51
|
Nagy PM, Aubert I. B6eGFPChAT mice overexpressing the vesicular acetylcholine transporter exhibit spontaneous hypoactivity and enhanced exploration in novel environments. Brain Behav 2013; 3:367-83. [PMID: 24381809 PMCID: PMC3869679 DOI: 10.1002/brb3.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022] Open
Abstract
Cholinergic innervation is extensive throughout the central and peripheral nervous systems. Among its many roles, the neurotransmitter acetylcholine (ACh) contributes to the regulation of motor function, locomotion, and exploration. Cholinergic deficits and replacement strategies have been investigated in neurodegenerative disorders, particularly in cases of Alzheimer's disease (AD). Focus has been on blocking acetylcholinesterase (AChE) and enhancing ACh synthesis to improve cholinergic neurotransmission. As a first step in evaluating the physiological effects of enhanced cholinergic function through the upregulation of the vesicular acetylcholine transporter (VAChT), we used the hypercholinergic B6eGFPChAT congenic mouse model that has been shown to contain multiple VAChT gene copies. Analysis of biochemical and behavioral paradigms suggest that modest increases in VAChT expression can have a significant effect on spontaneous locomotion, reaction to novel stimuli, and the adaptation to novel environments. These observations support the potential of VAChT as a therapeutic target to enhance cholinergic tone, thereby decreasing spontaneous hyperactivity and increasing exploration in novel environments.
Collapse
Affiliation(s)
- Paul M Nagy
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Isabelle Aubert
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
52
|
Antes R, Ezra-Elia R, Weinberger D, Solomon A, Ofri R, Michaelson DM. ApoE4 induces synaptic and ERG impairments in the retina of young targeted replacement apoE4 mice. PLoS One 2013; 8:e64949. [PMID: 23741431 PMCID: PMC3669199 DOI: 10.1371/journal.pone.0064949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
The vertebrate retina, which is part of the central nervous system, is a window into the brain. The present study investigated the extent to which the retina can be used as a model for studying the pathological effects of apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD). Immunohistochemical studies of retinas from young (4 months old) apoE4-targeted replacement mice and from corresponding mice which express the AD benign apoE3 allele, revealed that the density of the perikarya of the different classes of retinal neurons was not affected by apoE4. In contrast, the synaptic density of the retinal synaptic layers, which was assessed immunohistochemically and by immunoblot experiments, was significantly lower in the apoE4 than in the apoE3 mice. This was associated with reduced levels of the presynaptic vesicular glutamatergic transporter, VGluT1, but not of either the GABAergic vesicular transporter, VGaT, or the cholinergic vesicular transporter, VAChT, suggesting that the glutamatergic nerve terminals are preferentially affected by apoE4. In contrast, the post synaptic scaffold proteins PSD-95 and Gephyrin, which reside in excitatory and inhibitory synapses, respectively, were both elevated, and their ratio was not affected by apoE4. Electroretinogram (ERG) recordings revealed significant attenuation of mixed rod-cone responses in dark-adapted eyes of apoE4 mice. These findings suggest that the reduced ERG response in the apoE4 mice may be related to the observed decrease in the retinal nerve terminals and that the retina could be used as a novel model for non-invasive monitoring of the effects of apoE4 on the CNS.
Collapse
Affiliation(s)
- Ran Antes
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Isreal
| | - Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dov Weinberger
- Department of Ophthalmology, Rabin Medical Center, Petach Tikva, Israel
| | - Arie Solomon
- Goldschleger Eye Research Institute, Tel Aviv University, Tel Hashomer, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
53
|
Gestational Hypoxia Induces Sex-Differential Methylation of Crhr1 Linked to Anxiety-like Behavior. Mol Neurobiol 2013; 48:544-55. [DOI: 10.1007/s12035-013-8444-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/13/2013] [Indexed: 12/21/2022]
|
54
|
Danysz W, Parsons CG. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2013; 167:324-52. [PMID: 22646481 DOI: 10.1111/j.1476-5381.2012.02057.x] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstraße, Frankfurt am Main, Germany
| | | |
Collapse
|
55
|
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 2013; 38:6-23. [PMID: 22894822 PMCID: PMC3529221 DOI: 10.1503/jpn.110190] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid ß and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid ß production, but also amyloid ß can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Satyabrata Kar
- Correspondence to: S. Kar, Centre for Prions and Protein Folding Diseases, Departments of Medicine (Neurology) and Psychiatry, University of Alberta, Edmonton AB T6G 2M8;
| |
Collapse
|
56
|
Ormeño D, Romero F, López-Fenner J, Avila Á, Martínez-Torres A, Parodi J. Ethanol Reduces Amyloid Aggregation In Vitro and Prevents Toxicity in Cell Lines. Arch Med Res 2013; 44:1-7. [DOI: 10.1016/j.arcmed.2012.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
57
|
Rai S, Kamat PK, Nath C, Shukla R. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol 2013; 254:1-9. [DOI: 10.1016/j.jneuroim.2012.08.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 11/16/2022]
|
58
|
Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI. Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 2012; 136:8-22. [PMID: 22790092 DOI: 10.1016/j.pharmthera.2012.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 01/16/2023]
Abstract
Tau is a microtubule-associated protein thought to help modulate the stability of neuronal microtubules. In tauopathies, including Alzheimer's disease and several frontotemporal dementias, tau is abnormally modified and misfolded resulting in its disassociation from microtubules and the generation of pathological lesions characteristic for each disease. A recent surge in the population of people with neurodegenerative tauopathies has highlighted the immense need for disease-modifying therapies for these conditions, and new attention has focused on tau as a potential target for intervention. In the current work we summarize evidence linking tau to disease pathogenesis and review recent therapeutic approaches aimed at ameliorating tau dysfunction. The primary therapeutic tactics considered include kinase inhibitors and phosphatase activators, immunotherapies, small molecule inhibitors of protein aggregation, and microtubule-stabilizing agents. Although the evidence for tau-based treatments is encouraging, additional work is undoubtedly needed to optimize each treatment strategy for the successful development of safe and effective therapeutics.
Collapse
Affiliation(s)
- Diana S Himmelstein
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Tarry 8-754, 300 E. Superior St., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
59
|
Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience 2012; 218:1-11. [PMID: 22641085 DOI: 10.1016/j.neuroscience.2012.05.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/18/2012] [Accepted: 05/17/2012] [Indexed: 11/20/2022]
Abstract
Cholinergic neurotransmission in the hippocampus is involved in cognitive functions, including learning and memory. Strategies to enhance septohippocampal cholinergic neurotransmission may therefore be of therapeutic value to limit cognitive decline during cholinergic dysfunction. In addition to current strategies being developed, such as the use of acetylcholinesterase inhibitors, enhancing acetylcholine (ACh) release may be critical for optimal cholinergic neurotransmission. Vesicular acetylcholine transporter (VAChT) activity limits the rate of formation of the readily releasable ACh pool. As such, we sought to determine the influence of increased VAChT expression on the septohippocampal cholinergic system. To do this, we used the B6.eGFPChAT congenic mouse, which we show contains multiple gene copies of VAChT. In this transgenic mouse, the increased VAChT gene copy number led to an increase in VAChT gene expression in the septum and a corresponding enhancement of VAChT protein in the hippocampal formation. VAChT overexpression enhanced the release of ACh from ex vivo hippocampal slices. From these findings, we conclude that VAChT overexpression is sufficient to enhance ACh release in the hippocampal formation. It remains to be established whether, in cases of cholinergic deficits, increasing VAChT expression would re-establish adequate levels of cholinergic neurotransmission, thereby providing a valid therapeutic target.
Collapse
|
60
|
Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathol 2012; 123:53-70. [PMID: 22020633 PMCID: PMC3249205 DOI: 10.1007/s00401-011-0896-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 12/25/2022]
Abstract
Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer's disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1(M146L)/APP(751SL) mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin-cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages.
Collapse
|
61
|
Kuljiš RO. The fourth element targeting hypothesis of Alzheimer's disease pathogenesis and pathophysiology. Front Neurol 2010; 1:144. [PMID: 21188267 PMCID: PMC3008923 DOI: 10.3389/fneur.2010.00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022] Open
Abstract
Despite well over a century of research on all forms of the disorder known as Alzheimer's disease (AD), it is still not known whether the condition targets initially neurons, glial cells, other cellular elements in the brain, or components of cells, such as synapses, or molecules independently of their cellular compartmentalization, or otherwise (e.g., specific neuronal circuits). Multiple lines of highly suggestive but as yet insufficient experimental evidence are discussed here to formulate the hypothesis that AD results from primary (i.e., direct and initial) or secondary targeting of what we designate as the Fourth Element Cell (4EC): a relatively recently identified type of brain cell that exhibits features in common with neurons (e.g., synapses, participation in glutamatergic, and GABAergic neurotransmission), astrocytes, oligodendrocytes, and their precursors, but is in other respects clearly distinct from all of them. The 4EC is proposed to be the main target of both: (1) converging insults (i.e., not true "causes") that over time cause sporadic forms of AD as postulated by the Danger Signal Hypothesis - which was not formulated with 4EC in mind - as well as (2) the causes of inherited (i.e., familial) forms of neurodegeneration that resemble certain aspects of the clinical manifestations of sporadic AD.
Collapse
Affiliation(s)
- Rodrigo O. Kuljiš
- The Brain-Mind Project, Inc. and Encephalogistics, Inc. Galveston, TX, USA
| |
Collapse
|
62
|
Wang P, Jiang S, Cui Y, Yue Z, Su C, Sun J, Sheng S, Tian J. The n-terminal 5-MER peptide analogue P165 of amyloid precursor protein exerts protective effects on SH-SY5Y cells and rat hippocampus neuronal synapses. Neuroscience 2010; 173:169-78. [PMID: 21055450 DOI: 10.1016/j.neuroscience.2010.10.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/08/2010] [Accepted: 10/26/2010] [Indexed: 11/28/2022]
Abstract
The disturbance of the insulin-signaling pathway plays an important role in Alzheimer's disease. Resistance to insulin signaling renders neurons energy-deficient and vulnerable to oxidization or other metabolic insults and impairs synaptic plasticity. In search of neuroprotective drugs, we synthesized a peptide analogue, P165, an active domain of the soluble amyloid precursor protein, which is resistant to degradation and is suitable for oral administration in a clinical setting. Initially, we confirmed that P165 can protect cells from streptozotocin-caused damage and stimulate cell outgrowth using cultured SH-SY5Y cell lines treated with streptozotocin. P165 significantly reduced lactate dehydrogenase leakage from damaged cells, thereby rescuing cell energy production. Insulin signaling such as insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) proteins were upregulated to stimulate cell survival and growth. We proceeded to investigate the effect of P165 on streptozotocin-treated Alzheimer's disease (AD) rats. The data showed that P165 protected synaptic loss and dysfunction by increasing synaptophysin and PSD-95 (post synaptic density-95), while simultaneously decreasing α-synuclein expression. Moreover, animal behavior testing clearly showed that P165 increased rats' learning and memory activity. Overall, these results constitute evidence that peptide analogue 165 may protect synapse and improve learning and memory ability in AD.
Collapse
Affiliation(s)
- P Wang
- Key Laboratory of Chinese Internal Medicine (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100700, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Transgenic mice with chronic NGF deprivation and Alzheimer's disease-like pathology display hippocampal region-specific impairments in short- and long-term plasticities. J Neurosci 2010; 30:13089-94. [PMID: 20881126 DOI: 10.1523/jneurosci.0457-10.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The etiology of Alzheimer's disease (AD) remains elusive. The "amyloid" hypothesis states that toxic action of accumulated β-amyloid peptide (Aβ) on synaptic function causes AD cognitive decline. This hypothesis is supported by analysis of familial AD (FAD)-based transgenic mouse models, where altered amyloid precursor protein (APP) processing leads to Aβ accumulation correlating with hippocampal-dependent memory deficits. Some studies report prominent dentate gyrus (DG) glutamatergic plasticity alterations in these mice, while CA1 plasticity remains relatively unaffected. The "neurotrophic unbalance" hypothesis, on the other hand, states that AD-related loss of cholinergic signaling and altered APP processing are due to alterations in nerve growth factor (NGF) trophic support. This hypothesis is supported by analysis of the AD11 mouse, which exhibits chronic NGF deprivation during adulthood and displays AD-like pathology, including Aβ accumulation and hippocampal-dependent memory deficits. In this study, we analyzed CA1 and DG glutamatergic plasticity in AD11 mice to evaluate whether these mice also share with FAD models a common phenotype in hippocampal synaptic dysfunction. We report that AD11 mice display age-dependent short- and long-term DG plasticity deficits, while CA1 plasticity remains relatively spared. We also report that both structures exhibit enhanced glutamatergic transmission under lower, yet physiological, neurotransmitter release conditions, a defect that should be considered when further evaluating hippocampal synaptic deficits underlying AD pathology. We conclude that severe deficits in DG plasticity represent another common denominator between these two etiologically different types of AD mouse models, independent of the initial insult (overexpression of FAD mutation or NGF deprivation).
Collapse
|
64
|
Jhoo JH, Lee DY, Choo IH, Seo EH, Oh JS, Lee JS, Lee DS, Kim SG, Youn JC, Kim KW, Woo JI. Discrimination of normal aging, MCI and AD with multimodal imaging measures on the medial temporal lobe. Psychiatry Res 2010; 183:237-43. [PMID: 20705437 DOI: 10.1016/j.pscychresns.2010.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 03/11/2010] [Accepted: 03/14/2010] [Indexed: 11/15/2022]
Abstract
This study aimed to compare the discrimination accuracy of hippocampal volume (HC-Vol), parahippocampal cingulum fractional anisotropy (PHC-FA), hippocampal glucose metabolism (HC-Glu), and any combination of the three measurements among normal control (NC), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Three-dimensional MRI, diffusion tensor imaging, and FDG-PET were applied to age- and gender-matched 17 NC, 17 MCI, and 17 mild AD patients. Subjects also underwent a neuropsychological test battery including three verbal episodic memory tests. Logistic regression analyses were systematically conducted to select the best model for between-group discrimination. PHC-FA plus HC-Vol model, HC-Glu only model, and the model combining all three modalities were finally chosen for NC vs. MCI (discrimination accuracy: 79.4%), MCI vs. AD (73.5%), and NC vs. AD discrimination (94.1%), respectively. All the three imaging measures also showed significant correlation with all three episodic memory tests. These findings support that each imaging measure, respectively, and their combination have a stage-specific potential as a useful neuroimaging marker for detection and progression monitoring of early stage of AD.
Collapse
Affiliation(s)
- Jin Hyeong Jhoo
- Department of Neuropsychiatry, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Cea-del Rio CA, Lawrence JJ, Tricoire L, Erdelyi F, Szabo G, McBain CJ. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J Neurosci 2010; 30:6011-24. [PMID: 20427660 PMCID: PMC2883452 DOI: 10.1523/jneurosci.5040-09.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/20/2009] [Accepted: 03/09/2010] [Indexed: 01/22/2023] Open
Abstract
Cholinergic neuromodulation of hippocampal circuitry promotes network oscillations and facilitates learning and memory through cellular actions on both excitatory and inhibitory circuits. Despite widespread recognition that neurochemical content discriminates between functionally distinct interneuron populations, there has been no systematic examination of whether neurochemically distinct interneuron classes undergo differential cholinergic neuromodulation in the hippocampus. Using GFP transgenic mice that enable the visualization of perisomatically targeting parvalbumin-positive (PV+) or cholecystokinin-positive (CCK+) basket cells (BCs), we tested the hypothesis that neurochemically distinct interneuron populations are differentially engaged by muscarinic acetylcholine receptor (mAChR) activation. Cholinergic fiber activation revealed that CCK BCs were more sensitive to synaptic release of ACh than PV BCs. In response to depolarizing current steps, mAChR activation of PV BCs and CCK BCs also elicited distinct cholinergic response profiles, differing in mAChR-induced changes in action potential (AP) waveform, firing frequency, and intrinsic excitability. In contrast to PV BCs, CCK BCs exhibited a mAChR-induced afterdepolarization (mADP) that was frequency and activity-dependent. Pharmacological, molecular, and loss-of-function data converged on the presence of M3 mAChRs in distinguishing CCK BCs from PV BCs. Firing frequency of CCK BCs was controlled through M3 mAChRs but PV BC excitability was altered solely through M1 mAChRs. Finally, upon mAChR activation, glutamatergic transmission enhanced cellular excitability preferentially in CCK BCs but not in PV BCs. Our findings demonstrate that cell type-specific cholinergic specializations are present on neurochemically distinct interneuron subtypes in the hippocampus, revealing an organizing principle that cholinergic neuromodulation depends critically on neurochemical identity.
Collapse
Affiliation(s)
- Christian A. Cea-del Rio
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - J. Josh Lawrence
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, and
| | - Ludovic Tricoire
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Ferenc Erdelyi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Gabor Szabo
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Chris J. McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| |
Collapse
|
66
|
SPECT imaging of GABA(A)/benzodiazepine receptors and cerebral perfusion in mild cognitive impairment. Eur J Nucl Med Mol Imaging 2010; 37:1156-63. [PMID: 20306034 DOI: 10.1007/s00259-010-1409-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE The involvement of neocortical and limbic GABA(A)/benzodiazepine (BZD) receptors in Alzheimer's disease (AD) is controversial and mainly reported in advanced stages. The status of these receptors in the very early stages of AD is unclear and has not been explored in vivo. Our aims were to investigate in vivo the integrity of cerebral cortical GABA(A)/BZD receptors in subjects with amnestic mild cognitive impairment (MCI) and to compare possible receptor changes to those in cerebral perfusion. METHODS [(123)I]Iomazenil and [(99m)Tc]HMPAO SPECT images were acquired in 16 patients with amnestic MCI and in 14 normal elderly control subjects (only [(123)I]iomazenil imaging in 5, only [(99m)Tc]HMPAO imaging in 4, and both [(123)I]iomazenil and [(99m)Tc]HMPAO imaging in 5). Region of interest (ROI) analysis and voxel-based analysis were performed with cerebellar normalization. RESULTS Neither ROI analysis nor voxel-based analysis showed significant [(123)I]iomazenil binding changes in MCI patients compared to control subjects, either as a whole group or when considering only those patients with MCI that converted to AD within 2 years of clinical follow-up. In contrast, the ROI analysis revealed significant hypoperfusion of the precuneus and posterior cingulate cortex in the whole group of MCI patients and in MCI converters as compared to control subjects. Voxel-based analysis showed similar results. CONCLUSION These results indicate that in the very early stages of AD, neocortical and limbic neurons/synapses expressing GABA(A)/BZD receptors are essentially preserved. They suggest that in MCI patients functional changes precede neuronal/synaptic loss in neocortical posterior regions and that [(99m)Tc]HMPAO rCBF imaging is more sensitive than [(123)I]iomazenil GABA(A)/BZD receptor imaging in detecting prodromal AD.
Collapse
|
67
|
Hartmann J, Kiewert C, Klein J. Neurotransmitters and energy metabolites in amyloid-bearing APP(SWE)xPSEN1dE9 Mouse Brain. J Pharmacol Exp Ther 2010; 332:364-70. [PMID: 19846589 DOI: 10.1124/jpet.109.161091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease is characterized by amyloid peptide formation and deposition, neurofibrillary tangles, synaptic loss and central cholinergic dysfunction, dysfunction of energy metabolism, and dementia; however, the interactions between these hallmarks remain poorly defined. We studied a well characterized mouse model of amyloid deposition, the doubly transgenic APP(SWE)xPSEN1dE9 mouse. At 10 to 14 months of age, these mice had high levels of amyloid peptides (6.6 microg/g wet weight) and widespread amyloid plaques. Extracellular levels of acetylcholine (ACh) were determined by microdialysis in the hippocampus and were comparable with nontransgenic mice from the same colony. In the open field, both mouse strains responded with a 3-fold increase of hippocampal ACh release. Exploratory behavior of the transgenic mice appeared normal. Infusion of scopolamine evoked 5- to 6-fold increases of ACh levels in both mouse strains. High-affinity choline uptake and cholinesterase activities were identical in both mouse lines. Extracellular levels of glucose and glycerol were similar in control and transgenic mice, whereas lactate levels were slightly (p = 0.06) and glutamate levels significantly (p = 0.02) lower in transgenic mice. Exploration caused increases of glucose and lactate, whereas infusion of scopolamine (1 microM) increased glucose but not lactate. Glutamate levels were increased by scopolamine, whereas glycerol remained constant under all the conditions. We conclude that amyloid peptide production and plaque deposition causes minor changes in cholinergic function and energy metabolites in transgenic mice in vivo. Amyloid peptide formation and/or deposition may not be sufficient for long-term cholinergic or metabolic dysfunction.
Collapse
Affiliation(s)
- Joachim Hartmann
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas, USA
| | | | | |
Collapse
|
68
|
Chen SQ, Wang PJ, Ten GJ, Zhan W, Li MH, Zang FC. Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer's disease in APP/PS1 transgenic mice. Dement Geriatr Cogn Disord 2010; 28:558-66. [PMID: 20093832 PMCID: PMC2837893 DOI: 10.1159/000261646] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To explore the potential value of myo-inositol (mIns), which is regarded as a biomarker for early diagnosis of Alzheimer's disease, in APP/PS1 transgenic (tg) mice detected by (1)H-MRS. METHODS (1)H-MRS was performed in 30 APP/PS1 tg mice and 20 wild-type (wt) littermates at 3, 5 and 8 months of age. Areas under the peak of N-acetylaspartate (NAA), mIns and creatine (Cr) in the frontal cortex and hippocampus were measured, and the NAA/Cr and mIns/Cr ratios were analyzed quantitatively. RESULTS Compared with the wt mice, the mIns/Cr ratio of the 3-month-old tg mice was significantly higher (p < 0.05), and pathology showed activation and proliferation of astrocytes in the frontal cortex and hippocampus. The concentration of NAA was significantly lower at 8 and 8 months of age (p < 0.05). According to the threshold of mIns/Cr that was adopted to separate the tg from the wt mice, the rate of correct predictions was 82, 94 and 95%, respectively, for 3, 5 and 8 months. CONCLUSION Of the early AD metabolites as detected by (1)H-MRS, mIns is the most valuable marker for assessment of AD. Quantitative analysis of mIns may provide important clues for early diagnosis of AD.
Collapse
Affiliation(s)
- Shuang-Qing Chen
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Pei-Jun Wang
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China,*Pei-Jun Wang, Department of Radiology, Tongji Hospital, Tongji University, No. 389, Xincun Road, Putuo District, Shanghai 200065 (China), Tel. +86 21 6611 1206, Fax +86 21 5695 2231, E-Mail
| | - Gao-Jun Ten
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China,Molecular Imaging Laboratory, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wei Zhan
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Ming-Hua Li
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Feng-Chao Zang
- Molecular Imaging Laboratory, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
69
|
Tobinick E. Tumour necrosis factor modulation for treatment of Alzheimer's disease: rationale and current evidence. CNS Drugs 2009; 23:713-25. [PMID: 19689163 DOI: 10.2165/11310810-000000000-00000] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumour necrosis factor (TNF), a key regulator of varied physiological mechanisms in multiple organ systems, is an immune signalling molecule produced by glia, neurons, macrophages and other immune cells. In the brain, among other functions, TNF serves as a gliotransmitter, secreted by glial cells that envelope and surround synapses, which regulates synaptic communication between neurons. The role of TNF as a gliotransmitter may help explain the profound synaptic effects of TNF that have been demonstrated in the hippocampus, in the spinal cord and in a variety of experimental models. Excess TNF is present in the CSF of individuals with Alzheimer's disease (AD), and has been implicated as a mediator of the synaptic dysfunction that is hypothesized to play a central role in the pathogenesis of AD. TNF may also play a role in endothelial and microvascular dysfunction in AD, and in amyloidogenesis and amyloid-induced memory dysfunction in AD. Genetic and epidemiological evidence has implicated increased TNF production as a risk factor for AD. Perispinal administration of etanercept, a potent anti-TNF fusion protein, produced sustained clinical improvement in a 6-month, open-label pilot study in patients with AD ranging from mild to severe. Subsequent case studies have documented rapid clinical improvement following perispinal etanercept in both AD and primary progressive aphasia, providing evidence of rapidly reversible, TNF-dependent, pathophysiological mechanisms in AD and related disorders. Perispinal etanercept for AD merits further study in randomized clinical trials.
Collapse
Affiliation(s)
- Edward Tobinick
- Institute for Neurological Research, Los Angeles, California 90095, USA.
| |
Collapse
|
70
|
Cholinergic Involvement in Alzheimer’s Disease. A Link with NGF Maturation and Degradation. J Mol Neurosci 2009; 40:230-5. [DOI: 10.1007/s12031-009-9238-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 11/25/2022]
|
71
|
Strazielle C, Jazi R, Verdier Y, Qian S, Lalonde R. Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease: correlations with behavior and oxidative stress. Neurochem Int 2009; 55:806-14. [PMID: 19682525 DOI: 10.1016/j.neuint.2009.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 08/01/2009] [Accepted: 08/05/2009] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction and brain metabolic alteration are early neurofunctional aspects in Alzheimer's disease (AD). Regional brain metabolism was analyzed by cytochrome c oxidase (COX) histochemistry in PS1-A246E mouse mutants, a model of autosomal dominant AD overexpressing beta-amyloid (Abeta) peptide without amyloidosis or cell degeneration. Immunohistochemical samples were analyzed on adjacent sections for regional Abeta1-42 levels, as well as DNA oxidative damage with 8-hydroxy-2-deoxyguanosine (8-OHdG). COX activity increased in the basal forebrain nuclear complex, specific parts of the amygdala and hippocampus, as well as in striatum and connected regions. On the contrary, a hypometabolism was observed in midline thalamic, interpeduncular, and pedonculopontine nuclei. The integration of these regions in circuitries subserving emotions, arousal, and cognitive functions may explain why neurochemical alterations in specific brain regions were linearly correlated with psychomotor slowing and disinhibition previously reported in the mutant. As the PS1-A246E model appears to mimick prodromal AD, the results support the existence of mitochondrial abnormalities prior to AD-related cognitive deficits. However, since affected PS1-A246E brain regions were not primarily those altered in AD-associated histopathological features and did not systematically display either Abeta overexpression or higher 8-OHdG immunolabelling, the hypermetabolism observed seems to comprise a compensatory reaction to early mitochondrial abnormalities; furthermore, neuronal synaptic function should be considered as particularly relevant in COX activity changes.
Collapse
|
72
|
Kotermanski SE, Johnson JW. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine. J Neurosci 2009; 29:2774-9. [PMID: 19261873 PMCID: PMC2679254 DOI: 10.1523/jneurosci.3703-08.2009] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 02/01/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate interneuronal communication and are broadly involved in nervous system physiology and pathology (Dingledine et al., 1999). Memantine, a drug that blocks the ion channel formed by NMDARs, is a widely prescribed treatment of Alzheimer's disease (Schmitt, 2005; Lipton, 2006; Parsons et al., 2007). Research on memantine's mechanism of action has focused on the NMDAR subtypes most highly expressed in adult cerebral cortex, NR1/2A and NR1/2B receptors (Cull-Candy and Leszkiewicz, 2004), and has largely ignored interactions with extracellular Mg(2+) (Mg(2+)(o)). Mg(2+)(o) is an endogenous NMDAR channel blocker that binds near memantine's binding site (Kashiwagi et al., 2002; Chen and Lipton, 2005). We report that a physiological concentration (1 mM) of Mg(2+)(o) decreased memantine inhibition of NR1/2A and NR1/2B receptors nearly 20-fold at a membrane voltage near rest. In contrast, memantine inhibition of the other principal NMDAR subtypes, NR1/2C and NR1/2D receptors, was decreased only approximately 3-fold. As a result, therapeutic memantine concentrations should have negligible effects on NR1/2A or NR1/2B receptor activity but pronounced effects on NR1/2C and NR1/2D receptors. Quantitative modeling showed that the voltage dependence of memantine inhibition also is altered by 1 mM Mg(2+)(o). We report similar results with the NMDAR channel blocker ketamine, a drug used to model schizophrenia (Krystal et al., 2003). These results suggest that currently hypothesized mechanisms of memantine and ketamine action should be reconsidered and that NR1/2C and/or NR1/2D receptors play a more important role in cortical physiology and pathology than previously appreciated.
Collapse
Affiliation(s)
- Shawn E. Kotermanski
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
73
|
LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 2009; 87:440-51. [PMID: 18798283 PMCID: PMC2739042 DOI: 10.1002/jnr.21850] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The neuropathology of Alzheimer's disease (AD) and other tauopathies is characterized by filamentous deposits of the microtubule-associated protein tau, but the relationship between tau polymerization and neurotoxicity is unknown. Here, we examined effects of filamentous tau on fast axonal transport (FAT) using isolated squid axoplasm. Monomeric and filamentous forms of recombinant human tau were perfused in axoplasm, and their effects on kinesin- and dynein-dependent FAT rates were evaluated by video microscopy. Although perfusion of monomeric tau at physiological concentrations showed no effect, tau filaments at the same concentrations selectively inhibited anterograde (kinesin-dependent) FAT, triggering the release of conventional kinesin from axoplasmic vesicles. Pharmacological experiments indicated that the effect of tau filaments on FAT is mediated by protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK-3) activities. Moreover, deletion analysis suggested that these effects depend on a conserved 18-amino-acid sequence at the amino terminus of tau. Interestingly, monomeric tau isoforms lacking the C-terminal half of the molecule (including the microtubule binding region) recapitulated the effects of full-length filamentous tau. Our results suggest that pathological tau aggregation contributes to neurodegeneration by altering a regulatory pathway for FAT.
Collapse
Affiliation(s)
- Nichole E. LaPointe
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Gerardo Morfini
- Marine Biological Laboratory, Woods Hole, Massachusetts
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Gustavo Pigino
- Marine Biological Laboratory, Woods Hole, Massachusetts
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Irina N. Gaisina
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Lester I. Binder
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Scott T. Brady
- Marine Biological Laboratory, Woods Hole, Massachusetts
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
74
|
Affiliation(s)
- Seol-Heui Han
- Department of Neurology, Konkuk University School of Medicine Center for Geriatric Neuroscience Research, IBST, Konkuk University, Korea.
| |
Collapse
|
75
|
Bell KFS, Cuello AC. [Paradoxical increase in glutamatergic synaptic terminations in mild cognitive impairment due to Alzheimer's disease]. Med Sci (Paris) 2008; 24:807-9. [PMID: 18950575 DOI: 10.1051/medsci/20082410807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
76
|
Morrissette DA, Parachikova A, Green KN, LaFerla FM. Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem 2008; 284:6033-7. [PMID: 18948253 DOI: 10.1074/jbc.r800030200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the past 2 decades, the elucidation of susceptibility and causative genes for Alzheimer disease as well as proteins involved in the pathogenic process has greatly facilitated the development of genetically altered mouse models. These models have played a major role in defining critical disease-related mechanisms and in evaluating novel therapeutic approaches, with many treatments currently in clinical trial owing their origins to studies initially performed in mice. This review discusses the utility of transgenic mice as a research tool and their contributions to our understanding of Alzheimer disease.
Collapse
Affiliation(s)
- Debbi A Morrissette
- Department of Neurobiology and Behavior and Institute for Brain Aging and Dementia, University of California, Irvine, California 92697-4545, USA
| | | | | | | |
Collapse
|
77
|
The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol Neurobiol 2008; 37:187-202. [PMID: 18649038 DOI: 10.1007/s12035-008-8032-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/04/2008] [Indexed: 01/07/2023]
Abstract
The mammalian central nervous system (CNS) represents a highly complex unit, the correct function of which relies on the appropriate differentiation and survival of its neurones. It is becoming apparent that the Rho family of small GTPases and their downstream targets have a major function in regulating CNS development. Among the effectors, the role of the Pak family of kinases, especially Pak1, is becoming increasingly evident. Although highest levels of Pak1 expression and activation are detected in the developing nervous system, much remains undiscovered concerning its function in neurones. This review summarises what is currently known regarding the biological and molecular role of Pak1 in the mammalian forebrain. It emphasises the importance of Pak1 in regulating neuronal polarity, morphology, migration and synaptic function. Consequently, there are also strong indications that Pak1 is required for normal cognitive function. Furthermore, loss of Pak1 has been associated with the progression of neurodegenerative disorders, particularly Alzheimer's disease, while up-regulation and de-regulation may be responsible for oncogenic transformation of support cells within the CNS, especially astrocyte progenitors. Together, these new and exciting findings encourage the future exploration into the function of Pak1 in the nervous system, thus, paving the way for novel strategies towards improved diagnosis and therapeutic treatment of diseases that affect the CNS.
Collapse
|
78
|
Gunasingh MJ, Philip JE, Ashok BS, Kirubagaran R, Jebaraj WCE, Davis GDJ, Vignesh S, Dhandayuthapani S, Jayakumar R. Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism. Life Sci 2008; 83:96-102. [DOI: 10.1016/j.lfs.2008.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/14/2008] [Accepted: 05/09/2008] [Indexed: 01/09/2023]
|
79
|
Salminen A, Suuronen T, Kaarniranta K. ROCK, PAK, and Toll of synapses in Alzheimer's disease. Biochem Biophys Res Commun 2008; 371:587-90. [PMID: 18466762 DOI: 10.1016/j.bbrc.2008.04.148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder where the cognitive deficit is the hallmark symptom reflecting the progression of the disease. Synaptic dysfunction is a sensitive parameter of the AD pathology. Rho GTPases and the Rho kinases, ROCK1/2, and PAK1-3, are important regulators of synaptic plasticity, especially in maintaining the actin cytoskeleton of dendritic spines. Recent studies have revealed that beta-amyloid oligomers can inhibit PAK and stimulate ROCK-mediated signaling. Both of these effects enhance the disassembly of synaptic actin filaments and ultimately evoke synaptic loss. Brain tissue in AD recognizes the beta-amyloid peptide oligomers as foreign protein particles and mounts an inflammatory defense via Toll-like receptor (TLR) signaling which causes synaptic impairment. We will review here the dysfunction of ROCK, PAK, and Toll signaling associated with AD pathology. The protection of synapses in AD may provide new therapeutic approaches to combatting the cognitive impairment in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland.
| | | | | |
Collapse
|
80
|
Gallagher JP, Orozco-Cabal LF, Liu J, Shinnick-Gallagher P. Synaptic physiology of central CRH system. Eur J Pharmacol 2008; 583:215-25. [PMID: 18342852 PMCID: PMC2424315 DOI: 10.1016/j.ejphar.2007.11.075] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/27/2007] [Accepted: 11/07/2007] [Indexed: 12/23/2022]
Abstract
Corticotropin-Releasing Hormone (CRH) or Corticotropin-Releasing Factor (CRF) and its family of related naturally occurring endogenous peptides and receptors are becoming recognized for their actions within central (CNS) and peripheral (PNS) nervous systems. It should be recognized that the term 'CRH' has been displaced by 'CRF' [Guillemin, R., 2005. Hypothalamic hormones a.k.a. hypothalamic releasing factors. J. Endocrinol. 184, 11-28]. However, to maintain uniformity among contributions to this special issue we have used the original term, CRH. The term 'CRF' has been associated recently with CRH receptors and designated with subscripts by the IUPHAR nomenclature committee [Hauger, R.L., Grigoriadis, D.E., Dallman, M.F., Plotsky, P.M., Vale, W.W., Dautzenberg, F.M., 2003. International Union of Pharmacology. XXXVI. Corticotrophin-releasing factor and their ligands. Pharmacol. Rev. 55, 21-26] to denote the type and subtype of receptors activated or antagonized by CRH ligands. CRH, as a hormone, has long been identified as the regulator of basal and stress-induced ACTH release within the hypothalamo-pituitary-adrenal axis (HPA axis). But the concept, that CRH and its related endogenous peptides and receptor ligands have non-HPA axis actions to regulate CNS synaptic transmission outside the HPA axis, is just beginning to be recognized and identified [Orozco-Cabal, L., Pollandt, S., Liu, J., Shinnick-Gallagher, P., Gallagher, J.P., 2006a. Regulation of Synaptic Transmission by CRF Receptors. Rev. Neurosci. 17, 279-307; Orozco-Cabal, L., Pollandt, S., Liu, J., Vergara, L., Shinnick-Gallagher, P., Gallagher, J.P., 2006b. A novel rat medial prefrontal cortical slice preparation to investigate synaptic transmission from amygdala to layer V prelimbic pyramidal neurons. J. Neurosci. Methods 151, 148-158] is especially noteworthy since this synapse has become a prime focus for a variety of mental diseases, e.g. schizophrenia [Fischbach, G.D., 2007. NRG1 and synaptic function in the CNS. Neuron 54, 497-497], and neurological disorders, e.g., Alzheimer's disease [Bell, K.F., Cuello, C.A., 2006. Altered synaptic function in Alzheimer's disease. Eur. J. Pharmacol. 545, 11-21]. We suggest that "The Stressed Synapse" has been overlooked [c.f., Kim, J.J., Diamond, D.M. 2002. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev., Neurosci. 3, 453-462; Radley, J.J., Morrison, J.H., 2005. Repeated stress and structural plasticity in the brain. Ageing Res. Rev. 4, 271-287] as a major contributor to many CNS disorders. We present data demonstrating CRH neuroregulatory and neuromodulatory actions at three limbic synapses, the basolateral amygdala to central amygdala synapse; the basolateral amygdala to medial prefrontal cortex synapse, and the lateral septum mediolateral nucleus synapse. A novel stress circuit is presented involving these three synapses. We suggest that CRH ligands and their receptors are significant etiological factors that need to be considered in the pharmacotherapy of mental diseases associated with CNS synaptic transmission.
Collapse
Affiliation(s)
- Joel P Gallagher
- University of Texas Medical Branch, Department of Pharmacology & Toxicology Galveston, TX 77555-1031 USA.
| | | | | | | |
Collapse
|
81
|
Bell KFS, Zheng L, Fahrenholz F, Cuello AC. ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 2008; 29:554-65. [PMID: 17187903 DOI: 10.1016/j.neurobiolaging.2006.11.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/25/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.
Collapse
Affiliation(s)
- Karen F S Bell
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
82
|
West MJ, Bach G, Søderman A, Jensen JL. Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice. Neurobiol Aging 2008; 30:1756-76. [PMID: 18336954 DOI: 10.1016/j.neurobiolaging.2008.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/11/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Synaptic changes occur early in the course of Alzheimer's disease and are key to understanding the initial events in associated neurodegenerative processes. The quantitative analysis of synaptic morphology in transgenic mouse models of Alzheimer's disease can provide important insights into these processes. To this end, the total number and the distribution of the diameters of synaptic contacts in the stratum radiatum of the CA1 region of the hippocampus of 12-month-old APP/PS1DeltaE9 transgenic mice and wild type littermates have been evaluated by applying design-based stereological methods to material prepared for electron microscopy. Although there were no differences in the size of the synaptic contacts, the total number of synaptic contacts was significantly larger in the transgenic mice, suggesting that the transgenic effect at this age is synaptotrophic and that the presence of amyloid plaques and an elevated Abeta42/40 ratio are not necessarily detrimental to populations of synapses. The potential of this type of data in evaluating synaptic changes related to Alzheimer's disease is discussed and the methodology described in detail.
Collapse
Affiliation(s)
- Mark J West
- Anatomical Institute, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|
83
|
Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren ST. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 2008; 4:256-63. [DOI: 10.1038/nchembio.78] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/29/2008] [Indexed: 11/09/2022]
|
84
|
Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer's disease following perispinal etanercept administration. J Neuroinflammation 2008; 5:2. [PMID: 18184433 PMCID: PMC2211476 DOI: 10.1186/1742-2094-5-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/09/2008] [Indexed: 12/22/2022] Open
Abstract
Substantial basic science and clinical evidence suggests that excess tumor necrosis factor-alpha (TNF-alpha) is centrally involved in the pathogenesis of Alzheimer's disease. In addition to its pro-inflammatory functions, TNF-alpha has recently been recognized to be a gliotransmitter that regulates synaptic function in neural networks. TNF-alpha has also recently been shown to mediate the disruption in synaptic memory mechanisms, which is caused by beta-amyloid and beta-amyloid oligomers. The efficacy of etanercept, a biologic antagonist of TNF-alpha, delivered by perispinal administration, for treatment of Alzheimer's disease over a period of six months has been previously reported in a pilot study. This report details rapid cognitive improvement, beginning within minutes, using this same anti-TNF treatment modality, in a patient with late-onset Alzheimer's disease. Rapid cognitive improvement following perispinal etanercept may be related to amelioration of the effects of excess TNF-alpha on synaptic mechanisms in Alzheimer's disease and provides a promising area for additional investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Edward L Tobinick
- Department of Medicine, Institute for Neurological Research, Los Angeles, USA.
| | | |
Collapse
|
85
|
Járdánházy A, Járdánházy T, Kálmán J. Sodium lactate differently alters relative EEG power and functional connectivity in Alzheimer's disease patients' brain regions. Eur J Neurol 2007; 15:150-5. [PMID: 18093154 DOI: 10.1111/j.1468-1331.2007.02016.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bilateral temporo-parietal hypoperfusion and decreased glucose metabolism are characteristic in vivo findings in Alzheimer's disease (AD). Lactate is a metabolic vasodilator and is known to induce increased cerebral blood flow in healthy adults. The present study addresses the issue whether sodium lactate infusion affects functional state and resulting electroencephalographic patterns of AD patients. Twelve late-onset sporadic AD probands participated in this self-control study. The relative power and synchronization likelihood (SL) values of the electroencephalographic samples were calculated and compared off-line before and after sodium lactate infusion (0.5 M, 5 ml/kg body weight). Based on the reactivity to sodium lactate the scalp could be divided into three parts; no significant changes were seen in the seriously damaged (P3-P4) areas. The moderately affected regions in the close neighborhood showed a paradoxic inactivation with electroencephalographic slowing, a likely consequence of the metabolic-like steal effect of the near-normal areas outside. These results indicate a diminished vascular and/or metabolic reserve capacity to sodium lactate challenge in AD and confirm the formerly described electroencephalographic abnormalities.
Collapse
Affiliation(s)
- A Járdánházy
- Department of Neurology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
86
|
Nathalie Lacor P. Advances on the understanding of the origins of synaptic pathology in AD. Curr Genomics 2007; 8:486-508. [PMID: 19415125 PMCID: PMC2647163 DOI: 10.2174/138920207783769530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/14/2022] Open
Abstract
Although Alzheimer's disease (AD) was first discovered a century ago, we are still facing a lack of definitive diagnosis during the patient's lifetime and are unable to prescribe a curative treatment. However, the past 10 years have seen a "revamping" of the main hypothesis about AD pathogenesis and the hope to foresee possible treatment. AD is no longer considered an irreversible disease. A major refinement of the classic beta-amyloid cascade describing amyloid fibrils as neurotoxins has been made to integrate the key scientific evidences demonstrating that the first pathological event occurring in AD early stages affects synaptic function and maintenance. A concept fully compatible with synapse loss being the best pathological correlate of AD rather than other described neuropathological hallmarks (amyloid plaques, neurofibrillary tangles or neuronal death). The notion that synaptic alterations might be reverted, thus offering a potential curability, was confirmed by immunotherapy experiments targeting beta-amyloid protein in transgenic AD mice in which cognitive functions were improved despite no reduction in the amyloid plaques burden. The updated amyloid cascade now integrates the synapse failure triggered by soluble Abeta-oligomers. Still no consensus has been reached on the most toxic Abeta conformations, neither on their site of production nor on their extra- versus intra-cellular actions. Evidence shows that soluble Abeta oligomers or ADDLs bind selectively to neurons at their synaptic loci, and trigger major changes in synapse composition and morphology, which ultimately leads to dendritic spine loss. However, the exact mechanism is not yet fully understood but is suspected to involve some membrane receptor(s).
Collapse
|
87
|
Cuello AC, Bruno MA. The failure in NGF maturation and its increased degradation as the probable cause for the vulnerability of cholinergic neurons in Alzheimer's disease. Neurochem Res 2007; 32:1041-5. [PMID: 17404842 DOI: 10.1007/s11064-006-9270-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
This short review discusses the arguments to consider the dismetabolism of the pathway responsible for both the maturation and degradation of NGF as the culprit of vulnerability of the forebrain cholinergic system to the Alzheimer's disease neuropathology. This summary includes information regarding a novel metabolic cascade converting Pro-NGF to mature NGF in the extracellular space and its ultimate degradation by a metalloprotease. It also describes how this pathway is altered in Alzheimer's disease with the consequential CNS accumulation of proNGF and impairment in the formation of NGF along with increased degradation of this key trophic factor. This metabolic scenario in Alzheimer's disease should result in the failure of NGF trophic support to forebrain cholinergic neurons and thus explaining the vulnerability of these neurons in this neurodegenerative condition.
Collapse
Affiliation(s)
- A Claudio Cuello
- Departments of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, Canada.
| | | |
Collapse
|
88
|
Alkon DL, Sun MK, Nelson TJ. PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer's disease. Trends Pharmacol Sci 2007; 28:51-60. [PMID: 17218018 DOI: 10.1016/j.tips.2006.12.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/06/2006] [Accepted: 12/19/2006] [Indexed: 11/29/2022]
Abstract
There is strong evidence that protein kinase C (PKC) isozyme signaling pathways are causally involved in associative memory storage. Other observations have indicated that PKC signaling pathways regulate important molecular events in the neurodegenerative pathophysiology of Alzheimer's disease (AD), which is a progressive dementia that is characterized by loss of recent memory. This parallel involvement of PKC signaling in both memory and neurodegeneration indicates a common basis for the origins of both the symptoms and the pathology of AD. Here, we discuss this conceptual framework as a basis for an autopsy-validated peripheral biomarker--and for AD drug design targeting drugs (bryostatin and bryologs) that activate PKC isozymes--that has already demonstrated significant promise for treating both AD neurodegeneration and its symptomatic memory loss.
Collapse
Affiliation(s)
- Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|