51
|
Is ultra low-dose CT with tin filtration useful for examination of SI joints? Can it replace X-ray in diagnostics of sacroiliitis? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:77-83. [DOI: 10.5507/bp.2021.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
|
52
|
Baldi D, Tramontano L, Alfano V, Punzo B, Cavaliere C, Salvatore M. Whole Body Low Dose Computed Tomography Using Third-Generation Dual-Source Multidetector With Spectral Shaping: Protocol Optimization and Literature Review. Dose Response 2020; 18:1559325820973131. [PMID: 33456411 PMCID: PMC7783892 DOI: 10.1177/1559325820973131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
For decades, the main imaging tool for multiple myeloma (MM) patient's management has been the conventional skeleton survey. In 2014 international myeloma working group defined the advantages of the whole-body low dose computed tomography (WBLDCT) as a gold standard, among imaging modalities, for bone disease assessment and subsequently implemented this technique in the MM diagnostic workflow. The aim of this study is to investigate, in a group of 30 patients with a new diagnosis of MM, the radiation dose (CT dose index, dose-length product, effective dose), the subjective image quality score and osseous/extra-osseous findings rate with a modified WBLDCT protocol. Spectral shaping and third-generation dual-source multidetector CT scanner was used for the assessment of osteolytic lesions due to MM, and the dose exposure was compared with the literature findings reported until 2020. Mean radiation dose parameters were reported as follows: CT dose index 0.3 ± 0.1 mGy, Dose-Length Product 52.0 ± 22.5 mGy*cm, effective dose 0.44 ± 0.19 mSv. Subjective image quality was good/excellent in all subjects. 11/30 patients showed osteolytic lesions, with a percentage of extra-osseous findings detected in 9/30 patients. Our data confirmed the advantages of WBLDCT in the diagnosis of patients with MM, reporting an effective dose for our protocol as the lowest among previous literature findings.
Collapse
|
53
|
Gawlitza J, Henzler T, Trinkmann F, Nekolla E, Haubenreisser H, Brix G. COPD Imaging on a 3rd Generation Dual-Source CT: Acquisition of Paired Inspiratory-Expiratory Chest Scans at an Overall Reduced Radiation Risk. Diagnostics (Basel) 2020; 10:E1106. [PMID: 33352939 PMCID: PMC7765937 DOI: 10.3390/diagnostics10121106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
As stated by the Fleischner Society, an additional computed tomography (CT) scan in expiration is beneficial in patients with chronic obstructive pulmonary disease (COPD). It was thus the aim of this study to evaluate the radiation risk of a state-of-the-art paired inspiratory-expiratory chest scan compared to inspiration-only examinations. Radiation doses to 28 organs were determined for 824 COPD patients undergoing routine chest examinations at three different CT systems-a conventional multi-slice CT (MSCT), a 2nd generation (2nd-DSCT), and 3rd generation dual-source CT (3rd-DSCT). Patients examined at the 3rd-DSCT received a paired inspiratory-expiratory scan. Organ doses, effective doses, and lifetime attributable cancer risks (LAR) were calculated. All organ and effective doses were significantly lower for the paired inspiratory-expiratory protocol (effective doses: 4.3 ± 1.5 mSv (MSCT), 3.0 ± 1.2 mSv (2nd-DSCT), and 2.0 ± 0.8 mSv (3rd-DSCT)). Accordingly, LAR was lowest for the paired protocol with an estimate of 0.025 % and 0.013% for female and male patients (50 years) respectively. Image quality was not compromised. Paired inspiratory-expiratory scans can be acquired on 3rd-DSCT systems at substantially lower dose and risk levels when compared to inspiration-only scans at conventional CT systems, offering promising prospects for improved COPD diagnosis.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, 68159 Mannheim, Germany;
| | - Frederik Trinkmann
- Pulmonology and Critical Care Medicine, Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69115 Heidelberg, Germany;
- Department of Biomedical Informatics of the Heinrich-Lanz-Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 69115 Heidelberg, Germany
| | - Elke Nekolla
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, 91465 Neuherberg, Germany; (E.N.); (G.B.)
| | | | - Gunnar Brix
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, 91465 Neuherberg, Germany; (E.N.); (G.B.)
| |
Collapse
|
54
|
Low-Dose CT in Pelvic Imaging: Comparing Dose and Image Quality in Relation to Clinical Value in a Phantom Study. AJR Am J Roentgenol 2020; 216:453-463. [PMID: 33325736 DOI: 10.2214/ajr.20.22907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE. The aim of this phantom study was to determine whether low-dose CT of the pelvis can be performed using a dose similar to that used in a standard radio-graphic examination and to ascertain whether CT, with its better delineation of complex structures, has greater clinical value than radiography and therefore will result in improved patient care. Special consideration was given to CT performed using the tin filtration technique. MATERIALS AND METHODS. For dose comparison, an anthropomorphic phantom with 20 thermoluminescent dosimeters, two different CT scanners, and three conventional radiography devices were used. Seven CT protocols (including tin filtration) and four different radiographic examinations were performed. Dose calculations, objective and subjective evaluations of image quality, and figure-of-merit calculations were compared among the techniques. Furthermore, the images obtained were evaluated in a clinical context. Intraclass correlation was determined for the subjective results. RESULTS. The dose values of the tested low-dose CT protocols, in particular those using the tin filtration technique, corresponded to or were only slightly higher than the dose values of conventional pelvic radiographic images obtained in three views. Low-dose CT examinations were rated sufficient for consolidation control and had an informative value that was significantly higher than that of conventional radiography. Tin filtering showed the best results for low-dose CT in terms of combining dose and clinically relevant image quality. CONCLUSION. In this phantom study, low-dose CT was superior to radiography for visualizing and evaluating the dorsal pelvic ring, with only marginally higher radiation exposure occurring when the latest-generation CT systems were used. Tin filtration can improve image quality, create further dose reductions, or provide both benefits.
Collapse
|
55
|
Winkelmann MT, Afat S, Walter SS, Stock E, Schwarze V, Brendlin A, Kolb M, Artzner CP, Othman AE. Diagnostic Performance of Different Simulated Low-Dose Levels in Patients with Suspected Cervical Abscess Using a Third-Generation Dual-Source CT Scanner. Diagnostics (Basel) 2020; 10:diagnostics10121072. [PMID: 33322074 PMCID: PMC7764070 DOI: 10.3390/diagnostics10121072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the effects of dose reduction on diagnostic accuracy and image quality of cervical computed tomography (CT) in patients with suspected cervical abscess. Forty-eight patients (mean age 45.5 years) received a CT for suspected cervical abscess. Low-dose CT (LDCT) datasets with 25%, 50%, and 75% of the original dose were generated with a realistic simulation. The image data were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) (strengths 3 and 5). A five-point Likert scale was used to assess subjective image quality and diagnostic confidence. The signal-to-noise ratio (SNR) of the sternocleidomastoid muscle and submandibular gland and the contrast-to-noise ratio (CNR) of the sternocleidomastoid muscle and submandibular glandular fat were calculated to assess the objective image quality. Diagnostic accuracy was calculated for LDCT using the original dose as the reference standard. The prevalence of cervical abscesses was high (72.9%) in the cohort; the mean effective dose for all 48 scans was 1.8 ± 0.8 mSv. Sternocleidomastoid and submandibular SNR and sternocleidomastoid muscle fat and submandibular gland fat CNR increased with higher doses and were significantly higher for ADMIRE compared to FBP, with the best results in ADMIRE 5 (all p < 0.001). Subjective image quality was highest for ADMIRE 5 at 75% and lowest for FBP at 25% of the original dose (p < 0.001). Diagnostic confidence was highest for ADMIRE 5 at 75% and lowest for FBP at 25% (p < 0.001). Patient-based diagnostic accuracy was high for all LDCT datasets, down to 25% for ADMIRE 3 and 5 (sensitivity: 100%; specificity: 100%) and lower for FBP at 25% dose reduction (sensitivity: 88.6-94.3%; specificity: 92.3-100%). The use of a modern dual-source CT of the third generation and iterative reconstruction allows a reduction in the radiation dose to 25% (0.5 mSv) of the original dose with the same diagnostic accuracy for the assessment of neck abscesses.
Collapse
Affiliation(s)
- Moritz T Winkelmann
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Saif Afat
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Sven S Walter
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Eva Stock
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Vincent Schwarze
- Department of Radiology, University Hospital LMU, 81337 Munich, Germany
| | - Andreas Brendlin
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Manuel Kolb
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Christoph P Artzner
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Ahmed E Othman
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
56
|
Mohd Ali DKM, Mahmud MH, Mohamad NS. Pre-operative Percutaneous Nephrolithotripsy Characterisation of Kidney Stones with Second-Generation Dual-Source Dual-Energy Computed Tomography. Malays J Med Sci 2020; 27:43-52. [PMID: 33154701 PMCID: PMC7605830 DOI: 10.21315/mjms2020.27.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 10/27/2022] Open
Abstract
Background: The current clinical practice to manage kidney stone requires knowledge of the stone composition. However, it is often difficult to determine the actual stone composition before a stone is operatively removed from the patient. Dual-energy computed tomography (DECT) can predict urinary stone composition, but it is not widely adopted. The purpose of the study was to investigate the use of a second-generation DECT with tin or stannum (Sn) filter for characterising the kidney stones composition.
Methods: Thirty-three kidney stones were scanned ex vivo using a dual-source (DS)DECT scanner with dual-energy (DE) mode of 80/140 kVp with and without 4 mm Sn filtration. DE ratio was calculated to determine the kidney stones composition (uric acid, calcium oxalate, calcium phosphate and cystine). The median DE ratio of the stones was compared using Wilcoxon signed rank test and the results were further correlated with semi-quantitative Fourier transform infrared (FTIR) spectroscopy analysis using Kendall’s Tau test with P < 0.05 deemed to be statistically significant.
Results: Second-generation DS-DECT could significantly discriminate the stones composition with and without Sn filtration (P < 0.001). The median DE ratio of uric acid, calcium oxalate and cystine stones were significantly higher with Sn filtration than those without filtration (P < 0.05). DECT results revealed significant correlation with FTIR spectroscopy analysis (r = 0.716, P < 0.001). DECT with Sn filtration showed increased performance (100% sensitivity, 0% specificity) than those without filtration (48.5% sensitivity, 0% specificity) in the detection of the kidney stone subtypes.
Conclusion: In the second-generation DECT with additional Sn filtration, DECT has shown a significant performance in characterising and discriminating the kidney stone composition. This may improve diagnostic and therapy management in kidney stones cases.
Collapse
Affiliation(s)
- DK Mella Mohd Ali
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Mohd Hafizi Mahmud
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Noor Shafini Mohamad
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| |
Collapse
|
57
|
Zhang L, Pelgrim GJ, Yan J, Zhang H, Vliegenthart R, Xie X. Feasibility of bronchial wall quantification in low- and ultralow-dose third-generation dual-source CT: An ex vivo lung study. J Appl Clin Med Phys 2020; 21:218-226. [PMID: 32991062 PMCID: PMC7592972 DOI: 10.1002/acm2.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate image quality and bronchial wall quantification in low- and ultralow-dose third-generation dual-source computed tomography (CT). METHODS A lung specimen from a formerly healthy male was scanned using third-generation dual-source CT at standard-dose (51 mAs/120 kV, CTDIvol 3.41 mGy), low-dose (1/4th and 1/10th of standard dose), and ultralow-dose setting (1/20th). Low kV (70, 80, 90, and Sn100 kV) scanning was applied in each low/ultralow-dose setting, combined with adaptive mAs to keep a constant dose. Images were reconstructed at advanced modeled iterative reconstruction (ADMIRE) levels 1, 3, and 5 for each scan. Bronchial wall were semi-automatically measured from the lobar level to subsegmental level. Spearman correlation analysis was performed between bronchial wall quantification (wall thickness and wall area percentage) and protocol settings (dose, kV, and ADMIRE). ANOVA with a post hoc pairwise test was used to compare signal-to-noise ratio (SNR), noise and bronchial wall quantification values among standard- and low/ultralow-dose settings, and among ADMIRE levels. RESULTS Bronchial wall quantification had no correlation with dose level, kV, or ADMIRE level (|correlation coefficients| < 0.3). SNR and noise showed no statistically significant differences at different kV in the same ADMIRE level (1, 3, or 5) and in the same dose group (P > 0.05). Generally, there were no significant differences in bronchial wall quantification among the standard- and low/ultralow-dose settings, and among different ADMIRE levels (P > 0.05). CONCLUSION The combined use of low/ultralow-dose scanning and ADMIRE does not influence bronchial wall quantification compared to standard-dose CT. This specimen study suggests the potential that an ultralow-dose scan can be used for bronchial wall quantification.
Collapse
Affiliation(s)
- Lin Zhang
- Radiology DepartmentShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Radiology DepartmentShanghai General Hospital of Nanjing Medical UniversityShanghaiChina
| | - Gert Jan Pelgrim
- Department of RadiologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jing Yan
- Siemens Healthcare LtdShanghaiChina
| | - Hao Zhang
- Radiology DepartmentShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rozemarijn Vliegenthart
- Department of RadiologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Xueqian Xie
- Radiology DepartmentShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
58
|
Dose Reduction for Sinus and Temporal Bone Imaging Using Photon-Counting Detector CT With an Additional Tin Filter. Invest Radiol 2020; 55:91-100. [PMID: 31770297 DOI: 10.1097/rli.0000000000000614] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to quantitatively demonstrate radiation dose reduction for sinus and temporal bone examinations using high-resolution photon-counting detector (PCD) computed tomography (CT) with an additional tin (Sn) filter. MATERIALS AND METHODS A multienergy CT phantom, an anthropomorphic head phantom, and a cadaver head were scanned on a research PCD-CT scanner using ultra-high-resolution mode at 100-kV tube potential with an additional tin filter (Sn-100 kV) and volume CT dose index of 10 mGy. They were also scanned on a commercial CT scanner with an energy-integrating detector (EID) following standard clinical protocols. Thirty patients referred to clinically indicated sinus examinations, and two patients referred to temporal bone examinations were scanned on the PCD-CT system after their clinical scans on an EID-CT. For the sinus cohort, PCD-CT scans were performed using Sn-100 kV at 4 dose levels at 10 mGy (n = 9), 8 mGy (n = 7), 7 mGy (n = 7), and 6 mGy (n = 7), and the clinical EID-CT was performed at 120 kV and 13.7 mGy (mean CT volume dose index). For the temporal bone scans, PCD-CT was performed using Sn-100 kV (10.1 mGy), and EID-CT was performed at 120 kV and routine clinical dose (52.6 and 66 mGy). For both PCD-CT and EID-CT, sinus images were reconstructed using H70 kernel at 0.75-mm slice thickness, and temporal bone images were reconstructed using a U70 kernel at 0.6-mm slice thickness. In addition, iterative reconstruction with a dedicated sharp kernel (V80) was used to obtain high-resolution PCD-CT images from a sinus patient scan to demonstrate improved anatomic delineation. Improvements in spatial resolution from the dedicated sharp kernel was quantified using modulation transfer function measured with a wire phantom. A neuroradiologist assessed the H70 sinus images for visualization of critical anatomical structures in low-dose PCD-CT images and routine-dose EID-CT images using a 5-point Likert scale (structural detection obscured and poor diagnostic confidence, score = 1; improved anatomic delineation and diagnostic confidence, score = 5). Image contrast and noise were measured in representative regions of interest and compared between PCD-CT and EID-CT, and the noise difference between the 2 acquisitions was used to estimate the dose reduction in the sinus and temporal bone patient cohorts. RESULTS The multienergy phantom experiment showed a noise reduction of 26% in the Sn-100 kV PCD-CT image, corresponding to a total dose reduction of 56% compared with EID-CT (clinical dose) without compromising image contrast. The PCD-CT images from the head phantom and the cadaver scans demonstrated a dose reduction of 67% and 83%, for sinus and temporal bone examinations, respectively, compared with EID-CT. In the sinus cohort, PCD-CT demonstrated a mean dose reduction of 67%. The 10- and 8-mGy sinus patient images from PCD-CT were significantly superior to clinical EID-CT for visualization of critical sinus structures (median score = 5 ± 0.82 and P = 0.01 for lesser palatine foramina, median score = 4 ± 0.68 and P = 0.039 for nasomaxillary sutures, and median score = 4 ± 0.96 and P = 0.01 for anterior ethmoid artery canal). The 6- and 7-mGy sinus patient images did not show any significant difference between PCD-CT and EID-CT. In addition, V80 (sharp kernel, 10% modulation transfer function = 18.6 cm) PCD-CT images from a sinus patient scan increased the conspicuity of nasomaxillary sutures compared with the clinical EID-CT images. The temporal bone patient images demonstrated a dose reduction of up to 85% compared with clinical EID-CT images, whereas visualization of inner ear structures such as the incudomalleolar joint were similar between EID-CT and PCD-CT. CONCLUSIONS Phantom and cadaver studies demonstrated dose reduction using Sn-100 kV PCD-CT compared with current clinical EID-CT while maintaining the desired image contrast. Dose reduction was further validated in sinus and temporal bone patient studies. The ultra-high resolution capability from PCD-CT allowed improved anatomical delineation for sinus imaging compared with current clinical standard.
Collapse
|
59
|
Dose Reduction in Dental CT: A Phantom Study With Special Focus on Tin Filter Technique. AJR Am J Roentgenol 2020; 215:945-953. [PMID: 32783561 DOI: 10.2214/ajr.19.22461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this study was to determine in a phantom the dose exposure of different dental 3D sectional imaging methods (CT and cone-beam CT [CBCT]) and different CT protocols. The aim was to establish optimal protocols with the lowest possible dose and diagnostically high image quality with special consideration given to tin prefiltration. MATERIALS AND METHODS. Dose was determined with thermoluminescence detectors at 20 different measuring points on an anthropomorphic phantom. Eight different CT protocols with and without tin filtering were compared with iterative reconstruction methods and a standard CBCT protocol. Objective and subjective image evaluations and a figure-of-merit analysis of the image data were performed by radiologists and maxillofacial surgeons. RESULTS. The determined dose-length products of the nine examinations were 5.0-111.9 mGy · cm with a calculated effective whole body dose of 20.7-505.9 μSv. Cone-beam CT was in the upper midfield with an effective dose of 229.3 μSv. On the basis of dose, objective image quality, and clinical evaluation results, tin filter protocols performed best. Protocols with higher doses were significantly less useful in the figure of merit comparison but because of their detailed bony representation are particularly necessary to answer certain questions about trauma and tumors. CONCLUSION. The use of tin filtering can reduce dose in dental CT examinations, compared with standard low-dose examinations, while maintaining good image quality. The dose performance is significantly inferior even to that of a cone-beam CT examination. High-dose protocols are necessary only for certain questions.
Collapse
|
60
|
From infancy to adulthood-Developmental changes in pulmonary quantitative computed tomography parameters. PLoS One 2020; 15:e0233622. [PMID: 32469974 PMCID: PMC7259551 DOI: 10.1371/journal.pone.0233622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/08/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose Quantified computed tomography (qCT) is known for correlations with airflow obstruction and fibrotic changes of the lung. However, as qCT studies often focus on diseased and elderly subjects, current literature lacks physiological qCT values during body development. We evaluated chest CT examinations of a healthy cohort, reaching from infancy to adulthood, to determine physiological qCT values and changes during body development. Method Dose-optimized chest CT examinations performed over the last 3 years using a dual-source CT were retrospectively analysed. Exclusion criteria were age >30 years and any known or newly diagnosed lung pathology. Lung volume, mean lung density, full-width-at-half-maximum and low attenuated volume (LAV) were semi-automated quantified in 151 patients. qCT values between different age groups as well as unenhanced (Group 1) and contrast-enhanced (Group 2) protocols were compared. Models for projection of age-dependant changes in qCT values were fitted. Results Significant differences in qCT parameters were found between the age groups from 0 to 15 years (p < 0.05). All parameters except LAV merge into a plateau level above this age as shown by polynomial models (r2 between 0.85 and 0.67). In group 2, this plateau phase is shifted back around five years. Except for the volume, significant differences in all qCT values were found between group 1 and 2 (p < 0.01). Conclusion qCT parameters underly a specific age-dependant dynamic. Except for LAV, qCT parameters reach a plateau around adolescence. Contrast-enhanced protocols seem to shift this plateau backwards.
Collapse
|
61
|
Messerli-Odermatt O, Serrallach B, Gubser M, Leschka S, Bauer RW, Dubois J, Alkadhi H, Wildermuth S, Waelti SL. Chest X-ray Dose Equivalent Low-dose CT with Tin Filtration: Potential Role for the Assessment of Pectus Excavatum. Acad Radiol 2020; 27:644-650. [PMID: 31471205 DOI: 10.1016/j.acra.2019.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023]
Abstract
RATIONALE AND OBJECTIVES To determine the value of chest CT with tin filtration applying a dose equivalent to chest x-ray for the assessment of the Haller index for evaluation of pectus excavatum. MATERIALS AND METHODS Two hundred seventy-two patients from a prospective single center study were included and underwent a clinical standard dose chest CT (effective dose 1.8 ± 0.7 mSv) followed by a low-dose CT (0.13 ± 0.01 mSv) in the same session. Two blinded readers independently evaluated all data sets. Image quality for bony chest wall assessment was noted. Radiologists further assessed (a) transverse thoracic diameter, (b) anteroposterior thoracic diameter, and calculated (c) Haller index by dividing transverse diameter by anteroposterior diameter. The agreement of both readers in standard dose and low-dose CT was assessed using Lin's concordance correlation coefficient (pc). RESULTS Subjective image quality was lower for low dose compared to standard dose CT images by both readers (p < 0.001). In total, 99% (n = 540) of low-dose CT scans were rated as diagnostic for bony chest wall assessment by both readers. There was a high agreement for assessment of transverse diameter, anteroposterior diameter and Haller index comparing both readers in standard dose and low-dose CT with pc values indicating substantial agreement (i.e., 0.95> and ≤0.99) in 12/18 (67%) and almost perfect agreement (i.e., >0.99) in 6/18 (33%). CONCLUSION Our study suggests that low-dose CT with tin filtration applying a radiation dose equivalent to a plain chest X-ray is excellent for assessing the Haller index.
Collapse
|
62
|
Agostini A, Floridi C, Borgheresi A, Badaloni M, Esposto Pirani P, Terilli F, Ottaviani L, Giovagnoni A. Proposal of a low-dose, long-pitch, dual-source chest CT protocol on third-generation dual-source CT using a tin filter for spectral shaping at 100 kVp for CoronaVirus Disease 2019 (COVID-19) patients: a feasibility study. LA RADIOLOGIA MEDICA 2020; 125:365-373. [PMID: 32239472 PMCID: PMC7110986 DOI: 10.1007/s11547-020-01179-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
AIM To subjectively and objectively evaluate the feasibility and diagnostic reliability of a low-dose, long-pitch dual-source chest CT protocol on third-generation dual-source CT (DSCT) with spectral shaping at 100Sn kVp for COVID-19 patients. MATERIALS AND METHODS Patients with COVID-19 and positive swab-test undergoing to a chest CT on third-generation DSCT were included. The imaging protocol included a dual-energy acquisition (HD-DECT, 90/150Sn kVp) and fast, low-dose, long-pitch CT, dual-source scan at 100Sn kVp (LDCT). Subjective (Likert Scales) and objective (signal-to-noise and contrast-to-noise ratios, SNR and CNR) analyses were performed; radiation dose and acquisition times were recorded. Nonparametric tests were used. RESULTS The median radiation dose was lower for LDCT than HD-DECT (Effective dose, ED: 0.28 mSv vs. 3.28 mSv, p = 0.016). LDCT had median acquisition time of 0.62 s (vs 2.02 s, p = 0.016). SNR and CNR were significantly different in several thoracic structures between HD-DECT and LDCT, with exception of lung parenchyma. Qualitative analysis demonstrated significant reduction in motion artifacts (p = 0.031) with comparable diagnostic reliability between HD-DECT and LDCT. CONCLUSIONS Ultra-low-dose, dual-source, fast CT protocol provides highly diagnostic images for COVID-19 with potential for reduction in dose and motion artifacts.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, AN, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, AN, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Alessandra Borgheresi
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy.
| | - Myriam Badaloni
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Paolo Esposto Pirani
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Filippo Terilli
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Letizia Ottaviani
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, AN, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| |
Collapse
|
63
|
Li J, Mai Z, Zhang Z, Cui J, Yang M, Ma X, Wang Y. Chest CT screening in patients with overweight or obesity using spectral shaping at 150 kVp: compared with 120 kVp protocol and spectral shaping at 100 kVp protocol. Jpn J Radiol 2020; 38:451-457. [PMID: 32048134 DOI: 10.1007/s11604-020-00925-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate the image quality (IQ) and the figure of merit (FoM) of chest CT screening in patients with overweight or obesity using a tin filter for spectral shaping at 150 kVp. MATERIALS AND METHODS Patients with overweight or obesity (N = 150, body mass index ≥ 26 kg/m2) with indications for chest CT screening were prospectively enrolled and randomly divided into three groups: 120 kVp group (standard radiation dose/tube voltage, 120 kVp/CT volume does index, 4.68 mGy); Sn100 kVp group (1/10th radiation dose level/100 kVp with a tin filter/0.47 mGy); Sn150 kVp group (1/2th radiation dose level/150 kVp with a tin filter/2.34 mGy). IQ and FoMs were evaluated and compared among the three groups. RESULTS Image noise, signal-to-noise ratios and subjective IQ scores were significantly higher in the Sn150 kVp group than those in the Sn100 kVp group (all p < 0.05), but were not significantly different with those in the 120 kVp group. FoMs in the Sn150 kVp group were significantly higher than those in the 120 kVp group (all p < 0.05), but showed no statistical difference with those in the Sn100 kVp group. CONCLUSIONS Compared with scanning at 120 kVp, chest CT screening performed at 150 kVp with spectral shaping substantially reduces the radiation dose in overweight and obese patients while maintaining IQ.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Radiology, The Second People's Hospital of Shizuishan, NO.246 West Youyi Street, Shizuishan, 753000, Ningxia, China
| | - Zhifeng Mai
- Department of Radiology, The Second People's Hospital of Shizuishan, NO.246 West Youyi Street, Shizuishan, 753000, Ningxia, China
| | - Zhihong Zhang
- Department of Pharmacy, The First People's Hospital of Shizuishan, NO.1 Kangle Road, Shizuishan, 753000, Ningxia, China
| | - Jiamang Cui
- Department of Radiology, The Second People's Hospital of Shizuishan, NO.246 West Youyi Street, Shizuishan, 753000, Ningxia, China
| | - Mingjie Yang
- Department of Radiology, The Second People's Hospital of Shizuishan, NO.246 West Youyi Street, Shizuishan, 753000, Ningxia, China
| | - Xia Ma
- Department of Radiology, The Second People's Hospital of Shizuishan, NO.246 West Youyi Street, Shizuishan, 753000, Ningxia, China
| | - Yan Wang
- Department of Radiology, The Second People's Hospital of Shizuishan, NO.246 West Youyi Street, Shizuishan, 753000, Ningxia, China.
| |
Collapse
|
64
|
Wressnegger A, Prosch H, Moser B, Klepetko W, Jaksch P, Lambers C, Hoetzenecker K, Schestak C, De Bettignies A, Beer L, Apfaltrer G, Ringl H, Apfaltrer P. Chest CT in patients after lung transplantation: A retrospective analysis to evaluate impact on image quality and radiation dose using spectral filtration tin-filtered imaging. PLoS One 2020; 15:e0228376. [PMID: 32023294 PMCID: PMC7001933 DOI: 10.1371/journal.pone.0228376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/14/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the impact of a 150kV spectral filtration chest imaging protocol (Sn150kVp) combined with advanced modeled iterative reconstruction (ADMIRE) on radiation dose and image quality in patients after lung-transplantation. METHODS This study included 102 patients who had unenhanced chest-CT examinations available on both, a second-generation dual-source CT (DSCT) using standard protocol (100kVp, filtered-back-projection) and, on a third-generation DSCT using Sn150kVp protocol with ADMIRE. Signal-to-noise-ratio (SNR) was measured in 6 standardized regions. A 5-point Likert scale was used to evaluate subjective image quality. Radiation metrics were compared. RESULTS The mean time interval between the two acquisitions was 1.1±0.7 years. Mean-volume-CT-dose-index, dose-length-product and effective dose were significantly lower for Sn150kVp protocol (2.1±0.5mGy;72.6±16.9mGy*cm;1.3±0.3mSv) compared to 100kVp protocol (6.2±1.8mGy;203.6±55.6mGy*cm;3.7±1.0mSv) (p<0.001), equaling a 65% dose reduction. All studies were considered of diagnostic quality. SNR measured in lung tissue, air inside trachea, vertebral body and air outside the body was significantly higher in 100kVp protocol compared to Sn150kVp protocol (12.5±2.7vs.9.6±1.5;17.4±3.6vs.11.8±1.8;0.7±0.3vs.0.4±0.2;25.2±6.9vs.14.9±3.3;p<0.001). SNR measured in muscle tissue was significantly higher in Sn150kVp protocol (3.2±0.9vs.2.6±1.0;p<0.001). For SNR measured in descending aorta there was a trend towards higher values for Sn150kVp protocol (2.8±0.6 vs. 2.7±0.9;p = 0.3). Overall SNR was significantly higher in 100kVp protocol (5.0±4.0vs.4.0±4.0;p<0.001). On subjective analysis both protocols achieved a median Likert rating of 1 (25th-75th-percentile:1-1;p = 0.122). Interobserver agreement was good (intraclass correlation coefficient = 0.73). CONCLUSIONS Combined use of 150kVp tin-filtered chest CT protocol with ADMIRE allows for significant dose reduction while maintaining highly diagnostic image quality in the follow up after lung transplantation when compared to a standard chest CT protocol using filtered back projection.
Collapse
Affiliation(s)
- Alexander Wressnegger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Moser
- Division of Surgery, Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Surgery, Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Surgery, Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Christopher Lambers
- Division of Surgery, Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Division of Surgery, Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Christian Schestak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Albert De Bettignies
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Apfaltrer
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Helmut Ringl
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Paul Apfaltrer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
65
|
Pediatric chest computed tomography at 100 kVp with tin filtration: comparison of image quality with 70-kVp imaging at comparable radiation dose. Pediatr Radiol 2020; 50:188-198. [PMID: 31853569 DOI: 10.1007/s00247-019-04543-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Radiation dose reduction is a primary objective in pediatric populations owing to the well-known risks of radiation-induced cancers. Low-energy photons participate in the radiation dose without significantly contributing to image formation. Their suppression by means of tin filtration should decrease the image noise, anticipating a subsequent application to dose saving. OBJECTIVE To investigate the level of noise reduction achievable with tin (Sn) filtration at 100 kVp for chest computed tomography (CT) in comparison with a standard scanning mode at 70 kVp with comparable radiation dose. MATERIALS AND METHODS Fifty consecutive children (Group 1) underwent non-contrast chest CT examinations on a third-generation dual-source CT system at tin-filtered 100 kVp and pitch 2. The tube-current time product (mAs) was adjusted to maintain the predicted dose length product (DLP) value at 70 kVp for the respective patient. Each child was then paired by weight and age to a child scanned at 70 kVp on the same CT unit (Group 2); Group 2 patients were consecutive patients, retrospectively selected from our database of children prospectively scanned at 70 kVp. Objective and subjective image quality were compared between the two groups of patients to investigate the overall image quality and level of noise reduction that could be subsequently achievable with tin filtration in clinical practice. RESULTS The mean image noise was significantly lower in Group 1 compared to Group 2 when measured in the air (P<0.0001) and inside the aorta (P<0.001). The mean noise reduction was 21.6% (standard deviation [SD] 16.1) around the thorax and 12.0% (SD 32.7) inside the thorax. There was no significant difference in subjective image quality of lung and mediastinal images with excellent overall subjective scores in both groups. CONCLUSION At comparable radiation dose, the image noise was found to be reduced by 21.6% compared to the 70-kVp protocol, providing basis for dose reduction without altering image quality in further investigations.
Collapse
|
66
|
Substantial radiation dose reduction with consistent image quality using a novel low-dose stone composition protocol. World J Urol 2020; 38:2971-2979. [PMID: 31993735 DOI: 10.1007/s00345-020-03082-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To assess a novel low-dose CT-protocol, combining a 150 kV spectral filtration unenhanced protocol (Sn150 kVp) and a stone-targeted dual-energy CT (DECT) in patients with urolithiasis. METHODS 232 (151 male, 49 ± 16.4 years) patients with urolithiasis received a low-dose non-contrast enhanced CT (NCCT) for suspected urinary stones either on a third-generation dual-source CT system (DSCT) using Sn150 kVp (n = 116, group 1), or on a second-generation DSCT (n = 116 group 2) using single energy (SE) 120 kVp. For group 1, a subsequent dual-energy CT (DECT) with a short stone-targeted scan range was performed. Objective and subjective image qualities were assessed. Radiation metrics were compared. RESULTS 534 stones (group 1: n = 242 stones; group 2: n = 292 stones) were found. In group 1, all 215 stones within the stone-targeted DECT-scan range were identified. DE analysis was able to distinguish between UA and non-UA calculi in all collected stones. 11 calculi (5.12%) were labeled as uric acid (UA) while 204 (94.88%) were labeled as non-UA calculi. There was no significant difference in overall Signal-to-noise-ratio between group 1 and group 2 (p = 0.819). On subjective analysis both protocols achieved a median Likert rating of 2 (p = 0.171). Mean effective dose was significantly lower for combined Sn150 kVp and stone-targeted DECT (3.34 ± 1.84 mSv) compared to single energy 120 kVp NCCT (4.45 ± 2.89 mSv) (p < 0.001), equaling a 24.9% dose reduction. CONCLUSION The evaluated novel low-dose stone composition protocol allows substantial radiation dose reduction with consistent high diagnostic image quality.
Collapse
|
67
|
Wetzl M, May MS, Weinmann D, Hammon M, Treutlein C, Zeilinger M, Kiefer A, Trollmann R, Woelfle J, Uder M, Rompel O. Dual-source computed tomography of the lung with spectral shaping and advanced iterative reconstruction: potential for maximum radiation dose reduction. Pediatr Radiol 2020; 50:1240-1248. [PMID: 32556576 PMCID: PMC7398955 DOI: 10.1007/s00247-020-04714-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Radiation dose at CT should be as low as possible without compromising diagnostic quality. OBJECTIVE To assess the potential for maximum dose reduction of pediatric lung dual-source CT with spectral shaping and advanced iterative reconstruction (ADMIRE). MATERIALS AND METHODS We retrospectively analyzed dual-source CT acquisitions in a full-dose group (FD: 100 kV, 64 reference mAs) and in three groups with spectral shaping and differing reference mAs values (Sn: 100 kV, 96/64/32 reference mAs), each group consisting of 16 patients (age mean 11.5 years, standard deviation 4.8 years, median 12.8 years, range 1.3-18 years). Advanced iterative reconstruction of images was performed with different strengths (FD: ADMIRE Level 2; Sn: ADMIRE Levels 2, 3 and 4). We analyzed dose parameters and measured noise. Diagnostic confidence and detectability of lung lesions as well as anatomical structures were assessed using a Likert scale (from 1 [unacceptable] to 4 [fully acceptable]). RESULTS Compared to full dose, effective dose was reduced to 16.7% in the Sn 96 group, 11.1% in Sn64, and 5.5% in Sn32 (P<0.001). Noise values of Sn64ADM4 did not statistically differ from those in FDADM2 (45.7 vs. 38.9 Hounsfield units [HU]; P=0.132), whereas noise was significantly higher in Sn32ADM4 compared to Sn64ADM4 (61.5 HU; P<0.001). A Likert score >3 was reached in Sn64ADM4 regarding diagnostic confidence (3.2) and detectability of lung lesions (3.3). For detectability of most anatomical structures, no significant differences were found between FDAM2 and Sn64ADM4 (P≥0.05). CONCLUSION In pediatric lung dual-source CT, spectral shaping together with ADMIRE 4 enable radiation dose reduction to about 10% of a full-dose protocol while maintaining an acceptable diagnostic quality.
Collapse
Affiliation(s)
- Matthias Wetzl
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany.
| | - Matthias S. May
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
| | - Daniel Weinmann
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Hammon
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Treutlein
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Zeilinger
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- grid.411668.c0000 0000 9935 6525Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Regina Trollmann
- grid.411668.c0000 0000 9935 6525Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Joachim Woelfle
- grid.411668.c0000 0000 9935 6525Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Michael Uder
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
| | - Oliver Rompel
- grid.411668.c0000 0000 9935 6525Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
68
|
Radiation dose of chaperones during common pediatric computed tomography examinations. Pediatr Radiol 2020; 50:1078-1082. [PMID: 32415324 PMCID: PMC7329757 DOI: 10.1007/s00247-020-04681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 10/27/2022]
Abstract
BACKGROUND One main challenge in pediatric imaging is to reduce motion artifacts by calming young patients. To that end, the Radiological Society of North America (RSNA) as early as 1997 stated the necessity of adults accompanying their child during the child's examination. Nonetheless, current research lacks data regarding radiation dose to these chaperones. OBJECTIVE The aim of this study was to measure the radiation dose of accompanying adults during state-of-the-art pediatric CT protocols. MATERIALS AND METHODS In addition to a 100-kV non-contrast-enhanced chest CT (Protocol 1), we performed a 70-kV contrast-enhanced chest protocol (Protocol 2) using a third-generation dual-source CT. We acquired data on the radiation dose around the scanner using digital dosimetry placed right at the gantry, 1 m away, as well as beside the gantry. We acquired the CT-surrounding radiation dose during scanning of a pediatric phantom as well as 12 pediatric patients. RESULTS After conducting 10 consecutive phantom scans using Protocol 1, we found the location with the highest cumulative dose acquired was right next to the gantry opening, at 3 μSv. Protocol 2 showed highest cumulative dose of 2 μSv at the same location. For Protocol 1, the location with the highest radiation doses during pediatric scans was right next to the gantry opening, with doses of 0.75±0.70 μSv. For Protocol 2, the highest radiation was measured 1 m away at 0.50±0.60 μSv. No radiation dose was measured at any time beside the gantry. CONCLUSION Our results provide proof that chaperones receive low radiation doses during state-of-the-art CT examinations. Given knowledge of these values as well as the optimal spots with the lowest radiation doses, parents as well as patients might be more relaxed during the examination.
Collapse
|
69
|
Weight-adapted ultra-low-dose pancreatic perfusion CT: radiation dose, image quality, and perfusion parameters. Abdom Radiol (NY) 2019; 44:2196-2204. [PMID: 30790008 DOI: 10.1007/s00261-019-01938-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE We evaluate the reliability and feasibility of weight-adapted ultra-low-dose pancreatic perfusion CT. METHODS A total of 100 (47 men, 53 women) patients were enrolled prospectively and were assigned to five groups (A, B, C, D, and E) with different combination of tube voltage and tube current according to their body weight. Radiation dose parameters including volume CT dose index (CTDI) and dose-length product (DLP) were recorded. Image quality was evaluated both subjectively and objectively (noise, signal-to-noise ratio, contrast-to-noise ratio). Perfusion parameters including blood flow (BF), blood volume (BV), and permeability (PMB) were measured. The dose, image quality measurements, and perfusion parameters were compared between the five groups using one-way analysis of variance (ANOVA). RESULTS Radiation dose reached 8.7 mSv in patients under 50 kg and was 18.9 mSv in patients above 80 kg. The mean subjective image quality score was above 4.45 on a 5-point scale with good agreement between two radiologists. Groups A-D had equivalent performance on objective image quality (P > 0.05), while Group E performed even better (P < 0.05). No significant differences emerged in comparison with perfusion parameters (BF, BV, PMB) of normal pancreas parenchyma between the five groups. CONCLUSION Weight-adapted ultra-low-dose pancreatic perfusion CT can effectively reduce radiation dose without prejudice to image quality, and the perfusion parameters of normal parenchyma are accurate and reliable.
Collapse
|
70
|
Gawlitza J, Sturm T, Spohrer K, Henzler T, Akin I, Schönberg S, Borggrefe M, Haubenreisser H, Trinkmann F. Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics (Basel) 2019; 9:diagnostics9010033. [PMID: 30901865 PMCID: PMC6468377 DOI: 10.3390/diagnostics9010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Quantitative computed tomography (qCT) is an emergent technique for diagnostics and research in patients with chronic obstructive pulmonary disease (COPD). qCT parameters demonstrate a correlation with pulmonary function tests and symptoms. However, qCT only provides anatomical, not functional, information. We evaluated five distinct, partial-machine learning-based mathematical models to predict lung function parameters from qCT values in comparison with pulmonary function tests. Methods: 75 patients with diagnosed COPD underwent body plethysmography and a dose-optimized qCT examination on a third-generation, dual-source CT with inspiration and expiration. Delta values (inspiration—expiration) were calculated afterwards. Four parameters were quantified: mean lung density, lung volume low-attenuated volume, and full width at half maximum. Five models were evaluated for best prediction: average prediction, median prediction, k-nearest neighbours (kNN), gradient boosting, and multilayer perceptron. Results: The lowest mean relative error (MRE) was calculated for the kNN model with 16%. Similar low MREs were found for polynomial regression as well as gradient boosting-based prediction. Other models led to higher MREs and thereby worse predictive performance. Beyond the sole MRE, distinct differences in prediction performance, dependent on the initial dataset (expiration, inspiration, delta), were found. Conclusion: Different, partially machine learning-based models allow the prediction of lung function values from static qCT parameters within a reasonable margin of error. Therefore, qCT parameters may contain more information than we currently utilize and can potentially augment standard functional lung testing.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Timo Sturm
- Department of General Management and Information Systems, University of Mannheim, 68131 Mannheim, Germany.
| | - Kai Spohrer
- Department of General Management and Information Systems, University of Mannheim, 68131 Mannheim, Germany.
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ibrahim Akin
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- DZHK (German Center for Cardiovascular Research), partner site, 68167 Mannheim, Germany.
| | - Stefan Schönberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Martin Borggrefe
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- DZHK (German Center for Cardiovascular Research), partner site, 68167 Mannheim, Germany.
| | - Holger Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Frederik Trinkmann
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- Department of Biomedical Informatics of the Heinrich-Lanz-Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
71
|
The efficacy of tin-filtration for computed tomography in diagnosing urolithiasis. Clin Imaging 2019; 55:126-131. [PMID: 30818162 DOI: 10.1016/j.clinimag.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The purpose of this study was to evaluate the radiation dose and image quality of computed tomography urograms (CTU) using tin-filtration compared to conventional CTU (without tin-filtration) examinations in patients with suspected urolithiasis. METHODS Group 1 consisted of 100 patients who were examined using the tin-filtered CTU protocols (Sn100kVp or Sn150kVp); Group 2 consisted of 100 patients who were examined using the same protocols but without tin-filtration (GE-NI41 or GE-NI43). The scanning protocol was based on the patients' body weight (<80 kg and ≥80 kg). The effective doses of all scans were compared between the two groups. Subjective image quality was evaluated by two blinded radiologists. The objective image quality was assessed for noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and figure-of-merit (FOM) using the CTU scans acquired from both the tin-filtered and non-tin-filtered protocols. RESULTS Tin-filtration resulted in the reduction of effective radiation dose ranging between 72% to 88% for the ≥80 kg and <80 kg patient groups respectively. For both groups, tin-filtration resulted in no significant differences in SNR and a significant increase in FOM. For the <80 kg group, tin-filtration resulted in significantly noisier images but with no significant difference in CNR. For the ≥80 kg group, tin-filtration resulted in significantly higher CNR. There was no significant difference in subjective image quality when assessed by the radiologists in terms of diagnostic confidence for urolithiasis. CONCLUSION Tin-filtration significantly reduces patient dose while maintaining diagnostic image quality of CTUs for patients with suspected urolithiasis.
Collapse
|
72
|
Lee SM, Choo HJ, Lee SJ, Kim SK, Lee IS, Kim DW, Baek JW, Heo YJ. Cervical Spine CT Using Spectral Shaping: Can It Be a Solution to Overcome Artifacts in the Lower Cervical Spinal Region? Korean J Radiol 2019; 20:469-478. [PMID: 30799578 PMCID: PMC6389809 DOI: 10.3348/kjr.2018.0517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Su Min Lee
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Hye Jung Choo
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea.
| | - Sun Joo Lee
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Sung Kwan Kim
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - In Sook Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Dong Wook Kim
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Jin Wook Baek
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Young Jin Heo
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| |
Collapse
|
73
|
Feasibility of low-dose CT with spectral shaping and third-generation iterative reconstruction in evaluating interstitial lung diseases associated with connective tissue disease: an intra-individual comparison study. Eur Radiol 2019; 29:4529-4537. [DOI: 10.1007/s00330-018-5969-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/30/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
|
74
|
Comparison of Tin Filter-Based Spectral Shaping CT and Low-Dose Protocol for Detection of Urinary Calculi. AJR Am J Roentgenol 2019; 212:808-814. [PMID: 30673337 DOI: 10.2214/ajr.18.20154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to assess the performance of tin filter-based spectral shaping CT compared with routine low-dose CT for detection of urolithiasis. MATERIALS AND METHODS Unenhanced third-generation dual-source CT scans of 129 consecutively registered patients were retrospectively reviewed: 43 patients underwent CT for detection of renal stones with tin filtration (Sn150 kV); 43 patients underwent a routine low-dose CT protocol at 100 kV; and 43 patients underwent a routine CT protocol with automated tube potential selection (110-120 kV). Image quality was evaluated subjectively and objectively. Volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) were recorded. To prospectively compare the performances of the spectral shaping protocol (Sn150 kV) with the standard (120 kV) and routine low-dose (100 kV) protocols, a phantom (sheep kidneys) containing stones were also scanned with each protocol and evaluated by two radiologists. RESULTS CT with tin filtration resulted in 28% and 66% reduction in CTDIvol compared with CT performed with routine low-dose and standard-dose protocols (p < 0.05). Accordingly, it also led to 24% and 55% reduction in SSDE compared with the low-dose and standard protocols (p < 0.05). Subjective image quality and signal-to-noise ratio were similar between the tin filtration and the routine low-dose groups (p > 0.05). The objective image noise was similar in the three groups (p > 0.05). The phantom study showed no difference in detection of renal stones between the three tube potential settings. CONCLUSION Using spectral shaping with tin filtration can substantially reduce radiation dose compared with routine standard- and low-dose abdominal CT for urinary stone disease.
Collapse
|
75
|
Saltybaeva N, Krauss A, Alkadhi H. Technical Note: Radiation dose reduction from computed tomography localizer radiographs using a tin spectral shaping filter. Med Phys 2019; 46:544-549. [DOI: 10.1002/mp.13353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/30/2023] Open
Affiliation(s)
- Natalia Saltybaeva
- Institute for Diagnostic and Interventional Radiology University Hospital Zurich Zurich Switzerland
| | - Andreas Krauss
- Computed Tomography Division Siemens Healthineers Forchheim Germany
| | - Hatem Alkadhi
- Institute for Diagnostic and Interventional Radiology University Hospital Zurich Zurich Switzerland
| |
Collapse
|
76
|
Kubo T. Vendor free basics of radiation dose reduction techniques for CT. Eur J Radiol 2018; 110:14-21. [PMID: 30599851 DOI: 10.1016/j.ejrad.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
Although radiation dose in computed tomography (CT) decreased and CT became safer examinations than before, CT is the most significant source of the medical radiation exposure. Knowledge about available radiation dose reduction methods in CT is essential. Substantial improvement occurred regarding tube current selection (automatic exposure control) and image production method (iterative reconstruction). Optimizing the tube potential selection is expected to contribute to further CT radiation dose reduction. This review article summarizes the principles of radiation dose reduction in CT, principal methods of radiation dose reduction, auxiliary measures of radiation dose saving and recent issues of low dose CT.
Collapse
Affiliation(s)
- Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
77
|
Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule Detection on Ultra–low-Dose CT With Tin Filtration. J Thorac Imaging 2018; 33:396-401. [DOI: 10.1097/rti.0000000000000348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
78
|
Prospective evaluation of ultra-low-dose contrast-enhanced 100-kV abdominal computed tomography with tin filter: effect on radiation dose reduction and image quality with a third-generation dual-source CT system. Eur Radiol 2018; 29:2107-2116. [PMID: 30324392 DOI: 10.1007/s00330-018-5750-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/19/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate the radiation dose exposure, image quality, and diagnostic performance of enhanced 100-kVp abdominopelvic single-energy CT protocol with tin filter (TF). METHODS Ninety-three consecutive patients referred for a single-phase enhanced abdominopelvic CT were prospectively included after informed consent. They underwent in addition to a standard protocol (SP) an acquisition with TF. Both examinations were performed on a third-generation dual-source CT system (DSCT), in single energy, using automatic tube current modulation, identical pitch, and identical level of iterative reconstruction. Radiation metrics were compared. Size-specific dose estimates (SSDE), contrast to noise ratio (CNR), and figure of merit (FOM) were calculated. Diagnostic confidence for the assessment of a predetermined list of abdominal lesions was rated by two independent readers. RESULTS The mean dose of the TF protocol was significantly lower (CDTI 1.56 ± 0.43 mGy vs. 8.13 ± 3.32, p < 0.001; SSDE 9.94 ± 3.08 vs. 1.93 ± 0.39, p < 0.001), with an effective dose close to 1 mSv (1.14 mSv ± 0.34; p < 0.001). TF group exhibited non-significant lower liver CNR (2.76 vs. 3.03, p = 0.56) and was more dose efficient (FOM 10.6 vs. 2.49/mSv, p < 0.001) in comparison to SP. The mean diagnostic confidence for visceral, bone, and peritoneal tumors was equivalent between both groups. CONCLUSIONS Enhanced 100-kVp abdominopelvic CT acquired after spectral shaping with tin filtration can achieve similar diagnostic performance and CNR compared to a standard CT protocol, while reducing the radiation dose by 81%. KEY POINTS • 100-kVp spectral filtration enables enhanced abdominal CT with high-dose efficiency. • The radiation dose reaches the 1-mSv range. • Predetermined abdominopelvic lesions can be assessed without impairing on diagnostic confidence.
Collapse
|
79
|
Jeon JY, Lee SW, Jeong YM, Baek HJ. The effect of tube voltage combination on image artefact and radiation dose in dual-source dual-energy CT: comparison between conventional 80/140 kV and 80/150 kV plus tin filter for gout protocol. Eur Radiol 2018; 29:1248-1257. [PMID: 29987420 DOI: 10.1007/s00330-018-5622-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In dual-source CT, dual-energy (DE) performance is affected by various X-ray tube voltage combinations with and without tin filter (Sn). The purpose of this study was to assess the utility of the 80/150 Sn kV voltage combination in terms of image artefact and radiation dose for DECT gout protocol, compared with the conventional 80/140 kV. METHODS Seventy-four patients with suspected gout who underwent dual-source DECT examinations scanned at 80/140 kV (n = 37) and at 80/150 Sn kV (n = 37) were included. Patients' age, sex, and serum uric acid levels were matched between the two groups. The types and incidence of image artefacts and radiation dose were evaluated. RESULTS The 80/150 Sn kV group had significantly fewer patients with artefacts, compared to the 80/140 kV group [11 (30 %) of 37 vs 35 (94.6 %) of 37, p < 0.001]. Except for the motion artefact, the rest of the artefacts-skin, nail bed, submillimetre, motion, vascular, beam-hardening, clumpy artefact along tendon-were significantly less observed in the 80/150 Sn kV acquisitions. The dose-length product (DLP) and effective dose were significantly lower for the 80/150 Sn kV acquisitions compared with the 8s0/140 kV scans (DLP: 104.46 ± 10.66 mGy·cm vs 344.70 ± 56.39 mGy·cm, p < 0.001; effective dose: 1.04 ± 0.11 mSv vs 3.45 ± 0.56 mSv, p < 0.001). CONCLUSIONS The 80/150 Sn kV voltage combination in dual-source DECT system could be used as one of the artefact reduction methods while reducing radiation dose for gout protocol when compared to the conventional 80/140 kV. KEY POINTS • DECT has emerged as the leading modality for non-invasive diagnosis of gout. • Various X-ray tube voltage combinations are now feasible in dual-source DECT. • The 80/150 Sn kV acquisition could facilitate artefact reduction in gout protocol.
Collapse
Affiliation(s)
- Ji Young Jeon
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero, 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| | - Sheen-Woo Lee
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero, 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Yu Mi Jeong
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero, 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Han Joo Baek
- Division of Rheumatology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero, 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
80
|
Gawlitza J, Haubenreisser H, Henzler T, Akin I, Schönberg S, Borggrefe M, Trinkmann F. Finding the right spot: Where to measure airway parameters in patients with COPD. Eur J Radiol 2018; 104:87-93. [PMID: 29857872 DOI: 10.1016/j.ejrad.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE The importance of spirometry for management of COPD was reduced in the 2017 revision of the GOLD report. CT derived airway measurements show strong correlations with lung function tests and symptoms. However, these correlations are specific to the airway localization, and currently there is no evidence for the ideal spot. Therefore, the aim of this prospective study was to systematically correlate CT derived airway measurements with extensive lung function testing. METHODS AND MATERIALS 65 patients with diagnosed COPD underwent body plethysmography, impulse oscillometry and dose optimized qCT examination (Somatom Force, Healthineers, Germany) in inspiration and expiration. Eight airway parameters (e.g. outer diameter, maximal wall thickness) were acquired for both scans in every lobe for the third to fifth generation bronchus and correlated with the lung function tests. RESULTS The most significant correlations between airway parameters were found for the third generation bronchus of the upper left lobe during expiration (25 out of 48 correlation pairs, mean r = -0.39) and for the third generation bronchus of the upper right lobe during inspiration (9 out of 48 correlation pairs, mean r = -0.25). No significant correlations were for example found for the upper right lobe in expiration. CONCLUSION Correlations between airway parameters and lung function tests vary widely between lobes, bronchus generations and breathing states. Our work suggests that the third generation bronchus of the upper left lobe in expiration could be the preferred localization for airway quantification in future studies.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Holger Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ibrahim Akin
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Mannheim, Germany.
| | - Stefan Schönberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Mannheim, Germany.
| | - Martin Borggrefe
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Mannheim, Germany.
| | - Frederik Trinkmann
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
81
|
Kim CR, Jeon JY. Radiation dose and image conspicuity comparison between conventional 120 kVp and 150 kVp with spectral beam shaping for temporal bone CT. Eur J Radiol 2018; 102:68-73. [PMID: 29685547 DOI: 10.1016/j.ejrad.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/09/2018] [Accepted: 03/03/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The purpose of this article is to compare radiation doses and conspicuity of anatomic landmarks of the temporal bone between the CT technique using spectral beam shaping at 150 kVp with a dedicated tin filter (150 kVp-Sn) and the conventional protocol at 120 kVp. METHODS 25 patients (mean age, 46.8 ± 21.2 years) were examined using the 150-kVp Sn protocol (200 reference mAs using automated tube current modulation, 64 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8), whereas 30 patients (mean age, 54.5 ± 17.8 years) underwent the 120-kVp protocol (180 mAs, 128 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8). Radiation doses were compared between the two acquisition techniques, and dosimetric data from the literature were reviewed for comparison of radiation dose reduction. Subjective conspicuity of 23 anatomic landmarks of the temporal bone, expressed by 5-point rating scale and objective conspicuity by signal-to-noise ratio (SNR) which measured in 4 different regions of interest (ROI), were compared between 150-kVp Sn and 120-kVp acquisitions. RESULTS The mean dose-length-product (DLP) and effective dose were significantly lower for the 150-kVp Sn scans (0.26 ± 0.26 mSv) compared with the 120-kVp scans (0.92 ± 0.10 mSv, p < 0.001). The lowest effective dose from the literature-based protocols was 0.31 ± 0.12 mSv, which proposed as a low-dose protocol in the setting of spiral multislice temporal bone CT. SNR was slightly superior for 120-kVp images, however analyzability of the 23 anatomic structures did not differ significantly between 150-kVp Sn and 120-kVp scans. CONCLUSION Temporal bone CT performed at 150 kVp with an additional tin filter for spectral shaping markedly reduced radiation exposure when compared with conventional temporal bone CT at 120 kVp while maintaining anatomic conspicuity. The decreased radiation dose of the 150-kVp Sn was also lower in comparison to the previous literature-based low-dose temporal bone CT protocol.
Collapse
Affiliation(s)
- Chang Rae Kim
- Department of Radiology, Gachon University, Gil Medical Center, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| | - Ji Young Jeon
- Department of Radiology, Gachon University, Gil Medical Center, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
82
|
Suntharalingam S, Allmendinger T, Blex S, Al-Bayati M, Nassenstein K, Schweiger B, Forsting M, Wetter A. Spectral Beam Shaping in Unenhanced Chest CT Examinations: A Phantom Study on Dose Reduction and Image Quality. Acad Radiol 2018; 25:153-158. [PMID: 29055683 DOI: 10.1016/j.acra.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to determine the optimal tube potential for unenhanced chest computed tomographies (CTs) with age-related phantoms. MATERIALS AND METHODS Three physical anthropomorphic phantoms (newborn, 5-year-old child, and adult) were scanned on a third-generation dual-source CT using CAREkV in semi-mode and CAREDose4D (ref. KV: 120; ref. mAs 50). Scans were performed with all available tube potentials (70-150 kV and Sn150 kV). The lowest volume computed tomography dose index (CTDIvol) was selected to perform additional Sn100-kV scans with matched and half (Sn100-half) CTDIvol value. Image quality was evaluated on the basis of contrast-to-noise ratio (CNR). RESULTS For the newborn phantom, 70-110 kV was selected as the optimal range (0.36-0.37 mGy). Using Sn150 kV led to an increase in radiation dose (0.75 mGy) without improving CNR (96.9 vs 101.5). Sn100-half showed a decrease in CNR (73.1 vs 101.5). The lowest CTDIvol for the child phantom was achieved between 100 and 120 kV (0.78-0.80 mGy). Using Sn150 kV increased radiation dose (1.02 mGy) without improvement of CNR (92.4 vs 95.8). At Sn100-half CNR was decreased (61.4 vs 95.8). For adults, 140 and 150 kV revealed the lowest CTDIvol (2.68 and 2.67 mGy). The Sn150 kV scan delivered comparable CNR (54.4 vs 56.6), but a lower CTDIvol (2.08 mGy). At Sn100-half CNR was comparable to the 150 kV scan (58.1 vs 56.6). CONCLUSION Unenhanced chest CT performed at 100 kV or 150 kV with tin filtration enables radiation dose reduction for the adult phantom, but not for the pediatric phantoms.
Collapse
|
83
|
Whole-body ultra-low dose CT using spectral shaping for detection of osteolytic lesion in multiple myeloma. Eur Radiol 2018; 28:2273-2280. [PMID: 29322333 DOI: 10.1007/s00330-017-5243-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the radiation dose and image quality of a whole-body low-dose CT (WBLDCT) using spectral shaping at 100 kV (Sn 100 kV) for the assessment of osteolytic lesions in patients with multiple myeloma. METHODS Thirty consecutive patients were retrospectively selected, who underwent a WBLDCT on a third-generation dual-source CT (DSCT) (Sn 100 kV, ref. mAs: 130). They were matched with patients, who were examined on a second-generation DSCT with a standard low-dose protocol (100 kV, ref. mAs: 111). Objective and subjective image quality, radiation exposure as well as the frequency of osteolytic lesions were evaluated. RESULTS All scans were of diagnostic image quality. Subjective overall image quality was significantly higher in the study group (p = 0.0003). Objective image analysis revealed that signal intensities, signal-to-noise ratio and contrast-to-noise ratio of the bony structures were equal or significantly higher in the control group. There was no significant difference in the frequency of osteolytic lesions (p = 0.259). The median effective dose of the study protocol was significantly lower (1.45 mSv vs. 5.65 mSv; p < 0.0001). CONCLUSION WBLDCT with Sn 100 kV can obtain sufficient image quality for the depiction of osteolytic lesions while reducing the radiation dose by approximately 74%. KEY POINTS • Spectral shaping using tin filtration is beneficial for whole-body low-dose CT • Sn 100 kV yields sufficient image quality for depiction of osteolytic lesions • Whole-body low-dose CT can be performed with a median dose of 1.5 mSv.
Collapse
|
84
|
Tin-filtered low-dose chest CT to quantify macroscopic calcification burden of the thoracic aorta. Eur Radiol 2017; 28:1818-1825. [PMID: 29196856 DOI: 10.1007/s00330-017-5168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To compare a low-dose, tin-filtered, nonenhanced, high-pitch Sn100 kVp CT protocol (Sn100) with a standard protocol (STP) for the detection of calcifications in the ascending aorta in patients scheduled for cardiac surgery. METHODS Institutional Review Board approval for this retrospective study was waived and the study was HIPAA-compliant. The study included 192 patients (128 men; age 68.8 ± 9.9 years), of whom 87 received the STP and 105 the Sn100 protocol. Size-specific dose estimates (SSDE) and radiation doses were obtained using dose monitoring software. Two blinded readers evaluated image quality on a scale from 1 (low) to 5 (high) and the extent of calcifications of the ascending aorta on a scale from 0 (none) to 10 (high), subdivided into 12 anatomic segments. RESULTS The Sn100 protocol achieved a mean SSDE of only 0.5 ± 0.1 mGy and 0.20 ± 0.04 mSv compared with the mean SSDE of 5.4 ± 2.2 mGy achieved with the STP protocol (p < 0.0001). Calcification burden was associated with age (p < 0.0001), but was independent of protocol with mean calcification scores of 0.48 ± 1.23 (STP) and 0.55 ± 1.25 (Sn100, p = 0.18). Reader agreement was very good (STP κ = 0.87 ± 0.02, Sn100 κ = 0.88 ± 0.01). The STP protocol provided a higher subjective image quality than the Sn100 protocol: STP median 4, interquartile range 4-5, vs. SN100 3, 3-4; p < 0.0001) and a slightly better depiction of calcification (STP 5, 4-5, vs. Sn100 4, 4-5; p < 0.0001). CONCLUSIONS The optimized Sn100 protocol achieved a mean SSDE of only 0.5 ± 0.1 mGy while the depiction of calcifications remained good, and there was no systematic difference in calcification burden between the two protocols. KEY POINTS • Tin-filtered, low-dose CT can be used to assess aortic calcifications before cardiac surgery • An optimized Sn100 protocol achieved a mean SSDE of only 0.5 ± 0.1 mGy • The depiction of atherosclerosis of the thoracic aorta was similar with both protocols • The depiction of relevant thoracic pathologies before cardiac surgery was similar with both protocols.
Collapse
|
85
|
Weis M, Henzler T, Nance JW, Haubenreisser H, Meyer M, Sudarski S, Schoenberg SO, Neff KW, Hagelstein C. Radiation Dose Comparison Between 70 kVp and 100 kVp With Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study. Invest Radiol 2017; 52:155-162. [PMID: 27662576 DOI: 10.1097/rli.0000000000000325] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this prospective randomized controlled study was to compare 2 techniques for radiation dose reduction in non-contrast-enhanced pediatric chest computed tomography (CT): low peak kilovoltage imaging at 70 kVp and spectral beam shaping at 100 kVp using a dedicated tin filter (100-kVp Sn). MATERIALS AND METHODS All chest CT examinations were performed on a third-generation dual-source CT system (SOMATOM Force; Siemens Healthineers, Germany). Fifty children (mean age, 6.8 ± 5.1 years) were examined using the 100-kVp Sn protocol, whereas 25 children received the 70-kVp protocol (mean age, 5.7 ± 5.2 years; 2:1 randomization scheme). Radiation metrics and organ doses were compared between acquisition techniques using commercially available radiation dose analysis software (Radimetrics Inc, Bayer AG, Toronto, Ontario, Canada). Objective image quality, expressed by signal-to-noise ratio and subjective image quality based on a 4-point scale (1, best; 4, worst image quality), were compared. RESULTS Volume CT dose index and size-specific dose estimate were significantly lower in the 100-kVp Sn group compared with the 70-kVp group (0.19 ± 0.12 mGy vs 0.81 ± 0.70 mGy and 0.34 ± 0.13 mGy vs 1.48 ± 1.11 mGy; P < 0.0001 for both). Accordingly, mean effective dose was significantly lower for the 100-kVp Sn examinations (0.21 ± 0.10 mSv) compared with the 70-kVp examinations (0.83 ± 0.49 mSv; P < 0.0001). Calculated organ doses were also significantly lower using the 100-kVp Sn protocol when compared with the 70-kVp protocol; for example, breast dose was reduced by a factor of 4.3. Signal-to-noise ratio was slightly superior for 70-kVp images while lung image quality of the 100-kVp Sn protocol was preferred in subjective analysis (P = 0.0004). CONCLUSIONS Pediatric chest CT performed at 100 kVp with an additional tin filter for spectral shaping significantly reduces radiation dose when compared with low peak kilovoltage imaging at 70 kVp and therefore should be preferred in non-contrast-enhanced pediatric chest CT examinations, particularly (given the improved subjective image quality) when the main focus is evaluation of the lung parenchyma.
Collapse
Affiliation(s)
- Meike Weis
- From the *Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; and †Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Initial Results of a Single-Source Dual-Energy Computed Tomography Technique Using a Split-Filter: Assessment of Image Quality, Radiation Dose, and Accuracy of Dual-Energy Applications in an In Vitro and In Vivo Study. Invest Radiol 2017; 51:491-8. [PMID: 26895193 DOI: 10.1097/rli.0000000000000257] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the image quality, radiation dose, and accuracy of virtual noncontrast images and iodine quantification of split-filter dual-energy computed tomography (CT) using a single x-ray source in a phantom and patient study. MATERIALS AND METHODS In a phantom study, objective image quality and accuracy of iodine quantification were evaluated for the split-filter dual-energy mode using a tin and gold filter. In a patient study, objective image quality and radiation dose were compared in thoracoabdominal CT of 50 patients between the standard single-energy and split-filter dual-energy mode. The radiation dose was estimated by size-specific dose estimate. To evaluate the accuracy of virtual noncontrast imaging, attenuation measurements in the liver, spleen, and muscle were compared between a true noncontrast premonitoring scan and the virtual noncontrast images of the dual-energy scans. Descriptive statistics and the Mann-Whitney U test were used. RESULTS In the phantom study, differences between the real and measured iodine concentration ranged from 2.2% to 21.4%. In the patient study, the single-energy and dual-energy protocols resulted in similar image noise (7.4 vs 7.1 HU, respectively; P = 0.43) and parenchymal contrast-to-noise ratio (CNR) values for the liver (29.2 vs 28.5, respectively; P = 0.88). However, the vascular CNR value for the single-energy protocol was significantly higher than for the dual-energy protocol (10.0 vs 7.1, respectively; P = 0.006). The difference in the measured attenuation between the true and the virtual noncontrast images ranged from 3.1 to 6.7 HU. The size-specific dose estimate of the dual-energy protocol was, on average, 17% lower than that of the single-energy protocol (11.7 vs 9.7 mGy, respectively; P = 0.008). CONCLUSIONS Split-filter dual-energy compared with single-energy CT results in similar objective image noise in addition to dual-energy capabilities at 17% lower radiation dose. Because of beam hardening, split-filter dual-energy can lead to decreased CNR values of iodinated structures.
Collapse
|
87
|
Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality. J Cardiovasc Comput Tomogr 2017; 11:354-359. [DOI: 10.1016/j.jcct.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 11/23/2022]
|
88
|
Trivedi A, Hall C, Hoffman EA, Woods JC, Gierada DS, Castro M. Using imaging as a biomarker for asthma. J Allergy Clin Immunol 2017; 139:1-10. [PMID: 28065276 DOI: 10.1016/j.jaci.2016.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Abstract
There have been significant advancements in the various imaging techniques being used for the evaluation of asthmatic patients, both from a clinical and research perspective. Imaging characteristics can be used to identify specific asthmatic phenotypes and provide a more detailed understanding of endotypes contributing to the pathophysiology of the disease. Computed tomography, magnetic resonance imaging, and positron emission tomography can be used to assess pulmonary structure and function. It has been shown that specific airway and lung density measurements using computed tomography correlate with clinical parameters, including severity of disease and pathology, but also provide unique phenotypes. Hyperpolarized 129Xe and 3He are gases used as contrast media for magnetic resonance imaging that provide measurement of distal lung ventilation reflecting small-airway disease. Positron emission tomography can be useful to identify and target lung inflammation in asthmatic patients. Furthermore, imaging techniques can serve as a potential biomarker and be used to assess response to therapies, including newer biological treatments and bronchial thermoplasty.
Collapse
Affiliation(s)
- Abhaya Trivedi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Mo
| | - Chase Hall
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Mo
| | - Eric A Hoffman
- Department of Biomedical Engineering, Department of Radiology, University of Iowa College of Medicine, Iowa City, Iowa
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David S Gierada
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Mo
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
89
|
McDermott S, Kalra MK. Low-Dose Computed Tomography for Lung Cancer Screening: The Protocol and The Dose. Semin Roentgenol 2017; 52:132-136. [DOI: 10.1053/j.ro.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
90
|
Dose reduction techniques in coronary calcium scoring: The effect of iterative reconstruction combined with low tube voltage on calcium scores in a thoracic phantom. Eur J Radiol 2017; 93:229-235. [PMID: 28668419 DOI: 10.1016/j.ejrad.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/13/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To define a dose-reduced coronary calcium CT protocol that provides similar calcium score values as a conventional 120kVp protocol. METHODS A thorax phantom containing 100 calcifications was scanned with the reference protocol (120kVp, 90 ref mAs, FBP) and 30 dose-reduced protocols (70-110kVp, 90 ref mAs, FBP and iterative reconstruction (IR) levels 1-5) with 3rd generation dual-source CT. For protocols that yielded similar detectability and calcium scores as the reference protocol, additional scans were acquired at reduced ref mAs. Kendall's τb and independent-samples-median test were used to determine trends and differences in contrast/signal-to-noise ratio (CNR and SNR), dose and calcium scores. RESULTS The detectability and calcium scores decreased at increasing IR levels (τb<-0.825, p<0.001) and increasing tube voltage (τb<-0.679, p<0.001). For 90kVp-IR3 and 100kVp-IR1, similar detectability and calcium score was found compared to the reference protocol (p>0.206). For these protocols, lower tube currents did not affect the detectability and Agatston score (p>0.206), while CNR and SNR were similar/higher compared to the reference protocol (0.008<p<0.206). Dose reduction was 60.6% (90kVp-IR3) and 43.6% (100kVp-IR1). CONCLUSIONS The protocol of 90kVp-IR3 and 100kVp-IR1 yielded similar calcium detectability, Agatston score and image quality as the reference protocol, with dose reduction up to 60.6%.
Collapse
|
91
|
Tesche C, De Cecco CN, Schoepf UJ, Duguay TM, Albrecht MH, De Santis D, Varga-Szemes A, Lesslie VW, Ebersberger U, Bayer RR, Canstein C, Hoffmann E, Allmendinger T, Nance JW. CT coronary calcium scoring with tin filtration using iterative beam-hardening calcium correction reconstruction. Eur J Radiol 2017. [DOI: 10.1016/j.ejrad.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
92
|
Bodelle B, Fischbach C, Booz C, Yel I, Frellesen C, Kaup M, Beeres M, Vogl TJ, Scholtz JE. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality. Pediatr Radiol 2017; 47:831-837. [PMID: 28352977 DOI: 10.1007/s00247-017-3813-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. OBJECTIVE To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. MATERIALS AND METHODS Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. RESULTS Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). CONCLUSION Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration.
Collapse
Affiliation(s)
- Boris Bodelle
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Constanze Fischbach
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Claudia Frellesen
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Moritz Kaup
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Martin Beeres
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
93
|
Messerli M, Ottilinger T, Warschkow R, Leschka S, Alkadhi H, Wildermuth S, Bauer RW. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT. Eur J Radiol 2017. [PMID: 28629554 DOI: 10.1016/j.ejrad.2017.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). METHODS 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. RESULTS The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. CONCLUSIONS Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and reconstruction algorithms for reproducibility.
Collapse
Affiliation(s)
- Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, University Zurich, Switzerland; Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland.
| | - Thorsten Ottilinger
- Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland
| | - René Warschkow
- Department of Surgery, Cantonal Hospital St. Gallen, Switzerland
| | - Sebastian Leschka
- Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Switzerland
| | - Simon Wildermuth
- Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland
| | - Ralf W Bauer
- Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland
| |
Collapse
|
94
|
Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv. Eur J Radiol 2016; 85:2217-2224. [PMID: 27842670 DOI: 10.1016/j.ejrad.2016.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To determine the value of computer-aided detection (CAD) for solid pulmonary nodules in ultralow radiation dose single-energy computed tomography (CT) of the chest using third-generation dual-source CT at 100kV and fixed tube current at 70 mAs with tin filtration. METHODS 202 consecutive patients undergoing clinically indicated standard dose chest CT (1.8±0.7 mSv) were prospectively included and scanned with an additional ultralow dose CT (0.13±0.01 mSv) in the same session. Standard of reference (SOR) was established by consensus reading of standard dose CT by two radiologists. CAD was performed in standard dose and ultralow dose CT with two different reconstruction kernels. CAD detection rate of nodules was evaluated including subgroups of different nodule sizes (<5, 5-7, >7mm). Sensitivity was further analysed in multivariable mixed effects logistic regression. RESULTS The SOR included 279 solid nodules (mean diameter 4.3±3.4mm, range 1-24mm). There was no significant difference in per-nodule sensitivity of CAD in standard dose with 70% compared to 68% in ultralow dose CT both overall and in different size subgroups (all p>0.05). CAD led to a significant increase of sensitivity for both radiologists reading the ultralow dose CT scans (all p<0.001). In multivariable analysis, the use of CAD (p<0.001), and nodule size (p<0.0001) were independent predictors for nodule detection, but not BMI (p=0.933) and the use of contrast agents (p=0.176). CONCLUSIONS Computer-aided detection of solid pulmonary nodules using ultralow dose CT with chest X-ray equivalent radiation dose has similar sensitivities to those from standard dose CT. Adding CAD in ultralow dose CT significantly improves the sensitivity of radiologists.
Collapse
|
95
|
Su C, Meyer M, Pirker R, Voigt W, Shi J, Pilz L, Huber RM, Wu Y, Wang J, He Y, Wang X, Zhang J, Zhi X, Shi M, Zhu B, Schoenberg SS, Henzler T, Manegold C, Zhou C, Roessner ED. From diagnosis to therapy in lung cancer: management of CT detected pulmonary nodules, a summary of the 2015 Chinese-German Lung Cancer Expert Panel. Transl Lung Cancer Res 2016; 5:377-88. [PMID: 27652202 DOI: 10.21037/tlcr.2016.07.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The first Chinese-German Lung Cancer Expert Panel was held in November 2015 one day after the 7th Chinese-German Lung Cancer Forum, Shanghai. The intention of the meeting was to discuss strategies for the diagnosis and treatment of lung cancer within the context of lung cancer screening. Improved risk classification criteria and novel imaging approaches for screening populations are highly required as more than half of lung cancer cases are false positive during the initial screening round if the National Lung Screening Trial (NLST) demographic criteria [≥30 pack years (PY) of cigarettes, age ≥55 years] are applied. Moreover, if the NLST criteria are applied to the Chinese population a high number of lung cancer patients are not diagnosed due to non-smoking related risk factors in China. The primary goal in the evaluation of pulmonary nodules (PN) is to determine whether they are malignant or benign. Volumetric based screening concepts such as investigated in the Dutch-Belgian randomized lung cancer screening trial (NELSON) seem to achieve higher specificity. Chest CT is the best imaging technique to identify the origin and location of the nodule since 20% of suspected PN found on chest X-ray turn out to be non-pulmonary lesions. Moreover, novel state-of-the-art CT systems can reduce the radiation dose for lung cancer screening acquisitions down to a level of 0.1 mSv with improved image quality to novel reconstruction techniques and thus reduce concerns related to chest CT as the primary screening technology. The aim of the first part of this manuscript was to summarize the current status of novel diagnostic techniques used for lung cancer screening and minimally invasive treatment techniques for progressive PNs that were discussed during the first Chinese-German Lung Cancer. This part should serve as an educational part for the readership of the techniques that were discussed during the Expert Panel. The second part summarizes the consensus recommendations that were interdisciplinary discussed by the Expert Panel.
Collapse
Affiliation(s)
- Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Pirker
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Wieland Voigt
- Medical Innovation and Management, Steinbeis University Berlin, Germany
| | - Jingyun Shi
- Radiology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Lothar Pilz
- Division of Thoracic Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rudolf M Huber
- Division of Respiratory Medicine and Thoracic Oncology, Ludwig-Maximilians-University of Munich Thoracic Oncology Centre, Munich, Germany
| | - Yilong Wu
- Guangdong General Hospital, Lung Cancer Institute, Guangzhou 510080, China
| | - Jinghong Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yonglan He
- Department of Radiology, Beijing Union Medical College Hospital, Beijing 100730, China
| | - Xuan Wang
- Department of Radiology, Beijing Union Medical College Hospital, Beijing 100730, China
| | - Jian Zhang
- Department of Respiratory, the Fourth Military Medical University Xijing Hospital, Xi'an 710032, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Meiqi Shi
- Department of Oncology, Tumor Hospital of Jiangsu Province, Nanjing 210000, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, China
| | - Stefan S Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Manegold
- Division of Thoracic Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Eric Dominic Roessner
- Division of Surgical Oncology and Thoracic Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
96
|
Affiliation(s)
- Leonardo M Fabbri
- Università degli Studi di Modena e Reggio Emilia Modena, Italy. leonardo .fabbri@
| |
Collapse
|
97
|
Saltybaeva N, Martini K, Frauenfelder T, Alkadhi H. Organ Dose and Attributable Cancer Risk in Lung Cancer Screening with Low-Dose Computed Tomography. PLoS One 2016; 11:e0155722. [PMID: 27203720 PMCID: PMC4874690 DOI: 10.1371/journal.pone.0155722] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients’ lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. Materials and Methods This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. Results As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100’000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). Conclusion Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation.
Collapse
Affiliation(s)
- Natalia Saltybaeva
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Katharina Martini
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
98
|
Dewes P, Frellesen C, Scholtz JE, Fischer S, Vogl TJ, Bauer RW, Schulz B. Low-dose abdominal computed tomography for detection of urinary stone disease - Impact of additional spectral shaping of the X-ray beam on image quality and dose parameters. Eur J Radiol 2016; 85:1058-62. [PMID: 27161052 DOI: 10.1016/j.ejrad.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To evaluate a novel tin filter-based abdominal CT protocol for urolithiasis in terms of image quality and CT dose parameters. METHODS 130 consecutive patients with suspected urolithiasis underwent non-enhanced CT with three different protocols: 48 patients (group 1) were examined at tin-filtered 150kV (150kV Sn) on a third-generation dual-source-CT, 33 patients were examined with automated kV-selection (110-140kV) based on the scout view on the same CT-device (group 2), and 49 patients were examined on a second-generation dual-source-CT (group 3) with automated kV-selection (100-140kV). Automated exposure control was active in all groups. Image quality was subjectively evaluated on a 5-point-likert-scale by two radiologists and interobserver agreement as well as signal-to-noise-ratio (SNR) was calculated. Dose-length-product (DLP) and volume CT dose index (CTDIvol) were compared. RESULTS Image quality was rated in favour for the tin filter protocol with excellent interobserver agreement (ICC=0.86-0.91) and the difference reached statistical significance (p<0.001). SNR was significantly higher in group 1 and 2 compared to second-generation DSCT (p<0.001). On third-generation dual-source CT, there was no significant difference in SNR between the 150kV Sn and the automated kV selection protocol (p=0.5). The DLP of group 1 was 23% and 21% (p<0.002) lower in comparison to group 2 and 3, respectively. So was the CTDIvol of group 1 compared to group 2 (-36%) and 3 (-32%) (p<0.001). CONCLUSION Additional shaping of a 150kV source spectrum by a tin filter substantially lowers patient exposure while improving image quality on un-enhanced abdominal computed tomography for urinary stone disease.
Collapse
Affiliation(s)
- Patricia Dewes
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Claudia Frellesen
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Jan-Erik Scholtz
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Sebastian Fischer
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Thomas J Vogl
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Ralf W Bauer
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - Boris Schulz
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| |
Collapse
|
99
|
Beeres M, Wichmann JL, Frellesen C, Bucher AM, Albrecht M, Scholtz JE, Nour-Eldin NEA, Gruber-Rouh T, Lee C, Vogl TJ, Lehnert T. ECG-gated Versus Non-ECG-gated High-pitch Dual-source CT for Whole Body CT Angiography (CTA). Acad Radiol 2016; 23:163-7. [PMID: 26548854 DOI: 10.1016/j.acra.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate motion artifacts, image quality, and practical differences in electrocardiographic (ECG)-gated versus non-ECG-gated high-pitch dual-source computed tomography angiography (CTA) of the whole aorta. MATERIALS AND METHODS Two groups, each including 40 patients, underwent either ECG-gated or non-ECG-gated high-pitch dual-source CTA of the whole aorta. The aortic annulus, aortic valve, coronary ostia, and the presence of motion artifacts of the thoracic aorta as well as vascular contrast down to the femoral arteries were independently assessed by two readers. Additional objective parameters including image noise and signal-to-noise ratio were analyzed. RESULTS Subjective and objective scoring revealed no presence of motional artifacts regardless of whether the ECG-gated or the non-ECG-gated protocol was used (P > 0.1). Image acquisition parameters (examination length, examination duration, radiation dose) were comparable between the two groups without significant differences. The aortic annulus, aortic valve, and coronary ostia were reliably evaluable in all patients. Vascular contrast was rated excellent in both groups. CONCLUSIONS High-pitch dual-source CTA of the whole aorta is a robust and dose-efficient examination strategy for the evaluation of aortic pathologies whether or not ECG gating is used.
Collapse
|
100
|
Evaluation of pulmonary nodules and infection on chest CT with radiation dose equivalent to chest radiography: Prospective intra-individual comparison study to standard dose CT. Eur J Radiol 2015; 85:360-5. [PMID: 26781141 DOI: 10.1016/j.ejrad.2015.11.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE To compare prospectively, in patients undergoing chest computed tomography (CT) for pulmonary-nodules or infection, image-quality and accuracy of standard dose (SD) and reduced dose (RD) CT with tin-filtration. MATERIAL AND METHODS This IRB-approved study included 100 consecutive patients (36 female;median age 56 years) referred for follow-up of pulmonary-nodules (n=43) or suspicion of infection (n=57) undergoing single-energy CT with SD and RD using tin-filtration at 100 kVp (CTDIvol 2.47 mGy and 0.07 mGy, respectively). Images were reconstructed with advanced modeled iterative reconstruction (ADMIRE) at strength 3 and 5. Image-noise was measured. Two independent readers evaluated nodules and pulmonary-infection. SD CT served as reference standard. RESULTS No significant difference was found in noise between RD with ADMIRE5 and SD with ADMIRE3 (118HU ± 14 vs. 120HU ± 17; p=0.08). Sensitivity for detection of atelectasis and interstitial lung changes was higher in images reconstructed with ADMIRE5 (93% and 88%; respectively) than in those reconstructed with ADIMRE3 (77% and 78%; respectively). Sensitivity for detection of consolidations was 90% for ADMIRE3 and 89% for ADMIRE5. Sensitivity for nodule detection was 71% for ADMIRE3 and 81% for ADMIRE5. Specificity for detection of atelectasis and interstitial lung changes was 99% and 96% with ADMIRE5 and 99% and 96% with ADMIRE3. Specificity for detection of consolidations was 99% for ADMIRE3 and 5. Specificity for detection of nodules was 87% for both ADMIRE3 and 5. CONCLUSION Chest CT with a radiation dose equivalent to conventional radiography is feasible and allows for detection of pulmonary infection with high sensitivity, whereas the accuracy for detecting nodules is only moderate.
Collapse
|