data were collected by keywords like "Mast Cell" "obesity" and "role of mast cell or role in obesity". Articles and their abstract were reviewed with a counting of 827 publications, in which 87 publications were considered for study and remaining was excluded because of its specificity to the subject. This review explains the characteristics, molecular targets and role of mast cells in obesity and existing research with mast cells to the area of metabolic diseases.
Collapse
Affiliation(s)
- Souravh Bais
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India.
| | - Reena Kumari
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - Yash Prashar
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - N S Gill
- Department of Pharmaceutical Chemistry, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| |
Collapse
|
56
|
|
57
|
Kubota Y, Hamakawa T, Osaga S, Okada A, Hamamoto S, Kawai N, Kohri K, Yasui T. A kit ligand, stem cell factor as a possible mediator inducing overactive bladder. Neurourol Urodyn 2017; 37:1258-1265. [DOI: 10.1002/nau.23449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yasue Kubota
- Department of Clinical PhysiologyNagoya City University School of Nursing Graduate School of NursingNagoyaJapan
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takashi Hamakawa
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoshi Osaga
- Clinical Research Management CenterNagoya City University HospitalNagoyaJapan
| | - Atsushi Okada
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shuzo Hamamoto
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriyasu Kawai
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kenjiro Kohri
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takahiro Yasui
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
58
|
He Y, Zeng H, Yu Y, Zhang J, Duan X, Liu Q, Yang B. Resveratrol improves smooth muscle carcinogenesis in the progression of chronic prostatitis via the downregulation of c-kit/SCF by activating Sirt1. Biomed Pharmacother 2017; 95:161-166. [PMID: 28841456 DOI: 10.1016/j.biopha.2017.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Bladder smooth muscle cell death accompanied by hyperplasia and hypertrophy, as induced by inflammation, is the primary cause for poor bladder function. There are emerging evidences on the role of chronic inflammation as a factor involved in carcinogenesis and progression. We aim to determine the bladder smooth muscle pathological changes and dysfunction in chronic prostatitis (CP), to investigate whether resveratrol can improve the urinary dysfunction and the role of c-kit/SCF pathway, that has been associated with the smooth muscle carcinogenesis. METHOD Rat model of CP was established via subcutaneous injections of DPT vaccine and subsequently treated with resveratrol. H&E staining was performed to identify the histopathological changes in prostates and bladders. Western blotting and immunohistochemical staining examined the expression level of C-kit, stem cell factor (SCF), Sirt1, apoptosis associated proteins. RESULTS the model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Meanwhile, bladder muscle arranged in disorder with fracture, and cells appeared atypia. The activity of C-kit/SCF was up-regulated, the carcinogenesis associated proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. CONCLUSIONS activated c-kit/SCF and bladder muscle carcinogenesis were involved in the pathological processes of CP, which was improved after resveratrol treatment via the downregulation of c-kit/SCF by activating Sirt1.
Collapse
Affiliation(s)
- Yi He
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huizhi Zeng
- Department of General Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yang Yu
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiashu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xingping Duan
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| | - Bo Yang
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
59
|
Hassanpour H, Bigham Sadegh A, Karimi I, Heidari Khoei H, Karimi A, Edalati Shaarbaf P, Karimi Shayan T. Comparative Expression Analysis of HSP70, HSP90, IL-4, TNF, KITLG and KIT-receptor Gene between Varicocele-Induced and Non-Varicocele Testes of Dog. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:148-155. [PMID: 28868836 PMCID: PMC5582142 DOI: 10.22074/ijfs.2017.5020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
Background This study was designed to create an experimental varicocele model by a
simple surgical procedure in dog with minimum invasion and to investigate the effect of
varicocele-induced infertility on the expression of six related genes (HSP90, HSP70, IL-4, TNF, KITLG and KIT receptor). Materials and Methods In this experimental study, the proximal part of the pampini-form plexus of dog testes was partially occluded without abdominal incision which was
confirmed by venographic examination. To evaluate varicocele in its acute form, dogs
were castrated after 15 days and testes were dissected. Histopathologic evaluation was
undertaken and the relative expression of the six genes was assessed by quantitative realtime polymerase chain reaction (PCR). Results Microscopic changes showed tubule degeneration. The Johnson score was significantly decreased in the varicocele testes when compared with non-varicocele testes.
Expressions of HSP90, TNF, KITLG and the KIT-receptor gene were significantly downregulated (P=0.029, 0.047, 0.004 and 0.035 respectively) in varicocele-induced testes while
HSP70 was upregulated (P=0.018). IL-4 did not show differential expression (P=0.377). Conclusion We conclude that partial occlusion of the proximal part of the pampiniform
plexus induces varicocele in the testis of dog. Differential expression of the mentioned
genes may be responsible for the pathophysiology of varicocele and related subfertility.
Collapse
Affiliation(s)
- Hossein Hassanpour
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
| | - Amin Bigham Sadegh
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), VIT University, Vellore, Tamilnadu-632014, India
| | - Iraj Karimi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Heidar Heidari Khoei
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Azarnoush Karimi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Parinaz Edalati Shaarbaf
- Department of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Karimi Shayan
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
60
|
Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017; 131:1541-1558. [PMID: 28659395 DOI: 10.1042/cs20160487] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) both cause airway obstruction and are associated with chronic inflammation of the airways. However, the nature and sites of the inflammation differ between these diseases, resulting in different pathology, clinical manifestations and response to therapy. In this review, the inflammatory and cellular mechanisms of asthma and COPD are compared and the differences in inflammatory cells and profile of inflammatory mediators are highlighted. These differences account for the differences in clinical manifestations of asthma and COPD and their response to therapy. Although asthma and COPD are usually distinct, there are some patients who show an overlap of features, which may be explained by the coincidence of two common diseases or distinct phenotypes of each disease. It is important to better understand the underlying cellular and molecular mechanisms of asthma and COPD in order to develop new treatments in areas of unmet need, such as severe asthma, curative therapy for asthma and effective anti-inflammatory treatments for COPD.
Collapse
|
61
|
Chen LH, Cai F, Zhang DJ, Zhang L, Zhu P, Gao S. Large-scale purification and characterization of recombinant human stem cell factor in Escherichia coli. Biotechnol Appl Biochem 2017; 64:509-518. [PMID: 27301759 DOI: 10.1002/bab.1517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/06/2016] [Indexed: 11/07/2022]
Abstract
The pharmacological importance of recombinant human stem cell factor (rhSCF) has increased the demand to establish effective and large-scale production and purification processes. A good source of bioactive recombinant protein with capability of being scaled-up without losing activity has always been a challenge. The objectives of the study were the rapid and efficient pilot-scale expression and purification of rhSCF. The gene encoding stem cell factor (SCF) was cloned into pBV220 and transformed into Escherichia coli. The recombinant SCF was expressed and isolated using a procedure consisting of isolation of inclusion bodies (IBs), denaturation, and refolding followed by chromatographic steps toward purification. The yield of rhSCF reached 835.6 g/20 L, and the expression levels of rhSCF were about 33.9% of the total E. coli protein content. rhSCF was purified by isolation of IBs, denaturation, and refolding, followed by SP-Sepharose chromatography, Source 30 reversed-phase chromatography, and Q-Sepharose chromatography. This procedure was developed to isolate 5.5 g of rhSCF (99.5% purity) with specific activity at 0.96 × 106 IU/mg, endotoxin levels of pyrogen at 1.0 EU/mg, and bacterial DNA at 10 ng/mg. Pilot-scale fermentations and purifications were set up for the production of rhSCF that can be upscaled for industry.
Collapse
Affiliation(s)
- Liang-Hua Chen
- Institute of Ecological Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Feng Cai
- College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Dan-Ju Zhang
- Institute of Ecological Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Institute of Ecological Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Peng Zhu
- Institute of Ecological Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shun Gao
- Institute of Ecological Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
62
|
Chai Y, Huang Y, Tang H, Tu X, He J, Wang T, Zhang Q, Xiong F, Li D, Qiu Z. Role of stem cell growth factor/c-Kit in the pathogenesis of irritable bowel syndrome. Exp Ther Med 2017; 13:1187-1193. [PMID: 28413456 PMCID: PMC5377426 DOI: 10.3892/etm.2017.4133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disease with a complicated etiopathogenesis, often characterized by gastrointestinal motility disorder and high visceral sensitivity. IBS is a comprehensive multi-systemic disorder, with the interaction of multiple factors, such as mental stress, intestinal function and flora, heredity, resulting in the disease. The existence of a common mechanism underlying the aforementioned factors is currently unknown. The lack of therapies that comprehensively address the disease symptoms, including abdominal pain and diarrhea, is a limitation of current IBS management. The current review has explored the role of the SCF/c-Kit receptor/ligand system in IBS. The SCF/c-Kit system constitutes a classical ligand/receptor tyrosine kinase signaling system that mediates inflammation and smooth muscle contraction. Additionally, it provides trophic support to neural crest-derived cell types, including the enteric nervous system and mast cells. The regulation of SCF/c-Kit on the interstitial cells of Cajal (ICC) suggest that it may play a key role in the aberrant intestinal dynamics and high visceral sensitivity observed in IBS. The role of the SCF/c-Kit system in intestinal motility, inflammation and nerve growth has been reported. From the available biomedical evidence on the pathogenesis of IBS, it has been concluded that the SCF-c-Kit system is a potential therapeutic target for rational drug design in the treatment of IBS.
Collapse
Affiliation(s)
- Yuna Chai
- Pharmaceutical Department, First Affiliated Hospital of Zhengzhou University of Chinese Medicine, Zhengzhou, Henan 450052, P.R. China.,Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yusheng Huang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xing Tu
- Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine of Hubei University for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Jianbo He
- Department of Orthopedics, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ting Wang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qingye Zhang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fen Xiong
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Detang Li
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhenwen Qiu
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
63
|
Barroeta Seijas AB, Simonetti S, Vitale S, Runci D, Quinci AC, Soriani A, Criscuoli M, Filippi I, Naldini A, Sacchetti FM, Tarantino U, Oliva F, Piccirilli E, Santoni A, Di Rosa F. GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells. Front Immunol 2017; 8:147. [PMID: 28261209 PMCID: PMC5311071 DOI: 10.3389/fimmu.2017.00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/30/2017] [Indexed: 01/20/2023] Open
Abstract
Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit+ cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c+ cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit+ cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit+ CD40hi MHCIIhi cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more prominently rely on SCF in vivo in some microenvironments, with potential implications for graft-versus-host disease and antitumor immunity.
Collapse
Affiliation(s)
- Amairelys Belen Barroeta Seijas
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy; Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Sonia Simonetti
- Department of Molecular Medicine, University of Rome "Sapienza" , Rome , Italy
| | - Sara Vitale
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Molecular Medicine, University of Rome "Sapienza" , Rome , Italy
| | - Daniele Runci
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti , Rome , Italy
| | | | - Alessandra Soriani
- Department of Molecular Medicine, University of Rome "Sapienza" , Rome , Italy
| | - Mattia Criscuoli
- Department of Molecular and Developmental Medicine, University of Siena , Siena , Italy
| | - Irene Filippi
- Department of Molecular and Developmental Medicine, University of Siena , Siena , Italy
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, University of Siena , Siena , Italy
| | | | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, University of Rome "Tor Vergata" , Rome , Italy
| | - Francesco Oliva
- Department of Orthopaedics and Traumatology, University of Rome "Tor Vergata" , Rome , Italy
| | - Eleonora Piccirilli
- Department of Orthopaedics and Traumatology, University of Rome "Tor Vergata" , Rome , Italy
| | - Angela Santoni
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy; Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Molecular Medicine, University of Rome "Sapienza" , Rome , Italy
| |
Collapse
|
64
|
Leist M, Sünder CA, Drube S, Zimmermann C, Geldmacher A, Metz M, Dudeck A, Maurer M. Membrane-bound stem cell factor is the major but not only driver of fibroblast-induced murine skin mast cell differentiation. Exp Dermatol 2017; 26:255-262. [PMID: 27619074 DOI: 10.1111/exd.13206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
The maintenance and modulation of cutaneous mast cell (MC) numbers is held to be important for skin immune responses to allergens and pathogens. The increase in MC numbers in the skin is achieved by proliferation and the differentiation of precursor to mature MCs. Fibroblast-derived SCF is thought to be the major skin MC growth factor and it potently induces MC proliferation. The mechanisms of fibroblast-induced skin MC differentiation, including the role of SCF, however, remain insufficiently characterized and understood. Using cocultures of immature murine MCs and fibroblasts, we found that the adhesion of immature MCs to fibroblasts via VCAM-1 and α4 β7 integrin is very important for subsequent differentiation, which is driven by fibroblast membrane-bound SCF and additional fibroblast-derived membrane-bound signals. Thus, our results show that fibroblast-induced MC differentiation is induced by direct cell-cell contact and involves both Kit-dependent and Kit-independent pathways. Our findings add to the understanding of how immature mast cells mature in murine skin and encourage further analyses of the underlying mechanisms, which may result in novel targets for the modulation of skin mast cell driven diseases.
Collapse
Affiliation(s)
- Mandy Leist
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cathleen Annett Sünder
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Drube
- Institute of Immunology, Universitätsklinikum, Jena, Germany
| | - Carolin Zimmermann
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Geldmacher
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Metz
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Dudeck
- Institute for Immunology, University of Technology Dresden, Medical Faculty Carl-Gustav Carus, Dresden, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
65
|
Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases. Molecules 2017; 22:molecules22010139. [PMID: 28106744 PMCID: PMC6155767 DOI: 10.3390/molecules22010139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 12/21/2022] Open
Abstract
Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD) and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF). The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), and microRNA (miRNA) are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir) has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.
Collapse
|
66
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
67
|
Kang HS, Rhee CK, Lee HY, Yoon HK, Kwon SS, Lee SY. Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model. Korean J Intern Med 2016; 31:1150-1158. [PMID: 27764539 PMCID: PMC5094918 DOI: 10.3904/kjim.2015.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/05/2015] [Accepted: 08/16/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Inhaled corticosteroids are the most effective treatment currently available for asthma, but their beneficial effect against airway remodeling is limited. The tyrosine kinase inhibitor nilotinib has inhibitory activity against c-kit and the platelet-derived growth factor receptor. We compared the effects of fluticasone and nilotinib on airway remodeling in a chronic asthma model. We also examined whether co-treatment with nilotinib and fluticasone had any synergistic effect in preventing airway remodeling. METHODS We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized female BALB/c-mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated with fluticasone and/or nilotinib intranasally during the OVA challenge. RESULTS Mice chronically exposed to OVA developed eosinophilic airway inflammation and showed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Both fluticasone and nilotinib attenuated airway smooth muscle thickening. However, only nilotinib suppressed fibrotic changes, demonstrating inhibition of collagen deposition. Fluticasone reduced pro-inflammatory cells, such as eosinophils, and several cytokines, such as interleukin 4 (IL-4), IL-5, and IL-13, induced by repeated OVA challenges. On the other hand, nilotinib reduced transforming growth factor β1 levels in bronchoalveolar lavage fluid and inhibited fibroblast proliferation significantly. CONCLUSIONS These results suggest that fluticasone and nilotinib suppressed airway remodeling in this chronic asthma model through anti-inflammatory and anti-fibrotic pathways, respectively.
Collapse
Affiliation(s)
- Hye Seon Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hea Yon Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soon Seok Kwon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon, Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sook Young Lee, M.D. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6061 Fax: +82-2-596-2158 E-mail:
| |
Collapse
|
68
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
69
|
Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside. Molecules 2016; 21:molecules21091249. [PMID: 27657028 PMCID: PMC6272875 DOI: 10.3390/molecules21091249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.
Collapse
|
70
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
71
|
Modena BD, Dazy K, White AA. Emerging concepts: mast cell involvement in allergic diseases. Transl Res 2016; 174:98-121. [PMID: 26976119 DOI: 10.1016/j.trsl.2016.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023]
Abstract
In a process known as overt degranulation, mast cells can release all at once a diverse array of products that are preformed and present within cytoplasmic granules. This occurs typically within seconds of stimulation by environmental factors and allergens. These potent, preformed mediators (ie, histamine, heparin, serotonin, and serine proteases) are responsible for the acute symptoms experienced in allergic conditions such as allergic conjunctivitis, allergic rhinitis, allergy-induced asthma, urticaria, and anaphylaxis. Yet, there is reason to believe that the actions of mast cells are important when they are not degranulating. Mast cells release preformed mediators and inflammatory cytokines for periods after degranulation and even without degranulating at all. Mast cells are consistently seen at sites of chronic inflammation, including nonallergic inflammation, where they have the ability to temper inflammatory processes and shape tissue morphology. Mast cells can trigger actions and chemotaxis in other important immune cells (eg, eosinophils and the newly discovered type 2 innate lymphocytes) that then make their own contributions to inflammation and disease. In this review, we will discuss the many known and theorized contributions of mast cells to allergic diseases, focusing on several prototypical allergic respiratory and skin conditions: asthma, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, allergic conjunctivitis, atopic dermatitis, and some of the more common medication hypersensitivity reactions. We discuss traditionally accepted roles that mast cells play in the pathogenesis of each of these conditions, but we also delve into new areas of discovery and research that challenge traditionally accepted paradigms.
Collapse
Affiliation(s)
- Brian D Modena
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif; Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, Calif
| | - Kristen Dazy
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Andrew A White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif.
| |
Collapse
|
72
|
Cho H, Balaji S, Hone NL, Moles CM, Sheikh AQ, Crombleholme TM, Keswani SG, Narmoneva DA. Diabetic wound healing in a MMP9-/- mouse model. Wound Repair Regen 2016; 24:829-840. [PMID: 27292154 DOI: 10.1111/wrr.12453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full-thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin-induced diabetes in the presence or absence of tail-vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb-EPC) counts when compared with wild-type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC-deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM-derived EPCs play a significant role during wound neovascularization and that the SCF-based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.,Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Natalie L Hone
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Chad M Moles
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Abdul Q Sheikh
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M Crombleholme
- Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, Colorado
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Daria A Narmoneva
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
73
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
74
|
Takamiya AS, Monteiro DR, Bernabé DG, Gorup LF, Camargo ER, Gomes-Filho JE, Oliveira SHP, Barbosa DB. In Vitro and In Vivo Toxicity Evaluation of Colloidal Silver Nanoparticles Used in Endodontic Treatments. J Endod 2016; 42:953-60. [PMID: 27118468 DOI: 10.1016/j.joen.2016.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Silver nanoparticles have been used for different purposes in dentistry, including endodontic treatments. The aim of this study was to determine the cytotoxicity of different types of silver nanoparticles on mouse fibroblast cell line L929 and the reaction of subcutaneous connective tissue of Wistar rats to these nanoparticles. METHODS Silver nanoparticles of an average size of 5 nm were synthesized with ammonia (SNA) or polyvinylpyrrolidone (SNP). L929 was exposed to SNA and SNP (0.1-100 μg/mL), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assays were performed after 6, 24, and 48 hours. Culture medium was used as the control. Sixteen rats received, individually, 3 polyethylene tubes filled with a fibrin sponge embedded in 100 μL SNA or SNP (1 μg/mL). A fibrin sponge with no embedding was the control. Tissue reaction was performed qualitatively and quantitatively after 7, 15, 30, and 90 days of implantation in the dorsal connective tissue of Wistar rats. RESULTS SNA and SNP were cytotoxic to L929 in higher concentrations, with SNA significantly more toxic than SNP. SNA and SNP did not induce significant interleukin-1β and interleukin-6 production. The release of stem cell factor by L929 increased 48 hours after the treatment with SNP at 5 μg/mL. Histologic examination showed that the inflammatory responses caused by SNA and SNP at 1 μg/mL were similar to the control in all experimental periods. CONCLUSIONS It was concluded that SNA and SNP were not cytotoxic at 25 μg/mL or lower concentrations. However, for safe clinical use, further studies establishing others points of its toxicologic profile are recommended.
Collapse
Affiliation(s)
- Aline Satie Takamiya
- Department of Pediatric Dentistry and Public Health Dental, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Department of Pediatric Dentistry and Public Health Dental, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Department of Pathology and Clinical Propedeutics, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Luiz Fernando Gorup
- Interdisciplinary Laboratory of Electrochemistry and Ceramics-Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Emerson Rodrigues Camargo
- Interdisciplinary Laboratory of Electrochemistry and Ceramics-Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - João Eduardo Gomes-Filho
- Department of Basic Sciences, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Endodontics, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| |
Collapse
|
75
|
Antagonism of stem cell factor/c-kit signaling attenuates neonatal chronic hypoxia-induced pulmonary vascular remodeling. Pediatr Res 2016; 79:637-46. [PMID: 26705118 PMCID: PMC4837030 DOI: 10.1038/pr.2015.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/07/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Accumulating evidence suggests that c-kit-positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/c-kit-regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the hypothesis that attenuated c-kit signaling would decrease chronic hypoxia-induced pulmonary vascular remodeling by decreasing pulmonary vascular cell mitogenesis. METHODS Neonatal FVB/NJ mice treated with nonimmune IgG (placebo), or c-kit neutralizing antibody (ACK2) as well as c-kit mutant mice (WBB6F1-Kit(W-v/+)) and their congenic controls, were exposed to normoxia (FiO2 = 0.21) or hypoxia (FiO2 = 0.12) for 2 wk. Following this exposure, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), pulmonary vascular cell proliferation, and remodeling were evaluated. RESULTS As compared to chronically hypoxic controls, c-kit mutant mice had decreased RVSP, RVH, pulmonary vascular remodeling, and proliferation. Consistent with these findings, administration of ACK2 to neonatal mice with chronic hypoxia-induced PH decreased RVSP, RVH, pulmonary vascular cell proliferation, and remodeling. This attenuation in PH was accompanied by decreased extracellular signal-regulated protein kinase (ERK) 1/2 activation. CONCLUSION SCF/c-kit signaling may potentiate chronic hypoxia-induced vascular remodeling by modulating ERK activation. Inhibition of c-kit activity may be a potential strategy to alleviate PH.
Collapse
|
76
|
Finan A, Richard S. Stimulating endogenous cardiac repair. Front Cell Dev Biol 2015; 3:57. [PMID: 26484341 PMCID: PMC4586501 DOI: 10.3389/fcell.2015.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023] Open
Abstract
The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players.
Collapse
Affiliation(s)
- Amanda Finan
- Centre National de la Recherche Scientifique United Medical Resource 9214, Institut National de la Santé et de la Recherche Médicale U1046, Physiology and Experimental Medicine of the Heart and Muscles, University of Montpellier Montpellier, France
| | - Sylvain Richard
- Centre National de la Recherche Scientifique United Medical Resource 9214, Institut National de la Santé et de la Recherche Médicale U1046, Physiology and Experimental Medicine of the Heart and Muscles, University of Montpellier Montpellier, France
| |
Collapse
|
77
|
Avula M, Jones D, Rao AN, McClain D, McGill LD, Grainger DW, Solzbacher F. Local release of masitinib alters in vivo implantable continuous glucose sensor performance. Biosens Bioelectron 2015; 77:149-56. [PMID: 26402593 DOI: 10.1016/j.bios.2015.08.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022]
Abstract
Continuous glucose monitoring (CGM) sensors are often advocated as a clinical solution to improve long-term glycemic control in the context of diabetes. Subcutaneous sensor inflammatory response, fouling and fibrous encapsulation resulting from the host foreign body response (FBR) reduce sensor sensitivity to glucose, eventually resulting in sensor performance compromise and device failure. Several combination device strategies load CGM sensors with drug payloads that release locally to tissue sites to mitigate FBR-mediated sensor failure. In this study, the mast cell-targeting tyrosine kinase inhibitor, masitinib, was released from degradable polymer microspheres delivered from the surfaces of FDA-approved human commercial CGM needle-type implanted sensors in a rodent subcutaneous test bed. By targeting the mast cell c-Kit receptor and inhibiting mast cell activation and degranulation, local masitinib penetration around the CGM to several hundred microns sought to reduce sensor fibrosis to extend CGM functional lifetimes in subcutaneous sites. Drug-releasing and control CGM implants were compared in murine percutaneous implant sites for 21 days using direct-wire continuous glucose reporting. Drug-releasing implants exhibited no significant difference in CGM fibrosis at implant sites but showed relatively stable continuous sensor responses over the study period compared to blank microsphere control CGM implants.
Collapse
Affiliation(s)
- M Avula
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - D Jones
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - A N Rao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - D McClain
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - L D McGill
- Associated Regional and University Pathologist Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - D W Grainger
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - F Solzbacher
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
78
|
McLeod JJA, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine 2015; 75:57-61. [PMID: 26088754 PMCID: PMC4532630 DOI: 10.1016/j.cyto.2015.05.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
IL-4 was identified as the first cytokine to be produced by mast cells and is responsible for promoting mast cell IL-13 production. IL-4 and IL-13 play a prominent role in stimulating and maintaining the allergic response. As closely related genes, IL-4 and IL-13 share a common receptor subunit, IL-4Rα, necessary for signaling. Here we summarize the literature on mast cell activation associated with IL-4 and IL-13 production, including downstream signaling. We also describe the positive and negative roles each cytokine plays in mast cell immunity and detail the differences that exist between mouse and human mast cell responses to IL-4 and IL-13.
Collapse
Affiliation(s)
- Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States.
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| |
Collapse
|
79
|
Perumal D, Pillai S, Nguyen J, Schaal C, Coppola D, Chellappan SP. Nicotinic acetylcholine receptors induce c-Kit ligand/Stem Cell Factor and promote stemness in an ARRB1/ β-arrestin-1 dependent manner in NSCLC. Oncotarget 2015; 5:10486-502. [PMID: 25401222 PMCID: PMC4279388 DOI: 10.18632/oncotarget.2395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/26/2014] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. β-arrestin-1 (ARRB1), a scaffolding protein involved in the desensitization of signals arising from activated G-protein-coupled receptors (GPCRs), has been shown to play a role in invasion and proliferation of cancer cells, including nicotine-induced proliferation of human non–small cell lung cancers (NSCLCs). In this study, we identified genes that are differentially regulated by nicotine in an ARRB1/β-arrestin-1 dependent manner in NSCLC cells by microarray analysis. Among the identified genes, SCF (Stem cell factor) strongly differentiated smokers from non-smokers in the Director's Challenge Set expression data and its high expression correlated with poor prognosis. SCF, a major cytokine is the ligand for the c-Kit proto-oncogene and was found to be over expressed in human lung adenocarcinomas, but not squamous cell carcinomas. Data presented here show that transcription factor E2F1 can induce SCF expression at the transcriptional level and depletion of E2F1 or ARRB1/β-arrestin-1 could not promote self-renewal of SP cells. These studies suggest that nicotine might be promoting NSCLC growth and metastasis by inducing the secretion of SCF, and raise the possibility that targeting signalling cascades that activate E2F1 might be an effective way to combat NSCLC.
Collapse
Affiliation(s)
- Deepak Perumal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA. Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
80
|
Foda AARM, Mohamed MA. Aberrant expressions of c-KIT and DOG-1 in mucinous and nonmucinous colorectal carcinomas and relation to clinicopathologic features and prognosis. Ann Diagn Pathol 2015; 19:335-40. [PMID: 26272691 DOI: 10.1016/j.anndiagpath.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/10/2015] [Accepted: 06/24/2015] [Indexed: 02/08/2023]
Abstract
c-KIT and DOG-1 are 2 highly expressed proteins in gastrointestinal stromal tumors. Few studies had investigated c-KIT, but not DOG-1, expression in colorectal carcinoma (CRC). This study aims to investigate expressions of c-KIT and DOG-1 in colorectal mucinous carcinoma and nonmucinous carcinoma using manual tissue microarray technique. In this work, we studied tumor tissue specimens from 150 patients with colorectal mucinous (MA) and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique, and immunohistochemistry for c-KIT and DOG-1 was done. We found that aberrant c-KIT expression was detected in 12 cases (8%); 6 cases (4%) showed strong expression. Aberrant DOG-1 expression was detected in 15 cases (10%); among them, only 4 cases (2.7%) showed strong expression. Nonmucinous adenocarcinoma showed a significantly high expression of c-KIT, but not DOG-1, than MA. Aberrant c-KIT and DOG-1 expressions were significantly unrelated but were associated with excessive microscopic abscess formation. Neither c-KIT nor DOG-1 expression showed a significant impact on disease-free survival or overall survival. In conclusion, aberrant c-KIT and DOG-1 expressions in CRC are rare events, either in NMA or MA. Nonmucinous adenocarcinoma showed a significantly higher expression of c-KIT, but not DOG-1, than MA. The expressions of both in CRC are significantly unrelated but are associated with microscopic abscess formation. Neither c-KIT nor DOG-1 expression showed a significant impact on disease-free survival or overall survival. So, c-KIT and DOG-1 immunostaining is not a cost-effective method of identifying patients with CRC who may benefit from treatment with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
| | - Mie Ali Mohamed
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
81
|
Gaudenzio N, Sibilano R, Starkl P, Tsai M, Galli SJ, Reber LL. Analyzing the Functions of Mast Cells In Vivo Using 'Mast Cell Knock-in' Mice. J Vis Exp 2015:e52753. [PMID: 26068439 DOI: 10.3791/52753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the 'mast cell knock-in' approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
Collapse
Affiliation(s)
| | | | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine; Department of Microbiology & Immunology, Stanford University School of Medicine
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine;
| |
Collapse
|
82
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
83
|
Sundarrajan S, Lulu S, Arumugam M. Insights into protein interaction networks reveal non-receptor kinases as significant druggable targets for psoriasis. Gene 2015; 566:138-47. [PMID: 25881869 DOI: 10.1016/j.gene.2015.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Psoriasis is a chronic disease of the skin characterized by hyper proliferation and inflammation of the epidermis and dermal components of the skin. T-cell-dependent inflammatory process in skin governs the pathogenesis of psoriasis. An in-silico search strategy was utilized to identify psoriatic therapeutic drug targets. The gene expression profiling of psoriatic skin identified a total of 427 differentially expressed genes (DEGs). Gene ontology investigation of DEGs identified genes involved in calcium binding, apoptosis, keratinisation, lipid transportation and homeostasis apart from immune mediated processes. The protein interaction networks identified proteins involved in various signaling mechanisms with high degree of interconnections. The gene modules derived from the main network were enriched with rich kinome. These sub-networks were dominated by the presence of non-receptor kinase family members which are major signal transmitters in immune response. The computational approach has aided in the identification of non-receptor kinases as potential targets for psoriasis drug development.
Collapse
Affiliation(s)
- Sudharsana Sundarrajan
- Bioinformatics Division, School of Biosciences and Technology, Vellore Institute of Technology University, India
| | - Sajitha Lulu
- Bioinformatics Division, School of Biosciences and Technology, Vellore Institute of Technology University, India
| | - Mohanapriya Arumugam
- Bioinformatics Division, School of Biosciences and Technology, Vellore Institute of Technology University, India.
| |
Collapse
|
84
|
Feng ZC, Riopel M, Popell A, Wang R. A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia 2015; 58:654-65. [PMID: 25643653 DOI: 10.1007/s00125-015-3504-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
The interactions between c-Kit and its ligand, stem cell factor (SCF), play an important role in haematopoiesis, pigmentation and gametogenesis. c-Kit is also found in the pancreas, and recent studies have revealed that c-Kit marks a subpopulation of highly proliferative pancreatic endocrine cells that may harbour islet precursors. c-Kit governs and maintains pancreatic endocrine cell maturation and function via multiple signalling pathways. In this review we address the importance of c-Kit signalling within the pancreas, including its profound role in islet morphogenesis, islet vascularisation, and beta cell survival and function. We also discuss the impact of c-Kit signalling in pancreatic disease and the use of c-Kit as a potential target for the development of cell-based and novel drug therapies in the treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children's Health Research Institute, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | |
Collapse
|
85
|
Huusko JM, Mahlman M, Karjalainen MK, Kaukola T, Haataja R, Marttila R, Toldi G, Szabó M, Kingsmore SF, Rämet M, Lavoie PM, Hallman M. Polymorphisms of the gene encoding Kit ligand are associated with bronchopulmonary dysplasia. Pediatr Pulmonol 2015; 50:260-270. [PMID: 24610823 DOI: 10.1002/ppul.23018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease that affects infants born preterm. Family studies indicate that BPD has a significant genetic component. RATIONALE We assessed the gene encoding Kit ligand (KITLG) as a candidate for genetic predisposition to moderate-to-severe BPD (controls were infants with no or mild BPD). STUDY DESIGN Eight KITLG-tagging single nucleotide polymorphisms (SNPs) were analyzed in cohorts of very preterm infants originating from northern Finland (56 cases and 197 controls), southern Finland (n = 59 + 52), and Canada (n = 58 + 68). Additional replication populations included infants born in Finland (n = 41 + 241) and Hungary (n = 29 + 40). All infants were of European origin. Results were controlled for risk factors of BPD. Kit ligand concentration in umbilical cord blood, collected from very preterm infants (n = 120), was studied. RESULTS Six SNPs of KITLG and a haplotype including all eight genotyped SNPs were associated with moderate-to-severe BPD in the northern Finnish population. When all the populations were combined, SNP rs11104948 was significantly associated with BPD. Kit ligand concentration in umbilical cord blood of infants born very preterm was an independent risk factor of BPD. CONCLUSIONS We show that KITLG polymorphisms are associated with susceptibility to moderate-to-severe BPD. In addition, higher Kit ligand concentrations were observed in infants that subsequently developed BPD. These results support the possibility that KITLG gene is involved in predisposition to BPD. Pediatr Pulmonol. 2015; 50:260-270. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Johanna M Huusko
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mari Mahlman
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Tuula Kaukola
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ritva Haataja
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Riitta Marttila
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Gergely Toldi
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miklós Szabó
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Mika Rämet
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Institute of Biomedical Technology, and BioMediTech, University of Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Pascal M Lavoie
- Child & Family Research Institute of British Columbia, Vancouver, Canada
| | - Mikko Hallman
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|
86
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
87
|
Dunn RM, Wechsler ME. Anti-interleukin therapy in asthma. Clin Pharmacol Ther 2014; 97:55-65. [PMID: 25670383 DOI: 10.1002/cpt.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022]
Abstract
Asthma remains one of the most prevalent and costly diseases in the United States. Asthma accounts for a significant amount of direct medical expenditures and indirect cost from days lost at school and work. Modern understanding of its complex pathogenesis has allowed recognition of the heterogeneity of the disease across populations and the various inflammatory pathways that drive airway inflammation in asthma. Interleukins play important roles in both eosinophilic and noneosinophilic asthma, and anti-interleukin therapy will allow for a targeted, personalized approach to asthma management. With the success of anti-interleukin (IL) -4, IL-5, and IL-13 therapy in recent large trials among specific populations of asthmatics, it is likely that targeted anti-interleukin therapy will be approved for use in the near future. It will be important for clinicians and pharmacists to understand their risks, benefits, and proper indications.
Collapse
Affiliation(s)
- R M Dunn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | | |
Collapse
|
88
|
Novel treatments of asthma and allergic diseases. Paediatr Respir Rev 2014; 15:355-62. [PMID: 24287269 DOI: 10.1016/j.prrv.2013.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 10/23/2013] [Accepted: 10/27/2013] [Indexed: 11/22/2022]
Abstract
The prevalence of allergic diseases has considerably increased, mostly in industrialized countries (> 20%), and asthma affects approximately 300 million individuals worldwide. Current therapies are able to control symptoms although they do not modulate immunological dysregulation that characterizes allergic diseases. Over the last 30 years, only a few new drugs have been introduced on the market and they all act on Th2-type response which has a critical role in the pathogenesis of allergic diseases. Recently, a new scenario has been opened on Th17-cells, Th1-type cytokines and innate immune system components involved in the inflammatory pathogenesis of asthma and other allergic diseases. These findings suggest a promising therapeutic role of new agents that block the action of specific cytokines. Furthermore, the concept of an intrinsic structural defect in the bronchial epithelium paves the way to innovative therapeutic strategies. In this review we present an update on therapies for allergic diseases with special focus on asthma.
Collapse
|
89
|
Zhou N, Wu X, Yang B, Yang X, Zhang D, Qing G. Stem cell characteristics of dormant cells and cisplatin‑induced effects on the stemness of epithelial ovarian cancer cells. Mol Med Rep 2014; 10:2495-504. [PMID: 25119644 DOI: 10.3892/mmr.2014.2483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/01/2014] [Indexed: 01/06/2023] Open
Abstract
Tumor dormancy is a common biological property of malignancies and a leading factor in treatment failure, metastasis and tumor recurrence. The present study generated mouse xenograft models by injection of PKH26‑labeled SKOV3 ovarian cancer cells, which were divided into two groups: The control group (SKOV3‑P tumors,) and the treatment group that generated resistant tumors following prolonged administration of cisplatin (SKOV3‑R tumors). Administration of cisplatin resulted in inhibition of the tumor growth and SKOV3‑R tumors coexisted with their host at a stable size. According to fluorochrome PKH26 retention, there were multiple cell clones (PKH26hi, PKH26low and PKH26neg cells) in the single cell line generated from xenograft tumors. PKH26hi subsets in SKOV3‑P and SKOV3‑R tumors were dormant cells, as the majority were arrested in G0/G1 phase and expressed high levels of the stem cell markers Oct‑4, Nestin, CD117 and CD44. PKH26hi subsets also demonstrated greater clonogenic capability in vitro and tumorigenicity in vivo, as compared with PKH26low and PKH26neg cells. Notably, chemotherapy was demonstrated to lead to the enrichment and enhanced stem‑like characteristics of dormant/slow‑cycling PKH26hi cells. The results of the present study have demonstrated for the first time, to the best of our knowledge, that dormant tumor cells exhibit stem‑like characteristics, and that cisplatin enhances these characteristics in epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bo Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Xu Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Dingding Zhang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Guo Qing
- Department of Obstetrics and Gynecology, First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
90
|
Dendritic cell c-kit signaling and adaptive immunity: implications for the upper airways. Curr Opin Allergy Clin Immunol 2014; 14:7-12. [PMID: 24300419 DOI: 10.1097/aci.0000000000000019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of mast cells and eosinophils by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators including cytokines. This review will highlight a recently discovered function of c-kit in regulating the adaptive immune responses with relevance to allergic diseases. RECENT FINDINGS Recent studies in a number of laboratories including our own highlight the previously unappreciated functions for c-kit in immunological processes. Increased expression of c-kit and its ligand, SCF, on dendritic cells by Th2/Th17-inducing stimuli leads to c-kit activation and immune skewing toward these subsets and away from Th1 responses. Treatment of dendritic cells with inhibitors of c-kit activation such as imatinib mesylate (Gleevec) induces breach of T-cell tolerance, skewing of responses toward Th1, and activation of natural killer cells. SUMMARY Taken together, these observations suggest that the c-kit/SCF axis may be a useful target for redirecting deleterious immune responses in various disease settings, including allergic diseases that are often associated with Th2 and Th17 responses.
Collapse
|
91
|
Full-length recombinant human SCF1-165 is more thermostable than the truncated SCF1-141 form. PLoS One 2014; 9:e103251. [PMID: 25061857 PMCID: PMC4111497 DOI: 10.1371/journal.pone.0103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
Human stem cell factor initiates a diverse array of cellular responses, including hematopoiesis, cell proliferation, differentiation, migration and survival. To explore the relationship between its structure and function, we produced recombinant soluble human stem cell factor1–165 (wild type) and human stem cell factor1–141 (C-terminal truncated) in a yeast expression system and compared their biological activities and thermal stabilities. The biological activity of the two proteins was measured as a function of TF-1 cell viability and effects on downstream signaling targets after incubation. We found that these proteins enhanced cell viability and downstream signaling to a similar extent, in a dose-dependent manner. The biological activity of recombinant human stem cell factor1–165 was significantly greater than that of recombinant human stem cell factor1–141 after heating the proteins (100 ng/mL) at 25–110°C for 10 minutes (P<0.05 for all temperatures). In addition, circular dichroism spectral analysis indicated that β-sheet structures were altered in recombinant human stem cell factor1–141 but not recombinant human stem cell factor1–165 after heating at 90°C for 15 or 30 min. Molecular modeling and limited proteolytic digestion were also used to compare the thermo stability between human stem cell factor1–165 and human stem cell factor1–141. Together, these data indicate that stem cell factor1–165 is more thermostable than stem cell factor1–141.
Collapse
|
92
|
Siemens H, Jackstadt R, Kaller M, Hermeking H. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget 2014; 4:1399-415. [PMID: 24009080 PMCID: PMC3824539 DOI: 10.18632/oncotarget.1202] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The c-Kit receptor tyrosine kinase is commonly over-expressed in different types of cancer. p53 activation is known to result in the down-regulation of c-Kit. However, the underlying mechanism has remained unknown. Here, we show that the p53-induced miR-34 microRNA family mediates repression of c-Kit by p53 via a conserved seed-matching sequence in the c-Kit 3'-UTR. Ectopic miR-34a resulted in a decrease in Erk signaling and transformation, which was dependent on the down-regulation of c-Kit expression. Furthermore, ectopic expression of c-Kit conferred resistance of colorectal cancer (CRC) cells to treatment with 5-fluorouracil (5-FU), whereas ectopic miR-34a sensitized the cells to 5-FU. After stimulation with c-Kit ligand/stem cell factor (SCF) Colo320 CRC cells displayed increased migration/invasion, whereas ectopic miR-34a inhibited SCF-induced migration/invasion. Activation of a conditional c-Kit allele induced several stemness markers in DLD-1 CRC cells. In primary CRC samples elevated c-Kit expression also showed a positive correlation with markers of stemness, such as Lgr5, CD44, OLFM4, BMI-1 and β-catenin. On the contrary, activation of a conditional miR-34a allele in DLD-1 cells diminished the expression of c-Kit and several stemness markers (CD44, Lgr5 and BMI-1) and suppressed sphere formation. MiR-34a also suppressed enhanced sphere-formation after exposure to SCF. Taken together, our data establish c-Kit as a new direct target of miR-34 and demonstrate that this regulation interferes with several c-Kit-mediated effects on cancer cells. Therefore, this regulation may be potentially relevant for future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Helge Siemens
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | | | | | | |
Collapse
|
93
|
Synthesis, preliminary bioevaluation and computational analysis of caffeic acid analogues. Int J Mol Sci 2014; 15:8808-20. [PMID: 24857914 PMCID: PMC4057760 DOI: 10.3390/ijms15058808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022] Open
Abstract
A series of caffeic acid amides were designed, synthesized and evaluated for anti-inflammatory activity. Most of them exhibited promising anti-inflammatory activity against nitric oxide (NO) generation in murine macrophage RAW264.7 cells. A 3D pharmacophore model was created based on the biological results for further structural optimization. Moreover, predication of the potential targets was also carried out by the PharmMapper server. These amide analogues represent a promising class of anti-inflammatory scaffold for further exploration and target identification.
Collapse
|
94
|
Pan S, Dangaria S, Gopinathan G, Yan X, Lu X, Kolokythas A, Niu Y, Luan X. SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling - potential applications as a homing factor in dental pulp regeneration. Stem Cell Rev Rep 2014; 9:655-67. [PMID: 23703692 DOI: 10.1007/s12015-013-9442-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cell factor (SCF) is a powerful chemokine that binds to the c-Kit receptor CD117 and has shown promise as a homing agent capable of progenitor cell recruitment. In the present study we have documented high levels of both SCF and its receptor c-Kit in differentiating dental pulp (DP) cells and in the sub-odontoblastic layer of Höhl. In vitro studies using human DP progenitors revealed a significant increase in cell proliferation after100 nM SCF application, explained by a 2-fold upregulation in cyclin D3 and FGF2 cell cycle regulators, and a 7-fold increase in CDK4 expression. DP cell migration in the presence of SCF was up-regulated 2.7-fold after a 24 h culture period, and this effect was accompanied by cytoskeletal rearrangement, a 1.5-fold increase in polymeric F-actin over G-actin, and a 1.8-fold increase in RhoA expression. Explaining the signaling effect of SCF on DP migration, PI3K/Akt and MEK/ERK pathway inhibitors were demonstrated to significantly reduce DP cell migration, while SCF alone doubled the number of migrated cells. ERK and AKT phosphorylation were dramatically upregulated already 3-5 min after SCF addition to the culture medium and declined thereafter, classifying SCF as a fast acting chemokine. When applied as an agent to promote tissue regeneration in subcutaneously implanted collagen sponges, SCF resulted in a 7-fold increase in the cell number in the implanted tissue construct, a more than 9-fold increase in capillaries, as well as collagen sponge remodeling and collagen fiber neogenesis. Together, these studies demonstrate the suitability of SCF as a potent aid in the regeneration of dental pulp and other mesenchymal tissues, capable of inducing cell homing, angiogenesis, and tissue remodeling.
Collapse
Affiliation(s)
- Shuang Pan
- School of Dentistry, Department of Endodontics, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Rhee CK, Kang JY, Park CK, Lee SY, Kwon SS, Kim YK, Yoon HK. Effect of nilotinib on airway remodeling in a murine model of chronic asthma. Exp Lung Res 2014; 40:199-210. [PMID: 24784417 DOI: 10.3109/01902148.2013.831959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED ABSTRACT Objective: The tyrosine kinase inhibitor nilotinib has potent inhibitory activity against the stem cell growth factor receptor c-Kit and platelet-derived growth factor receptor (PDGFR). The present study aimed to determine whether nilotinib suppresses airway remodeling and whether its effect is associated with the c-Kit and PDGFR pathways. We also aimed to compare the effect of nilotinib and imatinib on remodeling. METHODS We developed a mouse model of airway remodeling, which includes smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice a week for 3 months. Mice were treated with nilotinib or imatinib during the OVA challenge. RESULTS Compared with control mice, the mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, airway hyperresponsiveness (AHR), and exhibited features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of nilotinib significantly inhibited eosinophilic inflammation, AHR, and remodeling in mice chronically exposed to OVA. Nilotinib showed a trend of more potent effect than imatinib on attenuating remodeling in hydroxyproline assay and smooth muscle staining. Nilotinib treatment significantly reduced the expression of phosphorylated (p)-c-Kit, p-PDGFRβ, and p-extracellular signal-regulated kinase 1/2. The expression levels of the genes encoding c-Kit and PDGFRβ were also reduced by nilotinib treatment. Treatment with nilotinib did not affect significantly the level of OVA-specific IgE and IgG1 in serum. In vitro, nilotinib significantly inhibited cell proliferation of fibroblast. CONCLUSIONS These results suggest that nilotinib administration can prevent airway inflammation, AHR, and airway remodeling associated with chronic allergen challenge.
Collapse
Affiliation(s)
- Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
96
|
Changes in mast cell number and stem cell factor expression in human skin after radiotherapy for breast cancer. Radiother Oncol 2014; 111:206-11. [DOI: 10.1016/j.radonc.2014.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
|
97
|
Sharma N, Everingham S, Ramdas B, Kapur R, Craig AWB. SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis. THE JOURNAL OF IMMUNOLOGY 2014; 192:4859-66. [PMID: 24733849 DOI: 10.4049/jimmunol.1301155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SHP2 protein-tyrosine phosphatase (encoded by Ptpn11) positively regulates KIT (CD117) signaling in mast cells and is required for mast cell survival and homeostasis in mice. In this study, we uncover a role of SHP2 in promoting chemotaxis of mast cells toward stem cell factor (SCF), the ligand for KIT receptor. Using an inducible SHP2 knockout (KO) bone marrow-derived mast cell (BMMC) model, we observed defects in SCF-induced cell spreading, polarization, and chemotaxis. To address the mechanisms involved, we tested whether SHP2 promotes activation of Lyn kinase that was previously shown to promote mast cell chemotaxis. In SHP2 KO BMMCs, SCF-induced phosphorylation of the inhibitory C-terminal residue (pY507) was elevated compared with control cells, and phosphorylation of activation loop (pY396) was diminished. Because Lyn also was detected by substrate trapping assays, these results are consistent with SHP2 activating Lyn directly by dephosphorylation of pY507. Further analyses revealed a SHP2- and Lyn-dependent pathway leading to phosphorylation of Vav1, Rac activation, and F-actin polymerization in SCF-treated BMMCs. Treatment of BMMCs with a SHP2 inhibitor also led to impaired chemotaxis, consistent with SHP2 promoting SCF-induced chemotaxis of mast cells via a phosphatase-dependent mechanism. Thus, SHP2 inhibitors may be useful to limit SCF/KIT-induced mast cell recruitment to inflamed tissues or the tumor microenvironment.
Collapse
Affiliation(s)
- Namit Sharma
- Division of Cancer Biology and Genetics, Department of Biomedical and Molecular Sciences, Queen's University, Queen's Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
98
|
Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am 2014; 34:219-37. [PMID: 24745671 DOI: 10.1016/j.iac.2014.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, the authors discuss common gain-of-function mutations in the stem cell factor receptor KIT found in mast cell proliferation disorders and summarize the current understanding of the molecular mechanisms by which these transforming mutations may affect KIT structure and function leading to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of mastocytosis and other hyperproliferative diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided.
Collapse
|
99
|
Jin M, Zhou Q, Lee E, Dan S, Duan HQ, Kong D. AS252424, a PI3Kγ Inhibitor, Downregulates Inflammatory Responsiveness in Mouse Bone Marrow-Derived Mast Cells. Inflammation 2014; 37:1254-60. [DOI: 10.1007/s10753-014-9852-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
100
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|