51
|
Karamat A, Tehrani R, Foster GD, Van Aken B. Plant responses to per- and polyfluoroalkyl substances (PFAS): a molecular perspective. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:219-227. [PMID: 37462666 DOI: 10.1080/15226514.2023.2232874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of toxic manmade compounds that have been used in many industrial and household products. Dispersion of PFAS in the environment has raised concerns because of their persistence and toxicity for living organisms. Both terrestrial and aquatic plants have been shown to take up PFAS from contaminated soil and groundwater, and to accumulate these compounds inside their tissues. Although PFAS generally exert a low toxicity on plants at environmentally relevant concentrations, they frequently impact biomass growth and photosynthetic activity at higher levels. Uptake, translocation, and toxicity of PFAS in plants have been well covered in literature. Although less attention has been given to the molecular mechanisms underlying the plant response to PFAS, recent studies based on -omics approaches indicate that PFAS affects the plant metabolism even a low concentration. The objective of this review is to summarize the current knowledge about the effects of PFAS on plants at the molecular level. Results from recent transcriptomics, proteomics, and metabolomics studies show that low levels of PFAS induce oxidative stress and affect multiple plant functions and processes, including photosynthesis and energy metabolism. These potentially harmful effects trigger activation of defense mechanisms.
Collapse
Affiliation(s)
- Ayesha Karamat
- Environmental Science & Policies, George Mason University, Fairfax, United States
| | - Rouzbeh Tehrani
- Civil & Environmental Engineering, Temple University, Philadelphia, United States
| | - Gregory D Foster
- Chemistry & Biochemistry, George Mason University, Fairfax, United States
| | - Benoit Van Aken
- Chemistry & Biochemistry, George Mason University, Fairfax, United States
| |
Collapse
|
52
|
Chen L, Chen D, Zhou S, Lin J, Liu Y, Huang X, Lin Q, Morel JL, Ni Z, Wang S, Qiu R. New Insights into the Accumulation, Transport, and Distribution Mechanisms of Hexafluoropropylene Oxide Homologues, Important Alternatives to Perfluorooctanoic Acid, in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9702-9712. [PMID: 37314230 DOI: 10.1021/acs.est.2c09226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hexafluoropropylene oxide (HFPO) homologues, which are important alternatives to perfluorooctanoic acid, have been frequently identified in crops. Although exposure to HFPO homologues via crops may pose non-negligible threats to humans, their impact on crops is still unknown. In this study, the accumulation, transport, and distribution mechanisms of three HFPO homologues in lettuce were investigated at the plant, tissue, and cell levels. More specifically, HFPO trimer acid and HFPO tetramer acid were primarily fixed in roots and hardly transported to shoots (TF, 0.06-0.63). Conversely, HFPO dimer acid (HFPO-DA) tended to accumulate in lettuce shoots 2-264 times more than the other two homologues, thus resulting in higher estimated daily intake values. Furthermore, the dissolved organic matter derived from root exudate enhanced HFPO-DA uptake by increasing its desorption fractions in the rhizosphere. The transmembrane uptake of HFPO homologues was controlled by means of a transporter-mediated active process involving anion channels, with the uptake of HFPO-DA being additionally facilitated by aquaporins. The higher accumulation of HFPO-DA in shoots was attributed to the larger proportions of HFPO-DA in the soluble fraction (55-74%) and its higher abundance in both vascular tissues and xylem sap. Our findings expand the understanding of the fate of HFPO homologues in soil-crop systems and reveal the underlying mechanisms of the potential exposure risk to HFPO-DA.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shunyi Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jieying Lin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yun Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jean Louis Morel
- Laboratoire Sol et Environnement Université de Lorraine-INRAE, Vandoeuvre-lès-Nancy 54500, France
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
53
|
Scearce AE, Goossen CP, Schattman RE, Mallory EB, MaCrae JD. Linking drivers of plant per- and polyfluoroalkyl substance (PFAS) uptake to agricultural land management decisions. Biointerphases 2023; 18:040801. [PMID: 37410498 DOI: 10.1116/6.0002772] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Widespread contamination of the per- and polyfluoroalkyl substance (PFAS) in agricultural areas is largely attributed to the application of sewage sludge in which the PFAS can be concentrated. This creates a pathway for these contaminants to enter the food chain and, by extension, causes human health and economic concerns. One barrier to managing land with PFAS contamination is the variation in reported plant uptake levels across studies. A review of the literature suggests that the variation in plant uptake is influenced by a host of factors including the composition of PFAS chemicals, soil conditions, and plant physiology. Factors include (1) the chemical components of the PFAS such as the end group and chain length; (2) drivers of soil sorption such as the presence of soil organic matter (SOM), multivalent cation concentration, pH, soil type, and micropore volume; and (3) crop physiological features such as fine root area, percentage of mature roots, and leaf blade area. The wide range of driving factors highlights a need for research to elucidate these mechanisms through additional experiments as well as collect more data to support refined models capable of predicting PFAS uptake in a range of cropping systems. A conceptual framework presented here links drivers of plant PFAS uptake found in the literature to phytomanagement approaches such as modified agriculture or phytoremediation to provide decision support to land managers.
Collapse
Affiliation(s)
- Alex E Scearce
- School of Food and Agriculture, University of Maine, Orono, Maine 04469
| | - Caleb P Goossen
- Maine Organic Farmers and Gardeners Association, Unity, Maine 04988
| | | | - Ellen B Mallory
- School of Food and Agriculture, University of Maine, Orono, Maine 04469
- University of Maine Cooperative Extension, Orono, Maine 04469
| | - Jean D MaCrae
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469
| |
Collapse
|
54
|
Roesch P, Vogel C, Wittwer P, Huthwelker T, Borca CN, Sommerfeld T, Kluge S, Piechotta C, Kalbe U, Simon FG. Taking a look at the surface: μ-XRF mapping and fluorine K-edge μ-XANES spectroscopy of organofluorinated compounds in environmental samples and consumer products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37335293 DOI: 10.1039/d3em00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
For the first time, μ-X-ray fluorescence (μ-XRF) mapping combined with fluorine K-edge μ-X-ray absorption near-edge structure (μ-XANES) spectroscopy was applied to depict per- and polyfluoroalkyl substance (PFAS) contamination and inorganic fluoride in sample concentrations down to 100 μg kg-1 fluoride. To demonstrate the matrix tolerance of the method, several PFAS contaminated soil and sludge samples as well as selected consumer product samples (textiles, food contact paper and permanent baking sheets) were investigated. μ-XRF mapping allows for a unique element-specific visualization at the sample surface and enables localization of fluorine containing compounds to a depth of 1 μm. Manually selected fluorine rich spots were subsequently analyzed via fluorine K-edge μ-XANES spectroscopy. To support spectral interpretation with respect to inorganic and organic chemical distribution and compound class determination, linear combination (LC) fitting was applied to all recorded μ-XANES spectra. Complementarily, solvent extracts of all samples were target-analyzed via LC-MS/MS spectrometry. The detected PFAS sum values range from 20 to 1136 μg kg-1 dry weight (dw). All environmentally exposed samples revealed a higher concentration of PFAS with a chain length > C8 (e.g. 580 μg kg-1 dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent of quantified PFAS amounts via target analysis, μ-XRF mapping combined with μ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples.
Collapse
Affiliation(s)
- Philipp Roesch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Christian Vogel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Philipp Wittwer
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Thomas Huthwelker
- Paul Scherrer Institute, Swiss Light Sources, 5232 Villigen PSI, Switzerland
| | - Camelia N Borca
- Paul Scherrer Institute, Swiss Light Sources, 5232 Villigen PSI, Switzerland
| | - Thomas Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Stephanie Kluge
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Christian Piechotta
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Kalbe
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Franz-Georg Simon
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
55
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
56
|
Kumar R, Dada TK, Whelan A, Cannon P, Sheehan M, Reeves L, Antunes E. Microbial and thermal treatment techniques for degradation of PFAS in biosolids: A focus on degradation mechanisms and pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131212. [PMID: 36934630 DOI: 10.1016/j.jhazmat.2023.131212] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic chemicals detected in biosolids worldwide, which have become a significant concern for biosolids applications due to their increasing environmental risks. Hence, it is pivotal to understand the magnitude of PFAS contamination in biosolids and implement effective technologies to reduce their contamination and prevent hazardous aftermaths. Thermal techniques such as pyrolysis, incineration and gasification, and biodegradation have been regarded as impactful solutions to degrade PFAS and transform biosolids into value-added products like biochar. These techniques can mineralize PFAS compounds under specific operating parameters, which can lead to unique degradation mechanisms and pathways. Understanding PFAS degradation mechanisms can pave the way to design the technology and to optimize the process conditions. Therefore, in this review, we aim to review and compare PFAS degradation mechanisms in thermal treatment like pyrolysis, incineration, gasification, smouldering combustion, hydrothermal liquefaction (HTL), and biodegradation. For instance, in biodegradation of perfluorooctane sulfonic acid (PFOS), firstly C-S bond cleavage occurs which is followed by hydroxylation, decarboxylation and defluorination reactions to form perfluoroheptanoic acid. In HTL, PFOS degradation is carried through OH-catalyzed series of nucleophilic substitution and decarboxylation reactions. In contrast, thermal PFOS degradation involves a three-step random-chain scission pathway. The first step includes C-S bond cleavage, followed by defluorination of perfluoroalkyl radical, and radical chain propagation reactions. Finally, the termination of chain propagation reactions produces very short-fluorinated units. We also highlighted important policies and strategies employed worldwide to curb PFAS contamination in biosolids.
Collapse
Affiliation(s)
- Ravinder Kumar
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Tewodros Kassa Dada
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Anna Whelan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Townsville City Council, Wastewater Operations, Townsville, QLD 4810, Australia
| | | | - Madoc Sheehan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Louise Reeves
- Queensland Water Directorate, Brisbane, QLD 4009, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
57
|
Hubert M, Arp HPH, Hansen MC, Castro G, Meyn T, Asimakopoulos AG, Hale SE. Influence of grain size, organic carbon and organic matter residue content on the sorption of per- and polyfluoroalkyl substances in aqueous film forming foam contaminated soils - Implications for remediation using soil washing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162668. [PMID: 36894086 DOI: 10.1016/j.scitotenv.2023.162668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A soil that was historically contaminated with Aqueous Film Forming Foam (AFFF) was dry sieved into size fractions representative of those produced during soil washing. Batch sorption tests were then conducted to investigate the effect of soil parameters on in situ per- and polyfluoroalkyl substances (PFAS) sorption of these different size fractions: < 0.063 mm, 0.063 to 0.5 mm, 0.5 to 2 mm, 2 to 4 mm, 4 to 8 mm, and soil organic matter residues (SOMR). PFOS (513 ng/g), 6:2 FTS (132 ng/g) and PFHxS (58 ng/g) were the most dominant PFAS in the AFFF contaminated soil. Non-spiked, in situ Kd values for 19 PFAS ranged from 0.2 to 138 L/Kg (log Kd -0.8 to 2.14) for the bulk soil and were dependant on the head group and perfluorinated chain length (spanning C4 to C13). The Kd values increased with decreasing grain size and increasing organic carbon content (OC), which were correlated to each other. For example, the PFOS Kd value for silt and clay (< 0.063 mm, 17.1 L/Kg, log Kd 1.23) were approximately 30 times higher compared to the gravel fraction (4 to 8 mm, 0.6 L/Kg, log Kd -0.25). The highest PFOS Kd value (116.6 L/Kg, log Kd 2.07) was found for the SOMR fraction, which had the highest OC content. Koc values for PFOS ranged from 6.9 L/Kg (log Koc 0.84) for the gravel fraction to 1906 L/Kg (log Koc 3.28) for the silt and clay, indicating that the mineral composition of the different size fractions also influenced sorption. The results here emphasize the need to separate coarse-grained fractions and fine-grained fractions, and in particular the SOMR, to optimize the soil washing process. Higher Kd values for the smaller size fractions indicate that coarser soils are better suited for soil washing.
Collapse
Affiliation(s)
- Michel Hubert
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway.
| | - Hans Peter H Arp
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway
| | | | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Thomas Meyn
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway
| |
Collapse
|
58
|
Lv L, Liu B, Zhang B, Yu Y, Gao L, Ding L. A systematic review on distribution, sources and sorption of perfluoroalkyl acids (PFAAs) in soil and their plant uptake. ENVIRONMENTAL RESEARCH 2023; 231:116156. [PMID: 37196690 DOI: 10.1016/j.envres.2023.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in environment, which have attracted increasing concerns in recent years. This study collected the data on PFAAs concentrations in 1042 soil samples from 15 countries and comprehensively reviewed the spatial distribution, sources, sorption mechanisms of PFAAs in soil and their plant uptake. PFAAs are widely detected in soils from many countries worldwide and their distribution is related to the emission of the fluorine-containing organic industry. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are found to be the predominant PFAAs in soil. Industrial emission is the main source of PFAAs contributing 49.9% of the total concentrations of PFAAs (Ʃ PFAAs) in soil, followed by activated sludge treated by wastewater treatment plants (WWTPs) (19.9%) and irrigation of effluents from WWTPs, usage of aqueous film-forming foam (AFFFs) and leaching of leachate from landfill (30.2%). The adsorption of PFAAs by soil is mainly influenced by soil pH, ionic strength, soil organic matter and minerals. The concentrations of perfluoroalkyl carboxylic acids (PFCAs) in soil are negatively correlated with the length of carbon chain, log Kow, and log Koc. The carbon chain lengths of PFAAs are negatively correlated with the root-soil concentration factors (RCFs) and shoot-soil concentration factors (SCFs). The uptake of PFAAs by plant is influenced by physicochemical properties of PFAAs, plant physiology and soil environment. Further studies should be conducted to make up the inadequacy of existing knowledge on the behavior and fate of PFAAs in soil-plant system.
Collapse
Affiliation(s)
- Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Bimi Zhang
- Food and Drug Engineering Institute, Jilin Province Economic Management Cadre College, Changchun, 130012, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
59
|
Huang YR, Liu SS, Zi JX, Cheng SM, Li J, Ying GG, Chen CE. In Situ Insight into the Availability and Desorption Kinetics of Per- and Polyfluoroalkyl Substances in Soils with Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7809-7817. [PMID: 37155686 DOI: 10.1021/acs.est.2c09348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.
Collapse
Affiliation(s)
- Yue-Rui Huang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jin-Xin Zi
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sheng-Ming Cheng
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
60
|
Wu JY, Shen ZW, Hua ZL, Gu L. Nitrogen addition enhanced Per-fluoroalkyl substances' microbial availability in a wheat soil ecosystem. CHEMOSPHERE 2023; 320:138110. [PMID: 36773678 DOI: 10.1016/j.chemosphere.2023.138110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Per-fluoroalkyl substances (PFASs) have been widely detected in farmland soils and are understood to pose toxicological threats to soil microbiomes and crop safety. Meanwhile, farmland ecosystems have experienced increasing nitrogen loading caused by soil fertilization. Yet it is still unclear how nitrogen additions affect soil's microbial responses to PFASs. In this study, using a laboratory-based ecological experiment, we assessed the microbial availability of PFASs in soils receiving ammonium, nitrate, and urea nitrogen amendments by quantifying the translocation factors of PFASs from soil particle to soil extracellular polymeric substances (EPS). Our results showed that nitrogen, specifically ammonium, significantly increased the PFASs' microbial availability (p < 0.05). Second, nitrogen fertilization in PFASs-polluted soils decreased the microbial community diversity and stability at the structural, species, and functional levels (p < 0.05). For soil microbial activities, nitrogen enhanced the activity of superoxide dismutase (SOD) while it inhibited the catalase (CAT) and peroxidase (POD) (p < 0.01). Congruently, PFASs, as well as the nitrate and nitrite nitrogen, were shown to be the predominant abiotic drivers regulating the soil fungal succession (p < 0.05), while bacteria were mostly regulated by dissolved organic carbon (DOC) (p < 0.01). Furthermore, we revealed that the nitrogen cycling gene hmp (dominates the transformation from NO to NO3-) was the hub gene integrating the microbially available PFASs and the soil nitrogen cycling processes (p < 0.01), indicating that hmp could be the core regulator affecting the accumulation of PFASs in soil EPS. Our study highlighted that decreasing ammonia's amendments could mitigate China's national initiatives to reduce nitrogen fertilization in farmlands, reduce the PFASs' availability to the soil microbiome, and protect the microbial community stability in soil.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zhi-Wei Shen
- CCCC SDC Jiangsu Communications Construction Engineering Company, Nanjing, 210000, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
61
|
Qian S, Lu H, Xiong T, Zhi Y, Munoz G, Zhang C, Li Z, Liu C, Li W, Wang X, He Q. Bioaccumulation of Per- and Polyfluoroalkyl Substances (PFAS) in Ferns: Effect of PFAS Molecular Structure and Plant Root Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4443-4453. [PMID: 36848373 DOI: 10.1021/acs.est.2c06883] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The present study assessed the bioaccumulation potential of per- and polyfluoroalkyl substances (PFAS) in ferns and linked root uptake behaviors to root characteristics and PFAS molecular structure. Tissue and subcellular-level behavioral differences between alternative and legacy PFAS were compared via an electron probe microanalyzer with energy dispersive spectroscopy (EPMA-EDS) and differential centrifugation. Our results show that ferns can accumulate PFAS from water, immobilize them in roots, and store them in harvestable tissue. The PFAS loading in roots was dominated by PFOS; however, a substantial amount of associated PFOS could be rinsed off by methanol. Correlation analyses indicated that root length, surface and project area, surface area per unit length of the root system, and molecular size and hydrophobicity of PFAS were the most significant factors affecting the magnitude of root uptake and upward translocation. EPMA-EDS images together with exposure experiments suggested that long-chain hydrophobic compounds tend to be adsorbed and retained on the root epidermis, while short-chain compounds are absorbed and quickly translocated upward. Our findings demonstrated the feasibility of using ferns in phytostabilization and phytoextraction initiatives of PFAS in the future.
Collapse
Affiliation(s)
- Shenhua Qian
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongying Lu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Zhengwei Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wei Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoming Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
62
|
Groffen T, Prinsen E, Devos Stoffels OA, Maas L, Vincke P, Lasters R, Eens M, Bervoets L. PFAS accumulation in several terrestrial plant and invertebrate species reveals species-specific differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23820-23835. [PMID: 36331738 DOI: 10.1007/s11356-022-23799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Despite the known persistence and bioaccumulation potential of perfluoroalkyl substances (PFAS), much uncertainty exists regarding their bioavailability in the terrestrial environment. Therefore, this study investigated the influence of soil characteristics and PFAS concentrations on the adsorption of PFAS to soil and their influence on the PFAS bioavailability to terrestrial plants and invertebrates. PFAS concentrations and profile were compared among different invertebrate and plant species and differences between leaves and fruits/nuts of the plant species were assessed. Soil concentrations were primarily affected by organic carbon content. The PFAS accumulation in biota was, except for PFOA concentrations in nettles, unrelated to the soil concentrations, as well as to the soil characteristics. The PFAS profiles in soil and invertebrates were mainly dominated by PFOA and PFOS, whereas short-chained PFAS were more abundant in plant tissues. Our results show that different invertebrate taxa accumulate different PFAS, likely due to dietary differences. Both long-chained and, to lesser extent, short-chained PFAS were observed in herbivorous invertebrate taxa, whereas the carnivorous invertebrates only accumulated long-chained PFAS. Correlations were observed between PFOA concentrations in herbivorous invertebrates and in the leaves of some plant species, whereas such relationships were absent for the carnivorous spiders. It is essential to continuously monitor PFAS exposure in terrestrial organisms, taking into account differences in bioaccumulation, and subsequent potential toxicity, among taxa, in order to protect the terrestrial ecosystem.
Collapse
Affiliation(s)
- Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ona-Abeni Devos Stoffels
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Layla Maas
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pieter Vincke
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
63
|
Wattier BD, Gonzales AK, Martinez NE. Perfluorooctanoic acid uptake in the mustard species Brassica juncea. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:199-206. [PMID: 36345599 DOI: 10.1002/jeq2.20431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA), a surfactant, is a member of the perfluoroalkyl acids (PFAAs) family and is a contaminant of emerging concern for human and environmental health. Perfluorooctanoic acid is a persistent organic pollutant, but currently little is known about (a) the potential ecological and toxicological effects of PFOA and (b) how PFOA moves in the environment. This study uses a radiotracer (14 C-PFOA) to study the uptake and translocation of PFOA in hydroponically grown brown mustard [Brassica juncea (L.) Czern.], a representative crop species. Plants were exposed in quadruplicate over the course of 7 d (with plants sampled on Days 4 and 7) to PFOA concentrations of 0, 1, 5, 10, and 15 mg L-1 . Uptake was quantified via liquid scintillation counting of samples from the nutrient solution, roots, stems, and leaves. Transfer factors (roots to shoots) ranged from 0.15 to 4.73 kg kg-1 . Bioconcentration factors (solution to plant) ranged from 0.36 to 62.29 L kg-1 . Factors were influenced by plant compartment, day sampled, and treatment level.
Collapse
Affiliation(s)
- Bryanna D Wattier
- Dep. of Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC, 29634-0942, USA
| | - Annelise K Gonzales
- Dep. of Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC, 29634-0942, USA
| | - Nicole E Martinez
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson Univ., Clemson, SC, 29634-0942, USA
| |
Collapse
|
64
|
Wang W, Dong Q, Mao Y, Zhang Y, Gong T, Li H. GO accelerate iron oxides formation and tetrabromobisphenol A removal enhancement in the GO loaded NZVI system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120512. [PMID: 36309300 DOI: 10.1016/j.envpol.2022.120512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is an emerging persistent organic pollutant, which is very difficult to remove by common methods. In this study, the GO-load nanoscale zero-valent iron (NZVI/GO) was fabricated and optimized to improve the reaction rate and removal efficiency for TBBPA reliably and efficiently. The results showed that GO-load significantly reduced the self-aggregation of NZVI and the aggregate size decreased by 50.00% (1400-700 nm). Meanwhile, GO significantly improved the reaction rate kobs (1.11 ± 0.11 h-1) of TBBPA in the NZVI/GO system compared to the NZVI (0.40 ± 0.08 h-1) system, and this increment was more pronounced (177.5%) when the mass ratio of NZVI-to-GO reached 1.0 than other mass ratios. Furthermore, X-Ray Diffraction and X-ray photoelectron spectroscopy analysis suggested that the Fe2+ transformation was changed and enriched by the GO. Only magnetite (Fe3O4) was detected on the surface of NZVI, whereas the maghemite (γ-Fe2O3), hematite (α-Fe2O3), and Fe3O4 were detected on the interface of NZVI/GO, which further performed the complexation adsorption through the -OH of TBBPA. This specific complexation adsorption is another potential accelerated removal mechanism for TBBPA and intermediates within the NZVI/GO system. This research has put forward a new perspective for widening the application of TBBPA removal using the synergistic effect between GO and NZVI.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yitao Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
65
|
Wu JY, Hua ZL, Liang ZY, Gu L. Impacts of iron amendments and per-fluoroalkyl substances' bio-availability to the soil microbiome in wheat ecosystem. CHEMOSPHERE 2023; 311:137140. [PMID: 36343601 DOI: 10.1016/j.chemosphere.2022.137140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Per-fluoroalkyl substances (PFASs) have become ubiquitous in farmland ecosystems and pose risks to agricultural safety, and iron is often applied to farmland soils to reduce the availability of pollutants. However, the effects of iron amendment on the availability of PFASs in the soil and on the soil microbiome are not well understood. Here, we investigated the responses of wheat soil containing PFASs to iron addition using a 21-day experiment. Our results showed that iron amendment enhanced PFAS availability (p < 0.05) and stimulated superoxide dismutase (SOD) activity in the wheat soil (p < 0.05), but iron amendment decreased the activities of soil catalase (CAT) and peroxidase (POD) (p < 0.05). Soil bacterial community was more structurally stable than fungal community in response to iron addition, while species' pools were more stable in fungi than in bacteria (p < 0.05). Finally, PFPeA's availability in the wheat soil was the most important abiotic factors driving community succession of iron-cycling bacteria (p < 0.05). These results highlighted the potential interactions among PFASs' availability and microbial iron cycling in wheat farmland soil ecosystems and provided guidance in farmland environmental conservation and management.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zhong-Yan Liang
- Nanjing Guohuan Science and Technology Co., Ltd., Nanjing, 210001, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
66
|
Wang W, Yuan S, Kwon JH. Insight into the uptake and translocation of per- and polyfluoroalkyl substances in hydroponically grown lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85454-85464. [PMID: 35799002 DOI: 10.1007/s11356-022-21886-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of per- and polyfluoroalkyl substances (PFASs) in agricultural soils has raised concerns regarding the health risks associated with the consumption of PFAS-contaminated agricultural products. The present study investigated the uptake and translocation of nine PFASs in lettuce using a hydroponic setting. During the uptake experiments, long-chain PFASs (≥ C8) exhibited greater accumulations in lettuce roots, while short-chain PFASs (≤ C7) manifested preferential transport to the shoots. The average root concentration factors of PFASs were positively correlated with their log Kow values. A significantly negative relationship was found between the average translocation factors of PFASs and their molecular volume. Sorption of long-chain PFASs by lettuce roots was enhanced after heating the roots to increase the cell membrane permeability. The accumulation of perfluorododecanoic acid increased significantly in shoots of lettuce plants without roots as compared to whole lettuce plants. Results of the present study indicate that sorption to root surface tissues and efficiency in passing through the root Casparian strip are two important factors that affect the uptake and distribution of PFASs within plants.
Collapse
Affiliation(s)
- Wenfeng Wang
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Shu Yuan
- College of Agriculture, Shanxi Agricultural University, Shanxi, 080301, China
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| |
Collapse
|
67
|
Lin H, Wu H, Liu F, Yang H, Shen L, Chen J, Zhang X, Zhong Y, Zhang H, Liu Z. Assessing the hepatotoxicity of PFOA, PFOS, and 6:2 Cl-PFESA in black-spotted frogs (Rana nigromaculata) and elucidating potential association with gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120029. [PMID: 36030957 DOI: 10.1016/j.envpol.2022.120029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Pollution caused by per- and polyfluoroalkyl substances (PFASs) has become a major global concern. The association between PFAS-induced hepatotoxicity and gut microbiota in amphibians, particularly at environmentally relevant concentrations, remains elusive. Herein we exposed male black-spotted frogs (Rana nigromaculata) to 1 and 10 μg/L waterborne perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) for 21 days; subsequently, liver histopathological, oxidative stress, molecular docking, gene/protein expression, and gut microbiome analyses were conducted. PFOS and 6:2 Cl-PFESA exposure enhanced serum alanine aminotransferase and aspartate aminotransferase activities, and markedly increased hepatic area of vacuoles and inflammatory cell infiltration, while PFOA exposure increased serum alanine aminotransferase but not aspartate aminotransferase activities and affected hepatic area of vacuoles and inflammatory cell infiltration to a lesser extent. All three PFASs elevated catalase, glutathione S-transferase, and glutathione peroxidase activities and glutathione and malondialdehyde contents in the liver, suggesting the induction of oxidative stress. Further, PFASs could bind to mitogen-activated protein kinases (p38, ERK, and JNK), upregulating not only their expression but also the expression of downstream oxidative stress-related genes and that of P-p38, P-ERK, and Nrf2 proteins. In addition, PFAS exposure significantly increased the relative abundance of Proteobacteria and Delftia and decreased that of Firmicutes and Dietzia, Mycoplasma, and Methylobacterium-Methylorubrum in the order of PFOS ≈ 6:2 Cl-PFESA > PFOA. Altogether, it appears that PFOS and 6:2 Cl-PFESA are more toxic than PFOA. Finally, microbiota function prediction, microbiota co-occurrence network, and correlation analysis between gut microbiota and liver indices suggested that PFAS-induced hepatotoxicity was associated with gut microbiota dysbiosis. Our data provide new insights into the role of gut microbiota in PFAS-induced hepatotoxicity in frogs.
Collapse
Affiliation(s)
- Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haoying Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fangyi Liu
- Zhejiang Qiushi Environmental Monitoring Co., Ltd, Hangzhou, 310018, China
| | - Hongmei Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiahuan Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|
68
|
Hitzelberger M, Khan NA, Mohamed RAM, Brusseau ML, Carroll KC. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13675-13685. [PMID: 36126139 PMCID: PMC9664819 DOI: 10.1021/acs.est.2c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is one of the most common per- and polyfluoroalkyl substances (PFAS) and is a significant risk driver for these emerging contaminants of concern. A series of two-dimensional flow cell experiments was conducted to investigate the impact of flow field heterogeneity on the transport, attenuation, and mass removal of PFOS. A simplified model heterogeneous system was employed consisting of a lower-permeability fine sand lens placed within a higher-permeability coarse sand matrix. Three nonreactive tracers with different aqueous diffusion coefficients, sodium chloride, pentafluorobenzoic acid, and β-cyclodextrin, were used to characterize the influence of diffusive mass transfer on transport and for comparison to PFOS results. The results confirm that the attenuation and subsequent mass removal of the nonreactive tracers and PFOS were influenced by mass transfer between the hydraulically less accessible zone and the coarser matrix (i.e., back diffusion). A mathematical model was used to simulate flow and transport, with the values for all input parameters determined independently. The model predictions provided good matches to the measured breakthrough curves, as well as to plots of reductions in mass flux as a function of mass removed. These results reveal the importance of molecular diffusion and pore water velocity variability even for systems with relatively minor hydraulic conductivity heterogeneity. The impacts of the diffusive mass transfer limitation were quantified using an empirical function relating reductions in contaminant mass flux (MFR) to mass removal (MR). Multi-step regression was used to quantify the nonlinear, multi-stage MFR/MR behavior observed for the heterogeneous experiments. The MFR/MR function adequately reproduced the measured data, which suggests that the MFR/MR approach can be used to evaluate PFOS removal from heterogeneous media.
Collapse
Affiliation(s)
- Michael Hitzelberger
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Naima A Khan
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Ruba A M Mohamed
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Mark L Brusseau
- University of Arizona Environmental Science Department, University of Arizona, Tucson, Arizona 85721, United States
| | - Kenneth C Carroll
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
- University of Arizona Hydrology and Atmospheric Sciences Department, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
69
|
Wu JY, Ding FG, Shen ZW, Hua ZL, Gu L. Linking microbiomes with per- and poly-fluoroalkyl substances (PFASs) in soil ecosystems: Microbial community assembly, stability, and trophic phylosymbiosis. CHEMOSPHERE 2022; 305:135403. [PMID: 35750225 DOI: 10.1016/j.chemosphere.2022.135403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Microbiomes are vital in promoting nutrient cycling and plant growth in soil ecosystems. However, microbiomes face adverse effects from multiple persistent pollutants, including per- and poly-fluoroalkyl substances (PFASs). PFASs threaten the fertility and health of soil ecosystems, yet the response of microbial community stability and trophic transfer efficiencies to PFASs is still poorly understood. This study explored the spatial patterns of PFASs in topsoil environments from the West Taihu Lake Basin of China and links their presence to soil microbial community stability at compositional and functional levels. Our results revealed that PFBA (13.87%), PFTrDA (11.63%), PFDoA (11.02%), PFOA (10.99%), and PFOS (10.39%) contributed the most to the spatial occurrence of PFASs. Soil properties, including salinity (14.47%), uniformity (9.68%), dissolved inorganic carbon (8.62%), and clay content (8.18%), affected PFASs distribution the most. In soil microbiomes, eukaryotic taxa had wider niche breadths and stronger community stability than prokaryotes when exposed to PFASs (p < 0.05). The presence of PFBA and PFHpA inhibited the functional stability of archaeal and bacterial communities (p < 0.05). PFBA and PFPeA reduced the structural stability of heterotrophic bacteria and Myxobacteria, respectively (p < 0.05). Based on null modeling, PFPeA significantly regulated the assembly processes of most microbial sub-communities (p < 0.01). The trophic transferring efficiencies of autotrophic bacteria to metazoan organisms were directly stimulated by PFASs (p < 0.05), and the potential trophic transferring efficiencies of methanogenic archaea to protozoa were inhibited by PFASs (p < 0.05). This study highlighted the potential contributions of PFASs to soil microbial community stability and food webs during ecological soil management.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Fu-Ge Ding
- CCCC SDC Jiangsu Communications Construction Engineering Company, Nanjing, 210000, China
| | - Zhi-Wei Shen
- CCCC SDC Jiangsu Communications Construction Engineering Company, Nanjing, 210000, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
70
|
Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. ENVIRONMENTAL RESEARCH 2022; 212:113311. [PMID: 35460639 DOI: 10.1016/j.envres.2022.113311] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Extensive use of per- and polyfluoroalkyl substances (PFASs) in various industrial activities and daily-life products has made them ubiquitous contaminants in soil and water. PFAS-contaminated soil acts as a long-term source of pollution to the adjacent surface water bodies, groundwater, soil microorganisms, and soil invertebrates. While several remediation strategies exist to eliminate PFASs from the soil, strong ionic interactions between charged groups on PFAS with soil constituents rendered these PFAS remediation technologies ineffective. Pilot and field-scale data from recent studies have shown a great potential of PFAS to bio-accumulate and distribute within plant compartments suggesting that phytoremediation could be a potential remediation technology to clean up PFAS contaminated soils. Even though several studies have been performed on the uptake and translocation of PFAS by different plant species, most of these studies are limited to agricultural crops and fruit species. In this review, the role of both aquatic and terrestrial plants in the phytoremediation of PFAS was discussed highlighting different mechanisms underlying the uptake of PFASs in the soil-plant and water-plant systems. This review further summarized a wide range of factors that influence the bioaccumulation and translocation of PFASs within plant compartments including both structural properties of PFASs and physiological properties of plant species. Even though phytoremediation appears to be a promising remediation technique, some limitations that reduced the feasibility of phytoremediation in the practical application have been emphasized in previous studies. Additional research directions are suggested, including advanced genetic engineering techniques and endophyte-assisted phytoremediation to upgrade the phytoremediation potential of plants for the successful removal of PFASs.
Collapse
Affiliation(s)
- Sonia Mayakaduwage
- School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
71
|
Qi Y, Cao H, Pan W, Wang C, Liang Y. The role of dissolved organic matter during Per- and Polyfluorinated Substance (PFAS) adsorption, degradation, and plant uptake: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129139. [PMID: 35605500 DOI: 10.1016/j.jhazmat.2022.129139] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The negative effects of polyfluoroalkyl substances (PFAS) on the environment and health have recently attracted much attention. This article reviews the influence of soil- and water-derived dissolved organic matter (DOM) on the environmental fate of PFAS. In addition to being co-adsorped with PFAS to increase the adsorption capacity, DOM competes with PFAS for adsorption sites on the surface of the material, thereby reducing the removal rate of PFAS or increasing water solubility, which facilitates desorption of PFAS in the soil. It can quench some active species and inhibit the degradation of PFAS. In contrast, before DOM in water self-degrades, DOM has a greater promoting effect on the degradation of PFAS because DOM can complex with iron, iodine, among others, and act as an electron shuttle to enhance electron transfer. In soil aggregates, DOM can prevent microorganisms from being poisoned by direct exposure to PFAS. In addition, DOM increases the desorption of PFAS in plant root soil, affecting its bioavailability. In general, DOM plays a bidirectional role in adsorption, degradation, and plant uptake of PFAS, which depends on the types and functional groups of DOM. It is necessary to enhance the positive role of DOM in reducing the environmental risks posed by PFAS. In future, attention should be paid to the DOM-induced reduction of PFAS and development of a green and efficient continuous defluorination technology.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
72
|
Pellizzaro A, Dal Ferro N, Fant M, Zerlottin M, Borin M. Emerged macrophytes to the rescue: Perfluoroalkyl acid removal from wastewater and spiked solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114703. [PMID: 35168130 DOI: 10.1016/j.jenvman.2022.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the potential for three emergent aquatic macrophytes to remove perfluoroalkyl acids (PFAAs) from contaminated waters in constructed wetland systems. Three plants (Iris pseudacorus L., Phragmites australis (Cav.) Trin. Ex Steud., and Typha latifolia L.) were exposed to an effluent from a tannery wastewater treatment plant (WWTP) that contained residual PFAAs, and to three spiked solutions with increasing concentrations of 11 perfluorocarboxylic acids (PFCAs) and three perfluorosulfonic acids (PFSAs) (500, 2500, and 5000 ng L-1, each). Thirty-six lightweight expanded clay aggregate- and vegetation-filled tanks (0.35 × 0.56 × 0.31 m) were exposed to the tested solutions at the Acque del Chiampo SpA WWTP in Arzignano (NE Italy). Throughout the experiment, PFAA concentrations and physicochemical water parameters were monitored via measures of the clay material, plastic tank inner surfaces, and below- and above-ground biomasses (after harvest). Vegetation growth was shown to be unaffected by increased PFAA levels in the spiked solutions. Alternatively, total biomass was significantly reduced when WWTP water was used, although we attribute this finding to the relatively high salinity that mainly restricted Typha and Iris development. The tested macrophytes were found to remove a significant PFAA mass from the contaminated waters (36% to ca. 80%, on average) when Phragmites was subjected to the highest PFAA concentrations. Such large accumulations were primarily associated with long C-chain PFAA stabilization in belowground biomass (26%, on average). Most PFAA translocations were observed in Typha, which accumulated mostly short perfluorinated C-chain PFBA, PFPeA, and PFHxA in the aboveground biomass (16%, on average). Despite some growth limitations, Iris was still the most efficient macrophyte for translocating PFBS under WWTP.
Collapse
Affiliation(s)
- Alessandro Pellizzaro
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy.
| | - Massimo Fant
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Mirco Zerlottin
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Maurizio Borin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
73
|
Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. iScience 2022; 25:104061. [PMID: 35345465 PMCID: PMC8957016 DOI: 10.1016/j.isci.2022.104061] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent in the environment and have been detected in a variety of plants such as vegetables, cereals, and fruits. Increasing evidence shows that plants are at a risk of being adversely affected by PFASs. This review concludes that PFASs are predominantly absorbed by roots from sources in the soil; besides, the review also discusses several factors such as soil properties and the species of PFASs and plants. In addition, following uptake by root, long-chain PFASs (C ≥ 7 for PFCA and C ≥ 6 for PFSA) were preferentially retained within the root, whereas the short-chain PFASs were distributed across tissues above the ground — according to the studies. The bioaccumulation potential of PFASs within various plant structures are further expressed by calculating bioaccumulation factor (BAF) across various plant species. The results show that PFASs have a wide range of BAF values within root tissue, followed by straw, and then grain. Furthermore, owing to its high water solubility than other PFASs, PFOA is the predominant compound accumulated in both the soil itself and within the plant tissues. Among different plant groups, the potential BAF values rank from highest to lowest as follows: leaf vegetables > root vegetables > flower vegetables > shoot vegetables. Several PFAS groups such as PFOA, PFBA, and PFOS, may have an increased public health risk based on the daily intake rate (ID). Finally, future research is suggested on the possible PFASs degradation occurring in plant tissues and the explanations at genetic-level for the metabolite changes that occur under PFASs stress. Long-chain PFASs are preferentially retained in the roots BAF values were ranked as root > straw > grain in one plant PFOA is the main compound in soil and within plant tissues PFOA, PFBA, and PFOS have a potential risk to humans through dietary exposure
Collapse
|
74
|
Li J, Zhang D, Li B, Luo C, Zhang G. Identifying the Active Phenanthrene Degraders and Characterizing Their Metabolic Activities at the Single-Cell Level by the Combination of Magnetic-Nanoparticle-Mediated Isolation, Stable-Isotope Probing, and Raman-Activated Cell Sorting (MMI-SIP-RACS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2289-2299. [PMID: 35061946 DOI: 10.1021/acs.est.1c04952] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic-nanoparticle-mediated isolation coupled with stable-isotope probing (MMI-SIP) is a cultivation-independent higher-resolution approach for isolating active degraders in their natural habitats. However, it addresses the community level and cannot directly link the microbial identities, phenotypes, and in situ functions of the active degraders at the single-cell level within complex microbial communities. Here, we used 13C-labeled phenanthrene as the target and developed a new method coupling MMI-SIP and Raman-activated cell sorting (RACS), namely, MMI-SIP-RACS, to identify the active phenanthrene-degrading bacterial cells from polycyclic aromatic hydrocarbon (PAH)-contaminated wastewater. MMI-SIP-RACS significantly enriched the active phenanthrene degraders and successfully isolated the representative single cells. Amplicon sequencing analysis by SIP, 13C shift of the single cell in Raman spectra, and the 16S rRNA gene from single cell sequencing via RACS confirmed that Novosphingobium was the active phenanthrene degrader. Additionally, MMI-SIP-RACS reconstructed the phenanthrene metabolic pathway and genes of Novosphingobium, including two novel genes encoding phenanthrene dioxygenase and naphthalene dioxygenase. Our findings suggested that MMI-SIP-RACS is a powerful method to efficiently and precisely isolate active PAH degraders from complex microbial communities and directly link their identities to functions at the single-cell level.
Collapse
Affiliation(s)
- Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Bei Li
- The State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
- HOOKE Instruments Ltd., 130033 Changchun, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
75
|
Liu Z, Xu C, Johnson AC, Sun X, Ding X, Ding D, Liu S, Liang X. Source apportionment and crop bioaccumulation of perfluoroalkyl acids and novel alternatives in an industrial-intensive region with fluorochemical production, China: Health implications for human exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127019. [PMID: 34523491 DOI: 10.1016/j.jhazmat.2021.127019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Due to their great environmental hazards, the widely used legacy perfluoroalkyl acids (PFAAs) are gradually restricted, and novel alternatives are being developed and applied. For efficient control of emerging environmental risks in agricultural production, we systematically studied the source apportionment in field soils and bioaccumulation characteristics in multiple crops of 12 PFAAs and five novel alternatives in an industrial-intensive region of China, followed by human exposure estimation and health risk assessment. Compared with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), shorter-chained PFAAs and novel alternatives have become the dominant components in local soils and crops, indicating their wide application. A positive matrix factorization (PMF) model coupled with multivariate analysis identified fluoropolymer manufacturing and textile treatment as the principal sources. The bioaccumulation factors (BAFs) of individual PFAAs and alternatives in crops decreased with increasing carbon chain lengths. As a novel alternative of PFOA, hexafluoropropylene oxide dimer acid (GenX) exhibited much higher BAFs; for the alternative of PFOS, 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) showed lower BAFs. The bioaccumulation capacities of PFAAs and alternatives were also associated with soil organic matter and crop species. Through crop consumption, short-chained PFAAs and novel alternatives might pose emerging human health threats.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbe, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sitao Liu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Xiaoyu Liang
- Department of Civil & Environmental Engineering, Imperial College London, London SW72BU, UK
| |
Collapse
|
76
|
Li J, Sun J, Li P. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. ENVIRONMENT INTERNATIONAL 2022; 158:106891. [PMID: 34592655 DOI: 10.1016/j.envint.2021.106891] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are artificial persistent organic pollutants ubiquitous in ecosystem, and their bioaccumulation and adverse outcomes in plants have attracted extensive concerns. Here, we review the toxic effects of PFASs encountered by various plants from physiological, biochemical and molecular perspectives. The exposure routes and bioaccumulation of PFASs in plants from contaminated sites are also summarized. The bioaccumulation of PFASs in plants from contaminated sites varied between ng/g and μg/g levels. The 50% inhibition concentration of PFASs for plant growth is often several orders of magnitude higher than the environmentally relevant concentrations (ERCs). ERCs of PFASs rarely lead to obvious phenotypic/physiological damages in plants, but markedly perturb some biological activities at biochemical and molecular scales. PFAS exposure induces the over-generated reactive oxygen species and further damages plant cell structure and organelle functions. A number of biochemical activities in plant cells are perturbed, such as photosynthesis, gene expression, protein synthesis, carbon and nitrogen metabolisms. To restore the desire states of cells exposed to PFASs, plants initiate several detoxifying mechanisms, including enzymatic antioxidants, non-enzymatic antioxidants, metallothionein genes and metabolic reprogramming. Future challenges and opportunities in PFAS phytotoxicity studies are also proposed in the review.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Sun
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
77
|
Rietjens IMCM, Schriks M, Houtman CJ, Dingemans MML, van Wezel AP. Letter to the Editor on Bil et al. 2021 "Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach". ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:7-12. [PMID: 34967043 DOI: 10.1002/etc.5232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Arslan M, Gamal El-Din M. Removal of per- and poly-fluoroalkyl substances (PFASs) by wetlands: Prospects on plants, microbes and the interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149570. [PMID: 34399352 DOI: 10.1016/j.scitotenv.2021.149570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a large family of synthetic organofluorine aliphatic compounds. They have been extensively produced since 1940s due to enormous applications as a surface-active agent, and water and oil repellent characteristics. PFASs are made to be non-biodegradable, therefore, many of them have been found in the environment albeit strict regulations have been in place since 2002. PFASs are extremely toxic compounds that can impart harm in both fauna and flora. Recent investigations have shown that wetlands might be useful for their removal from the environment as a passive and nature-based solution. To this end, understanding the role of plants, microbes, and their combined plant-microbe interplay is crucial because it could help design a sophisticated passive treatment wetland system. This review focuses on how these components (plants, microbe, substrate) can influence PFASs removal in wetlands under natural and controlled conditions. The information on underlying removal mechanisms is mostly retrieved from laboratory-based studies; however, pilot- and field-scale data are also presented to provide insights on their real-time performance. Briefly, a traditional wetland system works on the principles of phytouptake, bioaccumulation, and sorption, which are mainly due to the fact that PFASs are synthetic compounds that have very low reactivity in the environment. Nevertheless, recent investigations have also shown that Feammox process in wetlands can mineralize the PFASs; thus, opens new opportunities for PFASs degradation in terms of effective plant-microbe interplay in the wetlands. The choice of plants and bacterial species is however crucial, and the system efficiency relies on species-specific, sediment-specific and pollutant-specific principles. More research is encouraged to identify genetic elements and molecular mechanisms that can help us harness effective plant-microbe interplay in wetlands for the successful removal of PFASs from the environment.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
79
|
Cai Y, Wang Q, Zhou B, Yuan R, Wang F, Chen Z, Chen H. A review of responses of terrestrial organisms to perfluorinated compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148565. [PMID: 34174603 DOI: 10.1016/j.scitotenv.2021.148565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated compounds (PFCs) are a class of persistent organic pollutants with widespread distribution in the environment. Since the soil environment has become a significant sink for PFCs, the toxicological assessment about their potential effects on terrestrial organisms is necessary. This review compiles the toxicity researches of regular and emerging PFCs on classical terrestrial biota i.e. microorganisms, earthworms, and plants. In the soil environment, the bioavailability of PFCs much depends on their adsorption in soil, which is affected by soil properties and PFCs structure. By the exploration of bacterial community richness and structure, the gene expression, the influences of PFCs on soil microorganisms were revealed; while the plants and earthworms manifested the PFCs disruption not only through macroscopic indicators, but also from molecular and metabolite responses. Basically, the addition of PFCs would accelerate the production of reactive oxygen species (ROS) in terrestrial organisms, while the excessive ROS could not be eliminated by the defense system causing oxidative damage. Nowadays, the PFCs toxic mechanisms discussed are limited to a single strain, Escherichia coli; thus, the complexity of the soil environment demands further in-depth researches. This review warrants studies focus on more potential quantitative toxicity indicators, more explicit elaboration on toxicity influencing factors, and environmentally relevant concentrations to obtain a more integrated picture of PFCs toxicity on terrestrial biota.
Collapse
Affiliation(s)
- Yanping Cai
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianyu Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|