51
|
Kelly TJ, Bonniwell EM, Mu L, Liu X, Hu Y, Friedman V, Yu H, Su W, McCorvy JD, Liu QS. Psilocybin analog 4-OH-DiPT enhances fear extinction and GABAergic inhibition of principal neurons in the basolateral amygdala. Neuropsychopharmacology 2024; 49:854-863. [PMID: 37752222 PMCID: PMC10948882 DOI: 10.1038/s41386-023-01744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Psychedelics such as psilocybin show great promise for the treatment of depression and PTSD, but their long duration of action poses practical limitations for patient access. 4-OH-DiPT is a fast-acting and shorter-lasting derivative of psilocybin. Here we characterized the pharmacological profile of 4-OH-DiPT and examined its impact on fear extinction learning as well as a potential mechanism of action. First, we profiled 4-OH-DiPT at all 12 human 5-HT GPCRs. 4-OH-DiPT showed strongest agonist activity at all three 5-HT2A/2B/2C receptors with near full agonist activity at 5-HT2A. Notably, 4-OH-DiPT had comparable activity at mouse and human 5-HT2A/2B/2C receptors. In a fear extinction paradigm, 4-OH-DiPT significantly reduced freezing responses to conditioned cues in a dose-dependent manner with a greater potency in female mice than male mice. Female mice that received 4-OH-DiPT before extinction training had reduced avoidance behaviors several days later in the light dark box, elevated plus maze and novelty-suppressed feeding test compared to controls, while male mice did not show significant differences. 4-OH-DiPT produced robust increases in spontaneous inhibitory postsynaptic currents (sIPSCs) in basolateral amygdala (BLA) principal neurons and action potential firing in BLA interneurons in a 5-HT2A-dependent manner. RNAscope demonstrates that Htr2a mRNA is expressed predominantly in BLA GABA interneurons, Htr2c mRNA is expressed in both GABA interneurons and principal neurons, while Htr2b mRNA is absent in the BLA. Our findings suggest that 4-OH-DiPT activates BLA interneurons via the 5-HT2A receptor to enhance GABAergic inhibition of BLA principal neurons, which provides a potential mechanism for suppressing learned fear.
Collapse
Affiliation(s)
- Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wantang Su
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
52
|
Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH. Comparative Pharmacological Effects of Lisuride and Lysergic Acid Diethylamide Revisited. ACS Pharmacol Transl Sci 2024; 7:641-653. [PMID: 38481684 PMCID: PMC10928901 DOI: 10.1021/acsptsci.3c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 11/01/2024]
Abstract
Lisuride is a non-psychedelic serotonin (5-HT) 2A receptor (5-HT2A) agonist and analogue of the psychedelic lysergic acid diethylamide (LSD). Lisuride also acts as an agonist at the serotonin 1A receptor (5-HT1A), a property known to counter psychedelic effects. Here, we tested whether lisuride lacks psychedelic activity due to a dual mechanism: (1) partial agonism at 5-HT2A and (2) potent agonism at 5-HT1A. The in vitro effects of lisuride, LSD, and related analogues on 5-HT2A signaling were characterized by using miniGαq and β-arrestin 2 recruitment assays. The 5-HT1A- and 5-HT2A-mediated effects of lisuride and LSD were also compared in male C57BL/6J mice. The in vitro results confirmed that LSD is an agonist at 5-HT2A, with high efficacy and potency for recruiting miniGαq and β-arrestin 2. By contrast, lisuride displayed partial efficacy for both functional end points (6-52% of 5-HT or LSD Emax) and antagonized the effects of LSD. The mouse experiments demonstrated that LSD induces head twitch responses (HTRs)(ED50 = 0.039 mg/kg), while lisuride suppresses HTRs (ED50 = 0.006 mg/kg). Lisuride also produced potent hypothermia and hypolocomotion (ED50 = 0.008-0.023 mg/kg) that was blocked by the 5-HT1A antagonist WAY100635 (3 mg/kg). Blockade of 5-HT1A prior to lisuride restored basal HTRs, but it failed to increase HTRs above baseline levels. HTRs induced by LSD were blocked by lisuride (0.03 mg/kg) or the 5-HT1A agonist 8-OH-DPAT (1 mg/kg). Overall, our findings show that lisuride is an ultrapotent 5-HT1A agonist in C57BL/6J mice, limiting its use as a 5-HT2A ligand in mouse studies examining acute drug effects. Results also indicate that the 5-HT2A partial agonist-antagonist activity of lisuride explains its lack of psychedelic effects.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ghent 460 9000, Belgium
| | - John S. Partilla
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ghent 460 9000, Belgium
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
53
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, Zauli G, Locatelli CA, Marti M. Pharmaco-toxicological effects of the novel tryptamine hallucinogen 5-MeO-MiPT on motor, sensorimotor, physiological, and cardiorespiratory parameters in mice-from a human poisoning case to the preclinical evidence. Psychopharmacology (Berl) 2024; 241:489-511. [PMID: 38214743 PMCID: PMC10884077 DOI: 10.1007/s00213-024-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
RATIONALE The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.
Collapse
Grants
- Effects of NPS: development of a multicentre research for the information enhancement of the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- Implementation of the identification Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- study of the effects of NPS: Development of a multicentric research to strengthen the database of the National Monitoring Centre for Drug Addiction Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- FAR 2021 Università degli Studi di Ferrara
- FAR 2022 Università degli Studi di Ferrara
- Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy.
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
54
|
Sekssaoui M, Bockaert J, Marin P, Bécamel C. Antidepressant-like effects of psychedelics in a chronic despair mouse model: is the 5-HT 2A receptor the unique player? Neuropsychopharmacology 2024; 49:747-756. [PMID: 38212441 PMCID: PMC10876623 DOI: 10.1038/s41386-024-01794-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders in the world. First-line treatments such as selective serotonin reuptake inhibitors (SSRIs) still have many limitations, including a resistance to treatment in 30% of patients and a delayed clinical benefit that is observed only after several weeks of treatment. Increasing clinical evidence indicates that the acute administration of psychedelic agonists of the serotonin 5-HT2A receptor (5-HT2AR), such as psilocybin, to patients with MDD induce fast antidepressant effects, which persist up to five weeks after the treatment. However, the involvement of the 5-HT2AR in these antidepressant effects remains controversial. Furthermore, whether the hallucinogenic properties of 5-HT2AR agonists are mandatory to their antidepressant activity is still an open question. Here, we addressed these issues by investigating the effect of two psychedelics of different chemical families, DOI and psilocybin, and a non-hallucinogenic 5-HT2AR agonist, lisuride, in a chronic despair mouse model exhibiting a robust depressive-like phenotype. We show that a single injection of each drug to wild type mice induces anxiolytic- and antidepressant-like effects in the novelty-suppressed feeding, sucrose preference and forced swim tests, which last up to 15 days. DOI and lisuride administration did not produce antidepressant-like effects in 5-HT2A-/- mice, whereas psilocybin was still effective. Moreover, neither 5-HT1AR blockade nor dopamine D1 or D2 receptor blockade affected the antidepressant-like effects of psilocybin in 5-HT2A-/- mice. Collectively, these findings indicate that 5-HT2AR agonists can produce antidepressant-like effects independently of hallucinogenic properties through mechanisms involving or not involving the receptor.
Collapse
Affiliation(s)
- Mehdi Sekssaoui
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Carine Bécamel
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France.
| |
Collapse
|
55
|
Allen J, Dames SS, Foldi CJ, Shultz SR. Psychedelics for acquired brain injury: a review of molecular mechanisms and therapeutic potential. Mol Psychiatry 2024; 29:671-685. [PMID: 38177350 DOI: 10.1038/s41380-023-02360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Shannon S Dames
- Psychedelic-Assisted Therapy Post-Graduate Program, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
56
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
57
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of hallucinogenic drugs on the human heart. Front Pharmacol 2024; 15:1334218. [PMID: 38370480 PMCID: PMC10869618 DOI: 10.3389/fphar.2024.1334218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Hallucinogenic drugs are used because they have effects on the central nervous system. Their hallucinogenic effects probably occur via stimulation of serotonin receptors, namely, 5-HT2A-serotonin receptors in the brain. However, a close study reveals that they also act on the heart, possibly increasing the force of contraction and beating rate and may lead to arrhythmias. Here, we will review the inotropic and chronotropic actions of bufotenin, psilocin, psilocybin, lysergic acid diethylamide (LSD), ergotamine, ergometrine, N,N-dimethyltryptamine, and 5-methoxy-N,N-dimethyltryptamine in the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Münster, Münster, Germany
| | - Britt Hofmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
58
|
Sherwood AM, Burkhartzmeyer EK, Williamson SE, Baumann MH, Glatfelter GC. Psychedelic-like Activity of Norpsilocin Analogues. ACS Chem Neurosci 2024; 15:315-327. [PMID: 38189238 PMCID: PMC10797613 DOI: 10.1021/acschemneuro.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Primary metabolites of mushroom tryptamines, psilocybin and baeocystin (i.e., psilocin and norpsilocin), exhibit potent agonist activity at the serotonin 2A receptor (5-HT2A) in vitro but differ in their 5-HT2A-mediated effects in vivo. In particular, psilocin produces centrally mediated psychedelic effects in vivo, whereas norpsilocin, differing only by the loss of an N-methyl group, is devoid of psychedelic-like effects. These observations suggest that the secondary methylamine group in norpsilocin impacts its central nervous system (CNS) bioavailability but not its receptor pharmacodynamics. To test this hypothesis, eight norpsilocin derivatives were synthesized with varied secondary alkyl-, allyl-, and benzylamine groups, primarily aiming to increase their lipophilicity and brain permeability. Structure-activity relationships for the norpsilocin analogues were evaluated using the mouse head-twitch response (HTR) as a proxy for CNS-mediated psychedelic-like effects. HTR studies revealed that extending the N-methyl group of norpsilocin by a single methyl group, to give the corresponding secondary N-ethyl analogue (4-HO-NET), was sufficient to produce psilocin-like activity (median effective dose or ED50 = 1.4 mg/kg). Notably, N-allyl, N-propyl, N-isopropyl, and N-benzyl derivatives also induced psilocin-like HTR activity (ED50 = 1.1-3.2 mg/kg), with variable maximum effects (26-77 total HTR events). By contrast, adding bulkier tert-butyl or cyclohexyl groups in the same position did not elicit psilocin-like HTRs. Pharmacological assessments of the tryptamine series in vitro demonstrated interactions with multiple serotonin receptor subtypes, including 5-HT2A, and other CNS signaling proteins (e.g., sigma receptors). Overall, our data highlight key structural requirements for CNS-mediated psychedelic-like effects of norpsilocin analogues.
Collapse
Affiliation(s)
| | | | | | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
59
|
Zhutao G, Ding K, Zheng S, Ni C, Liang C, He S, Deng Q. UPLC-LTQ-Orbitrap Study on Rat Urinary Metabolites of 5-Methoxy-Alpha-Methyltryptamine. Curr Drug Metab 2024; 25:298-305. [PMID: 39005122 DOI: 10.2174/0113892002295551240628061732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE 5-Methoxy-α-Methyltryptamine (5-MeO-AMT) is a new psychoactive substance which is abused due to its hallucinogenic and euphoric effects. This study aimed to study the metabolic characteristics of 5-MeO-AMT. METHODS Five rats were given intraperitoneal injection at a dose of 50 mg/kg of 5-MeO-AMT, and their urine was subsequently collected at different times within 7 days. Ultra-high performance liquid chromatographytandem high-resolution mass spectrometry (UPLC-LTQ-Orbitrap) was used to detect the precise molecular weight and fragment ions of 5-MeO-AMT and its possible metabolites in the urine sample extracted with benzene-ethyl acetate. RESULTS Three metabolites, including OH-5-MeO-AMT, α-Me-5-HT, and N-Acetyl-5-MeO-AMT were identified in rats' urine. The major metabolic pathways involved O-demethylation, hydroxylation of indole ring, and Acetylation on aliphatic amines. CONCLUSION The results of this study are an important reference for the identification and screening of toxicants of 5-MeO-AMT.
Collapse
Affiliation(s)
- Guo Zhutao
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
- School of Pharmacy, Fudan University, Department of Toxicants & Navcotics Examination Office, Shanghai, 201203, PR China
| | - Keran Ding
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
- School of Pharmacy, Fudan University, Department of Toxicants & Navcotics Examination Office, Shanghai, 201203, PR China
| | - Shuiqing Zheng
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Chunfang Ni
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Chen Liang
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Siyang He
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Qianya Deng
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| |
Collapse
|
60
|
Mitchell JM, Anderson BT. Psychedelic therapies reconsidered: compounds, clinical indications, and cautious optimism. Neuropsychopharmacology 2024; 49:96-103. [PMID: 37479859 PMCID: PMC10700471 DOI: 10.1038/s41386-023-01656-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
The clinical investigation of psychedelic medicines has blossomed over the last 5 years. Data from a Phase 3 industry trial and a multicenter Phase 2 industry trial, in addition to multiple early phase investigator-initiated and industry trials, have now been published in peer-reviewed journals. This narrative review summarizes both the recent data and the current clinical trials that are being conducted with various classes of "psyche-manifesting" substances, which may prove beneficial in the treatment of a broad range of conditions. Methodological considerations, unique challenges, and next steps for research are discussed in keeping with the uniquely "experiential" nature of these therapies.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Department of Veterans Affairs, Research Service, San Francisco VA Medical Center, San Francisco, CA, USA.
- Berkeley Center for the Science of Psychedelics, University of California Berkeley, Berkeley, CA, USA.
| | - Brian T Anderson
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Berkeley Center for the Science of Psychedelics, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
61
|
Holze F, Erne L, Duthaler U, Liechti ME. Pharmacokinetics, pharmacodynamics and urinary recovery of oral lysergic acid diethylamide administration in healthy participants. Br J Clin Pharmacol 2024; 90:200-208. [PMID: 37596682 DOI: 10.1111/bcp.15887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
AIMS Lysergic acid diethylamide (LSD) is currently investigated for several neurological and psychiatric illnesses. Various studies have investigated the pharmacokinetics and the pharmacokinetic-pharmacodynamic relationship of LSD in healthy participants, but data on urinary recovery and confirmatory studies are missing. METHODS The present study characterized the pharmacokinetics, pharmacokinetic-pharmacodynamic relationship and urinary recovery of LSD at doses of 85 and 170 μg administered orally in 28 healthy participants. The plasma concentrations and subjective effects of LSD were continuously evaluated over a period of 24 h. Urine was collected during 3 time intervals (0-8, 8-16 and 16-24 h after LSD administration). Pharmacokinetic parameters were determined using compartmental modelling. Concentration-subjective effect relationships were described using pharmacokinetic-pharmacodynamic modelling. RESULTS Mean (95% confidence interval) maximal LSD concentrations were 1.8 ng/mL (1.6-2.0) and 3.4 ng/mL (3.0-3.8) after the administration of 85 and 170 μg LSD, respectively. Maximal concentrations were achieved on average after 1.7 h. Elimination half-lives were 3.7 h (3.4-4.1) and 4.0 h (3.6-4.4), for 85 and 170 μg LSD, respectively. Only 1% of the administered dose was recovered from urine unchanged within the first 24 h, 16% was eliminated as 2-oxo-3-hydroxy-LSD. Urinary recovery was dose proportional. Mean (±standard deviation) durations of subjective effects were 9.3 ± 3.2 and 11 ± 3.7 h, and maximal effects (any drug effects) were 77 ± 18% and 87 ± 13% after 85 and 170 μg of LSD, respectively. CONCLUSION The present novel study validates previous findings. LSD exhibited dose-proportional pharmacokinetics and first-order elimination kinetics and dose-dependent duration and intensity of subjective effects. LSD is extensively metabolized and shows dose-proportional urinary recovery.
Collapse
Affiliation(s)
- Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Livio Erne
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
62
|
Abstract
Classic psychedelics, including lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are potent psychoactive substances that have been studied for their physiological and psychological effects. However, our understanding of the potential interactions and outcomes when using these substances in combination with other drugs is limited. This systematic review aims to provide a comprehensive overview of the current research on drug-drug interactions between classic psychedelics and other drugs in humans. We conducted a thorough literature search using multiple databases, including PubMed, PsycINFO, Web of Science and other sources to supplement our search for relevant studies. A total of 7102 records were screened, and studies involving human data describing potential interactions (as well as the lack thereof) between classic psychedelics and other drugs were included. In total, we identified 52 studies from 36 reports published before September 2, 2023, encompassing 32 studies on LSD, 10 on psilocybin, 4 on mescaline, 3 on DMT, 2 on 5-MeO-DMT and 1 on ayahuasca. These studies provide insights into the interactions between classic psychedelics and a range of drugs, including antidepressants, antipsychotics, anxiolytics, mood stabilisers, recreational drugs and others. The findings revealed various effects when psychedelics were combined with other drugs, including both attenuated and potentiated effects, as well as instances where no changes were observed. Except for a few case reports, no serious adverse drug events were described in the included studies. An in-depth discussion of the results is presented, along with an exploration of the potential molecular pathways that underlie the observed effects.
Collapse
Affiliation(s)
- Andreas Halman
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Geraldine Kong
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Sydney, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Psychae Institute, Melbourne, VIC, Australia
| | - Daniel Perkins
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Psychae Institute, Melbourne, VIC, Australia
| |
Collapse
|
63
|
Madrid-Gambin F, Fabregat-Safont D, Gomez-Gomez A, Olesti E, Mason NL, Ramaekers JG, Pozo OJ. Present and future of metabolic and metabolomics studies focused on classical psychedelics in humans. Biomed Pharmacother 2023; 169:115775. [PMID: 37944438 DOI: 10.1016/j.biopha.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Psychedelics are classical hallucinogen drugs that induce a marked altered state of consciousness. In recent years, there has been renewed attention to the possible use of classical psychedelics for the treatment of certain mental health disorders. However, further investigation to better understand their biological effects in humans, their mechanism of action, and their metabolism in humans is needed when considering the development of future novel therapeutic approaches. Both metabolic and metabolomics studies may help for these purposes. On one hand, metabolic studies aim to determine the main metabolites of the drug. On the other hand, the application of metabolomics in human psychedelics studies can help to further understand the biological processes underlying the psychedelic state and the mechanisms of action underlying their therapeutic potential. This review presents the state of the art of metabolic and metabolomic studies after lysergic acid diethylamide (LSD), mescaline, N,N-dimethyltryptamine (DMT) and β-carboline alkaloids (ayahuasca brew), 5-methoxy-DMT and psilocybin administrations in humans. We first describe the characteristics of the published research. Afterward, we reviewed the main results obtained by both metabolic and metabolomics (if available) studies in classical psychedelics and we found out that metabolic and metabolomics studies in psychedelics progress at two different speeds. Thus, whereas the main metabolites for classical psychedelics have been robustly established, the main metabolic alterations induced by psychedelics need to be explored. The integration of metabolomics and pharmacokinetics for investigating the molecular interaction between psychedelics and multiple targets may open new avenues in understanding the therapeutic role of psychedelics.
Collapse
Affiliation(s)
- Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castelló, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; CERBA Internacional, Chromatography Department, 08203 Sabadell, Spain
| | - Eulàlia Olesti
- Department of Clinical Pharmacology, Area Medicament, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; Clinical Pharmacology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| |
Collapse
|
64
|
Wojtas A, Gołembiowska K. Molecular and Medical Aspects of Psychedelics. Int J Mol Sci 2023; 25:241. [PMID: 38203411 PMCID: PMC10778977 DOI: 10.3390/ijms25010241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Psychedelics belong to the oldest psychoactive drugs. They arouse recent interest due to their therapeutic applications in the treatment of major depressive disorder, substance use disorder, end-of-life anxiety,= and anxiety symptoms, and obsessive-compulsive disorder. In this review, the current state of preclinical research on the mechanism of action, neurotoxicity, and behavioral impact of psychedelics is summarized. The effect of selective 5-HT2A receptor agonists, 25I- and 25B-NBOMe, after acute and repeated administration is characterized and compared with the effects of a less selective drug, psilocybin. The data show a significant effect of NBOMes on glutamatergic, dopaminergic, serotonergic, and cholinergic neurotransmission in the frontal cortex, striatum, and nucleus accumbens. The increases in extracellular levels of neurotransmitters were not dose-dependent, which most likely resulted from the stimulation of the 5-HT2A receptor and subsequent activation of the 5-HT2C receptors. This effect was also observed in the wet dog shake test and locomotor activity. Chronic administration of NBOMes elicited rapid development of tolerance, genotoxicity, and activation of microglia. Acute treatment with psilocybin affected monoaminergic and aminoacidic neurotransmitters in the frontal cortex, nucleus accumbens, and hippocampus but not in the amygdala. Psilocybin exhibited anxiolytic properties resulting from intensification of GABAergic neurotransmission. The data indicate that NBOMes as selective 5-HT2A agonists exert a significant effect on neurotransmission and behavior of rats while also inducing oxidative DNA damage. In contrast to NBOMes, the effects induced by psilocybin suggest a broader therapeutic index of this drug.
Collapse
Affiliation(s)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| |
Collapse
|
65
|
Wojtas A, Bysiek A, Wawrzczak-Bargiela A, Maćkowiak M, Gołembiowska K. Limbic System Response to Psilocybin and Ketamine Administration in Rats: A Neurochemical and Behavioral Study. Int J Mol Sci 2023; 25:100. [PMID: 38203271 PMCID: PMC10779066 DOI: 10.3390/ijms25010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.
Collapse
Affiliation(s)
- Adam Wojtas
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| | - Agnieszka Bysiek
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| | - Agnieszka Wawrzczak-Bargiela
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.-B.); (M.M.)
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.-B.); (M.M.)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| |
Collapse
|
66
|
Robinson GI, Li D, Wang B, Rahman T, Gerasymchuk M, Hudson D, Kovalchuk O, Kovalchuk I. Psilocybin and Eugenol Reduce Inflammation in Human 3D EpiIntestinal Tissue. Life (Basel) 2023; 13:2345. [PMID: 38137946 PMCID: PMC10744792 DOI: 10.3390/life13122345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation plays a pivotal role in the development and progression of inflammatory bowel disease (IBD), by contributing to tissue damage and exacerbating the immune response. The investigation of serotonin receptor 2A (5-HT2A) ligands and transient receptor potential (TRP) channel ligands is of significant interest due to their potential to modulate key inflammatory pathways, mitigate the pathological effects of inflammation, and offer new avenues for therapeutic interventions in IBD. This study investigates the anti-inflammatory effects of 5-HT2A ligands, including psilocybin, 4-AcO-DMT, and ketanserin, in combination with TRP channel ligands, including capsaicin, curcumin, and eugenol, on the inflammatory response induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in human 3D EpiIntestinal tissue. Enzyme-linked immunosorbent assay was used to assess the expression of pro-inflammatory markers TNF-α, IFN-γ, IL-6, IL-8, MCP-1, and GM-CSF. Our results show that psilocybin, 4-AcO-DMT, and eugenol significantly reduce TNF-α and IFN-γ levels, while capsaicin and curcumin decrease these markers to a lesser extent. Psilocybin effectively lowers IL-6 and IL-8 levels, but curcumin, capsaicin, and 4-AcO-DMT have limited effects on these markers. In addition, psilocybin can significantly decrease MCP-1 and GM-CSF levels. While ketanserin lowers IL-6 and GM-CSF levels, there are no effects seen on TNF-α, IFN-γ, IL-8, or MCP-1. Although synergistic effects between 5-HT2A and TRP channel ligands are minimal in this study, the results provide further evidence of the anti-inflammatory effects of psilocybin and eugenol. Further research is needed to understand the mechanisms of action and the feasibility of using these compounds as anti-inflammatory therapies for conditions like IBD.
Collapse
Affiliation(s)
- Gregory Ian Robinson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tahiat Rahman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Darryl Hudson
- GoodCap Pharmaceuticals, 520 3rd Avenue SW, Suite 1900, Calgary, AB T2P 0R3, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
67
|
Doesburg-van Kleffens M, Zimmermann-Klemd AM, Gründemann C. An Overview on the Hallucinogenic Peyote and Its Alkaloid Mescaline: The Importance of Context, Ceremony and Culture. Molecules 2023; 28:7942. [PMID: 38138432 PMCID: PMC10746114 DOI: 10.3390/molecules28247942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Peyote (Lophophora williamsii) is a cactus that contains various biologically active alkaloids-such as pellotine, anhalonidine, hordenine and mescaline. Here, mescaline induces the psychoactive effects of peyote through the activation of the serotonin 5-HT2A receptor and the subsequent release of calcium (Ca2+) from the endoplasmic reticulum (ER). Moreover, an evaluation of the therapeutic benefits of mescaline is also currently the subject of research. It is important to consider that the outcome of taking a psychedelic drug strongly depends on the mindset of the recipient and the context (set and setting principle), including ceremonies and culture. This overview serves to summarise the current state of the knowledge of the metabolism, mechanism of action and clinical application studies of peyote and mescaline. Furthermore, the benefits of the potential of peyote and mescaline are presented in a new light, setting an example for combining a form of treatment embedded in nature and ritually enriched with our current highly innovative Western medicine.
Collapse
|
68
|
Wsół A. Cardiovascular safety of psychedelic medicine: current status and future directions. Pharmacol Rep 2023; 75:1362-1380. [PMID: 37874530 PMCID: PMC10661823 DOI: 10.1007/s43440-023-00539-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Psychedelics are powerful psychoactive substances that alter perception and mood processes. Their effectiveness in the treatment of psychiatric diseases was known before their prohibition. An increasing number of recent studies, due to the indisputable resurgence of serotonergic hallucinogens, have shown their efficacy in alleviating depression, anxiety, substance abuse therapies, and existential distress treatment in patients facing life-threatening illness. Psychedelics are generally considered to be physiologically safe with low toxicity and low addictive potential. However, their agonism at serotonergic receptors should be considered in the context of possible serotonin-related cardiotoxicity (5-HT2A/2B and 5-HT4 receptors), influence on platelet aggregation (5-HT2A receptor), and their proarrhythmic potential. The use of psychedelics has also been associated with significant sympathomimetic effects in both experimental and clinical studies. Therefore, the present review aims to provide a critical discussion of the cardiovascular safety of psilocybin, d-lysergic acid diethylamide (LSD), N,N-dimethyltryptamine, ayahuasca, and mescaline, based on the results of experimental research and clinical trials in humans. Experimental studies provide inconsistent information on the potential cardiovascular effects and toxicity of psychedelics. Data from clinical trials point to the relative cardiovascular safety of psychedelic-assisted therapies in the population of "healthy" volunteers. However, there is insufficient evidence from therapies carried out with microdoses of psychedelics, and there is still a lack of data on the safety of psychedelics in the population of patients with cardiovascular disease. Therefore, the exact determination of the cardiovascular safety of psychedelic therapies (especially long-term therapies) requires further research.
Collapse
Affiliation(s)
- Agnieszka Wsół
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
69
|
Straumann I, Ley L, Holze F, Becker AM, Klaiber A, Wey K, Duthaler U, Varghese N, Eckert A, Liechti ME. Acute effects of MDMA and LSD co-administration in a double-blind placebo-controlled study in healthy participants. Neuropsychopharmacology 2023; 48:1840-1848. [PMID: 37258715 PMCID: PMC10584820 DOI: 10.1038/s41386-023-01609-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
There is renewed interest in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. Although acute subjective effects of LSD are mostly positive, negative subjective effects, including anxiety, may occur. The induction of overall positive acute subjective effects is desired in psychedelic-assisted therapy because positive acute experiences are associated with greater therapeutic long-term benefits. 3,4-Methylenedioxymethamphetamine (MDMA) produces marked positive subjective effects and is used recreationally with LSD, known as "candyflipping." The present study investigated whether the co-administration of MDMA can be used to augment acute subjective effects of LSD. We used a double-blind, randomized, placebo-controlled, crossover design with 24 healthy subjects (12 women, 12 men) to compare the co-administration of MDMA (100 mg) and LSD (100 µg) with MDMA and LSD administration alone and placebo. Outcome measures included subjective, autonomic, and endocrine effects and pharmacokinetics. MDMA co-administration with LSD did not change the quality of acute subjective effects compared with LSD alone. However, acute subjective effects lasted longer after LSD + MDMA co-administration compared with LSD and MDMA alone, consistent with higher plasma concentrations of LSD (Cmax and area under the curve) and a longer plasma elimination half-life of LSD when MDMA was co-administered. The LSD + MDMA combination increased blood pressure, heart rate, and pupil size more than LSD alone. Both MDMA alone and the LSD + MDMA combination increased oxytocin levels more than LSD alone. Overall, the co-administration of MDMA (100 mg) did not improve acute effects or the safety profile of LSD (100 µg). The combined use of MDMA and LSD is unlikely to provide relevant benefits over LSD alone in psychedelic-assisted therapy. Trial registration: ClinicalTrials.gov identifier: NCT04516902.
Collapse
Affiliation(s)
- Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Laura Ley
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Kathrin Wey
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
70
|
Winkelman MJ, Szabo A, Frecska E. The potential of psychedelics for the treatment of Alzheimer's disease and related dementias. Eur Neuropsychopharmacol 2023; 76:3-16. [PMID: 37451163 DOI: 10.1016/j.euroneuro.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's Disease (AD) is a currently incurable but increasingly prevalent fatal and progressive neurodegenerative disease, demanding consideration of therapeutically relevant natural products and their synthetic analogues. This paper reviews evidence for effectiveness of natural and synthetic psychedelics in the treatment of AD causes and symptoms. The plastogenic effects of serotonergic psychedelics illustrate that they have efficacy for addressing multiple facets of AD pathology. We review findings illustrating neuroplasticity mechanisms of classic (serotonergic) and non-classic psychedelics that indicate their potential as treatments for AD and related dementias. Classic psychedelics modulate glutamatergic neurotransmission and stimulate synaptic and network remodeling that facilitates synaptic, structural and behavioral plasticity. Up-regulation of neurotrophic factors enable psychedelics to promote neuronal survival and glutamate-driven neuroplasticity. Muscimol modulation of GABAAR reduces Aβ-induced neurotoxicity and psychedelic Sig-1R agonists provide protective roles in Aβ toxicity. Classic psychedelics also activate mTOR intracellular effector pathways in brain regions that show atrophy in AD. The potential of psychedelics to treat AD involves their ability to induce structural and functional neural plasticity in brain circuits and slow or reverse brain atrophy. Psychedelics stimulate neurotrophic pathways, increase neurogenesis and produce long-lasting neural changes through rewiring pathological neurocircuitry. Psychedelic effects on 5-HT receptor target genes and induction of synaptic, structural, and functional changes in neurons and networks enable them to promote and enhance brain functional connectivity and address diverse mechanisms underlying degenerative neurological disorders. These findings provide a rationale for immediate investigation of psychedelics as treatments for AD patients.
Collapse
Affiliation(s)
- Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
71
|
Tyagi R, Saraf TS, Canal CE. The Psychedelic N, N-Dipropyltryptamine Prevents Seizures in a Mouse Model of Fragile X Syndrome via a Mechanism that Appears Independent of Serotonin and Sigma1 Receptors. ACS Pharmacol Transl Sci 2023; 6:1480-1491. [PMID: 37854624 PMCID: PMC10580393 DOI: 10.1021/acsptsci.3c00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 10/20/2023]
Abstract
The serotonergic psychedelic psilocybin shows efficacy in treating neuropsychiatric disorders, though the mechanism(s) underlying its therapeutic effects remain unclear. We show that a similar psychedelic tryptamine, N,N-dipropyltryptamine (DPT), completely prevents audiogenic seizures (AGS) in an Fmr1 knockout mouse model of fragile X syndrome at a 10 mg/kg dose but not at lower doses (3 or 5.6 mg/kg). Despite showing in vitro that DPT is a serotonin 5-HT2A, 5-HT1B, and 5-HT1A receptor agonist (with that rank order of functional potency, determined with TRUPATH Gα/βγ biosensors), pretreatment with selective inhibitors of 5-HT2A/2C, 5-HT1B, or 5-HT1A receptors did not block DPT's antiepileptic effects; a pan-serotonin receptor antagonist was also ineffective. Because 5-HT1A receptor activation blocks AGS in Fmr1 knockout mice, we performed a dose-response experiment to evaluate DPT's engagement of 5-HT1A receptors in vivo. DPT elicited 5-HT1A-dependent effects only at doses greater than 10 mg/kg, further supporting that DPT's antiepileptic effects were not 5-HT1A-mediated. We also observed that the selective sigma1 receptor antagonist, NE-100, did not impact DPT's antiepileptic effects, suggesting DPT engagement of sigma1 receptors was not a crucial mechanism. Separately, we observed that DPT and NE-100 at high doses caused convulsions on their own that were qualitatively distinct from AGS. In conclusion, DPT dose-dependently blocked AGS in Fmr1 knockout mice, but neither serotonin nor sigma1 receptor antagonists prevented this action. Thus, DPT might have neurotherapeutic effects independent of its serotonergic psychedelic properties. However, DPT also caused seizures at high doses, showing that DPT has complex dose-dependent in vivo polypharmacology.
Collapse
Affiliation(s)
- Richa Tyagi
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Tanishka S. Saraf
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Clinton E. Canal
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
72
|
Salinsky LM, Merritt CR, Zamora JC, Giacomini JL, Anastasio NC, Cunningham KA. μ-opioid receptor agonists and psychedelics: pharmacological opportunities and challenges. Front Pharmacol 2023; 14:1239159. [PMID: 37886127 PMCID: PMC10598667 DOI: 10.3389/fphar.2023.1239159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Opioid misuse and opioid-involved overdose deaths are a massive public health problem involving the intertwined misuse of prescription opioids for pain management with the emergence of extremely potent fentanyl derivatives, sold as standalone products or adulterants in counterfeit prescription opioids or heroin. The incidence of repeated opioid overdose events indicates a problematic use pattern consistent with the development of the medical condition of opioid use disorder (OUD). Prescription and illicit opioids reduce pain perception by activating µ-opioid receptors (MOR) localized to the central nervous system (CNS). Dysregulation of meso-corticolimbic circuitry that subserves reward and adaptive behaviors is fundamentally involved in the progressive behavioral changes that promote and are consequent to OUD. Although opioid-induced analgesia and the rewarding effects of abused opioids are primarily mediated through MOR activation, serotonin (5-HT) is an important contributor to the pharmacology of opioid abused drugs (including heroin and prescription opioids) and OUD. There is a recent resurgence of interest into psychedelic compounds that act primarily through the 5-HT2A receptor (5-HT 2A R) as a new frontier in combatting such diseases (e.g., depression, anxiety, and substance use disorders). Emerging data suggest that the MOR and 5-HT2AR crosstalk at the cellular level and within key nodes of OUD circuitry, highlighting a major opportunity for novel pharmacological intervention for OUD. There is an important gap in the preclinical profiling of psychedelic 5-HT2AR agonists in OUD models. Further, as these molecules carry risks, additional analyses of the profiles of non-hallucinogenic 5-HT2AR agonists and/or 5-HT2AR positive allosteric modulators may provide a new pathway for 5-HT2AR therapeutics. In this review, we discuss the opportunities and challenges associated with utilizing 5-HT2AR agonists as therapeutics for OUD.
Collapse
Affiliation(s)
| | | | | | | | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
73
|
Chen X, Li J, Yu L, Maule F, Chang L, Gallant JA, Press DJ, Raithatha SA, Hagel JM, Facchini PJ. A cane toad (Rhinella marina) N-methyltransferase converts primary indolethylamines to tertiary psychedelic amines. J Biol Chem 2023; 299:105231. [PMID: 37690691 PMCID: PMC10570959 DOI: 10.1016/j.jbc.2023.105231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Psychedelic indolethylamines have emerged as potential medicines to treat several psychiatric pathologies. Natural sources of these compounds include 'magic mushrooms' (Psilocybe spp.), plants used to prepare ayahuasca, and toads. The skin and parotid glands of certain toads accumulate a variety of specialized metabolites including toxic guanidine alkaloids, lipophilic alkaloids, poisonous steroids, and hallucinogenic indolethylamines such as DMT, 5-methoxy-DMT, and bufotenin. The occurrence of psychedelics has contributed to the ceremonial use of toads, particularly among Mesoamerican peoples. Yet, the biosynthesis of psychedelic alkaloids has not been elucidated. Herein, we report a novel indolethylamine N-methyltransferase (RmNMT) from cane toad (Rhinella marina). The RmNMT sequence was used to identify a related NMT from the common toad, Bufo bufo. Close homologs from various frog species were inactive, suggesting a role for psychedelic indolethylamine biosynthesis in toads. Enzyme kinetic analyses and comparison with functionally similar enzymes showed that recombinant RmNMT was an effective catalyst and not product inhibited. The substrate promiscuity of RmNMT enabled the bioproduction of a variety of substituted indolethylamines at levels sufficient for purification, pharmacological screening, and metabolic stability assays. Since the therapeutic potential of psychedelics has been linked to activity at serotonergic receptors, we evaluated binding of derivatives at 5-HT1A and 5-HT2A receptors. Primary amines exhibited enhanced affinity at the 5-HT1A receptor compared with tertiary amines. With the exception of 6-substituted derivatives, N,N-dimethylation also protected against catabolism by liver microsomes.
Collapse
Affiliation(s)
- Xue Chen
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Jing Li
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Lisa Yu
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Francesca Maule
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Limei Chang
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - David J Press
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - Jillian M Hagel
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Peter J Facchini
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
74
|
Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, Coviello F, Dierbach S, Thomann J, Duthaler U, Luethi D, Varghese N, Eckert A, Liechti ME. Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled cross-over study in healthy participants. Neuropsychopharmacology 2023; 48:1659-1667. [PMID: 37231080 PMCID: PMC10517157 DOI: 10.1038/s41386-023-01607-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Mescaline, lysergic acid diethylamide (LSD), and psilocybin are classic serotonergic psychedelics. A valid, direct comparison of the effects of these substances is lacking. The main goal of the present study was to investigate potential pharmacological, physiological and phenomenological differences at psychoactive-equivalent doses of mescaline, LSD, and psilocybin. The present study used a randomized, double-blind, placebo-controlled, cross-over design to compare the acute subjective effects, autonomic effects, and pharmacokinetics of typically used, moderate to high doses of mescaline (300 and 500 mg), LSD (100 µg), and psilocybin (20 mg) in 32 healthy participants. A mescaline dose of 300 mg was used in the first 16 participants and 500 mg was used in the subsequent 16 participants. Acute subjective effects of 500 mg mescaline, LSD, and psilocybin were comparable across various psychometric scales. Autonomic effects of 500 mg mescaline, LSD, and psilocybin were moderate, with psilocybin causing a higher increase in diastolic blood pressure compared with LSD, and LSD showing a trend toward an increase in heart rate compared with psilocybin. The tolerability of mescaline, LSD, and psilocybin was comparable, with mescaline at both doses inducing slightly more subacute adverse effects (12-24 h) than LSD and psilocybin. Clear distinctions were seen in the duration of action between the three substances. Mescaline had the longest effect duration (mean: 11.1 h), followed by LSD (mean: 8.2 h), and psilocybin (mean: 4.9 h). Plasma elimination half-lives of mescaline and LSD were similar (approximately 3.5 h). The longer effect duration of mescaline compared with LSD was due to the longer time to reach maximal plasma concentrations and related peak effects. Mescaline and LSD, but not psilocybin, enhanced circulating oxytocin. None of the substances altered plasma brain-derived neurotrophic factor concentrations. In conclusion, the present study found no evidence of qualitative differences in altered states of consciousness that were induced by equally strong doses of mescaline, LSD, and psilocybin. The results indicate that any differences in the pharmacological profiles of mescaline, LSD, and psilocybin do not translate into relevant differences in the subjective experience. ClinicalTrials.gov identifier: NCT04227756.
Collapse
Affiliation(s)
- Laura Ley
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denis Arikci
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fabio Coviello
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sophie Dierbach
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jan Thomann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dino Luethi
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
75
|
Jahanabadi S, Amiri S, Karkeh-Abadi M, Razmi A. Natural psychedelics in the treatment of depression; a review focusing on neurotransmitters. Fitoterapia 2023; 169:105620. [PMID: 37490982 DOI: 10.1016/j.fitote.2023.105620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
Natural psychedelic compounds are emerging as potential novel therapeutics in psychiatry. This review will discuss how natural psychedelics exert their neurobiological therapeutic effects, and how different neurotransmission systems mediate the effects of these compounds. Further, current therapeutic strategies for depression, and novel mechanism of action of natural psychedelics in the treatment of depression will be discussed. In this review, our focus will be on N, N-dimethyltryptamine (DMT), reversible type A monoamine oxidase inhibitors, mescaline-containing cacti, psilocybin/psilocin-containing mushrooms, ibogaine, muscimol extracted from Amanita spp. mushrooms and ibotenic acid.
Collapse
Affiliation(s)
- Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| | - Mehdi Karkeh-Abadi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
76
|
Kalfas M, Taylor RH, Tsapekos D, Young AH. Psychedelics for treatment resistant depression: are they game changers? Expert Opin Pharmacother 2023; 24:2117-2132. [PMID: 37947195 DOI: 10.1080/14656566.2023.2281582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION A new era of treatment for adults with treatment-resistant depression (TRD), which involves psychedelic substances, is dawning. Emerging evidence indicates that psychedelics can exert antidepressant effects through multiple neurobiological and psychological mechanisms. However, it remains to be seen if these new treatments will revolutionize the treatment of TRD. AREAS COVERED The present review focuses on the efficacy of serotoninergic psychedelics psilocybin, lysergic acid diethylamide (LSD), N,N-dimethyltryptamine (DMT), ayahuasca, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and mescaline (3,4,5-trimethoxyphenethylamine), as well as 3,4-methylenedioxymethamphetamine (MDMA), for TRD. A systematic search was conducted for psilocybin in TRD as emerging trials had not yet been subject to review. A narrative review summarized findings on other psychedelics. EXPERT OPINION Psychedelic therapy has created a paradigm shift in the treatment of TRD, as it can maximize therapeutic benefits and minimize potential risks. Psilocybin holds promise as a potential game-changer in the treatment of TRD, with initial evidence suggesting a rapid antidepressant effect sustained for some responders for at least 3 months. Nevertheless, further adequately powered, double-blind, comparator-controlled trials are required to explore and clarify the mechanisms of action and long-term effects of psychedelics in TRD. Psychedelics also hold promise for other psychiatric conditions, such as bipolar depression and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Michail Kalfas
- Department of Psychological Medicine, King's College London, London, UK
| | - Rosie H Taylor
- Department of Psychological Medicine, King's College London, London, UK
| | | | - Allan H Young
- Department of Psychological Medicine, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
77
|
Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R. The risk of chronic psychedelic and MDMA microdosing for valvular heart disease. J Psychopharmacol 2023; 37:876-890. [PMID: 37572027 DOI: 10.1177/02698811231190865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Psychedelic microdosing is the practice of taking very low doses of psychedelic substances, typically over a longer period of time. The long-term safety of chronic microdosing is relatively uncharacterized, but valvular heart disease (VHD) has been proposed as a potential risk due to activation of the serotonin 5-HT2B receptor. However, this risk has not yet been comprehensively assessed. This analysis searched for all relevant in vitro, animal, and clinical studies related to the VHD risk of lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT), and the non-psychedelic 3,4-methylenedioxymethamphetamine (MDMA). All five compounds and some metabolites could bind to the 5-HT2B receptor with potency equal to or greater than that of the 5-HT2A receptor, the primary target of psychedelics. All compounds were partial agonists at the 5-HT2B receptor with the exception of mescaline, which could not be adequately assessed due to low potency. Safety margins relative to the maximum plasma concentrations from typical microdoses were greater than known valvulopathogens, but not without potential risk. No animal or clinical studies appropriately designed to evaluate VHD risk were found for the four psychedelics. However, there is some clinical evidence that chronic ingestion of full doses of MDMA is associated with VHD. We conclude that VHD is a potential risk with chronic psychedelic microdosing, but further studies are necessary to better define this risk.
Collapse
Affiliation(s)
| | - Daniel Mantuani
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| | - Liron van Heerden
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| | - Alex Holstein
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| | - Linda E Klumpers
- Verdient Science LLC, Englewood, CO, USA
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard Knowles
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| |
Collapse
|
78
|
Kiilerich KF, Lorenz J, Scharff MB, Speth N, Brandt TG, Czurylo J, Xiong M, Jessen NS, Casado-Sainz A, Shalgunov V, Kjaerby C, Satała G, Bojarski AJ, Jensen AA, Herth MM, Cumming P, Overgaard A, Palner M. Repeated low doses of psilocybin increase resilience to stress, lower compulsive actions, and strengthen cortical connections to the paraventricular thalamic nucleus in rats. Mol Psychiatry 2023; 28:3829-3841. [PMID: 37783788 DOI: 10.1038/s41380-023-02280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Psilocybin (a classic serotonergic psychedelic drug) has received appraisal for use in psychedelic-assisted therapy of several psychiatric disorders. A less explored topic concerns the use of repeated low doses of psychedelics, at a dose that is well below the psychedelic dose used in psychedelic-assisted therapy and often referred to as microdosing. Psilocybin microdose users frequently report increases in mental health, yet such reports are often highly biased and vulnerable to placebo effects. Here we establish and validate a psilocybin microdose-like regimen in rats with repeated low doses of psilocybin administration at a dose derived from occupancy at rat brain 5-HT2A receptors in vivo. The rats tolerated the repeated low doses of psilocybin well and did not manifest signs of anhedonia, anxiety, or altered locomotor activity. There were no deficits in pre-pulse inhibition of the startle reflex, nor did the treatment downregulate or desensitize the 5-HT2A receptors. However, the repeated low doses of psilocybin imparted resilience against the stress of multiple subcutaneous injections, and reduced the frequency of self-grooming, a proxy for human compulsive actions, while also increasing 5-HT7 receptor expression and synaptic density in the paraventricular nucleus of the thalamus. These results establish a well-validated regimen for further experiments probing the effects of repeated low doses of psilocybin. Results further substantiate anecdotal reports of the benefits of psilocybin microdosing as a therapeutic intervention, while pointing to a possible physiological mechanism.
Collapse
Affiliation(s)
- Kat F Kiilerich
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joe Lorenz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Malthe B Scharff
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias G Brandt
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Julia Czurylo
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mengfei Xiong
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Naja S Jessen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Agata Casado-Sainz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Agnete Overgaard
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
79
|
Inserra A, Piot A, De Gregorio D, Gobbi G. Lysergic Acid Diethylamide (LSD) for the Treatment of Anxiety Disorders: Preclinical and Clinical Evidence. CNS Drugs 2023; 37:733-754. [PMID: 37603260 DOI: 10.1007/s40263-023-01008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 08/22/2023]
Abstract
Anxiety disorders (ADs) represent the sixth leading cause of disability worldwide, resulting in a significant global economic burden. Over 50% of individuals with ADs do not respond to standard therapies, making the identification of more effective anxiolytic drugs an ongoing research priority. In this work, we review the preclinical literature concerning the effects of lysergic acid diethylamide (LSD) on anxiety-like behaviors in preclinical models, and the clinical literature on anxiolytic effects of LSD in healthy volunteers and patients with ADs. Preclinical and clinical findings show that even if LSD may exacerbate anxiety acutely (both in "microdoses" and "full doses"), it induces long-lasting anxiolytic effects. Only two randomized controlled trials combining LSD and psychotherapy have been performed in patients with ADs with and without life-threatening conditions, showing a good safety profile and persisting decreases in anxiety outcomes. The effect of LSD on anxiety may be mediated by serotonin receptors (5-HT1A/1B, 5-HT2A/2C, and 5-HT7) and/or transporter in brain networks and circuits (default mode network, cortico-striato-thalamo-cortical circuit, and prefrontal cortex-amygdala circuit), involved in the modulation of anxiety. It remains unclear whether LSD can be an efficacious treatment alone or only when combined with psychotherapy, and if "microdosing" may elicit the same sustained anxiolytic effects as the "full doses". Further randomized controlled trials with larger sample size cohorts of patients with ADs are required to clearly define the effective regimens, safety profile, efficacy, and feasibility of LSD for the treatment of ADs.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada
| | - Alexandre Piot
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada.
- McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
80
|
Goodwin GM, Croal M, Feifel D, Kelly JR, Marwood L, Mistry S, O'Keane V, Peck SK, Simmons H, Sisa C, Stansfield SC, Tsai J, Williams S, Malievskaia E. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology 2023; 48:1492-1499. [PMID: 37443386 PMCID: PMC10425429 DOI: 10.1038/s41386-023-01648-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Psilocybin is being investigated as a treatment in adults with treatment-resistant depression (TRD). Withdrawal from serotonergic antidepressant drugs is a common prerequisite for taking part in trials of psilocybin due to the possibility of ongoing antidepressant drugs altering the psychedelic effect. This phase II, exploratory, international, fixed-dose, open-label study explored the safety, tolerability, and efficacy of a synthetic form of psilocybin (investigational drug COMP360) adjunct to a selective serotonin reuptake inhibitor in participants with TRD. Participants received a single 25 mg dose of psilocybin alongside psychological support and were followed-up for 3 weeks. The primary efficacy end point was change in the Montgomery-Åsberg Depression Rating Scale (MADRS) total score from Baseline at Week 3. Secondary end points were safety, including treatment-emergent adverse events (TEAEs), the proportion of responders and remitters at Week 3, and the change from Baseline to Week 3 in Clinical Global Impression-Severity (CGI-S) score. Nineteen participants were dosed and the mean Baseline MADRS total score was 31.7 (SD = 5.77). Twelve (63.2%) participants had a TEAE, most of which were mild and resolved on the day of onset. There were no serious TEAEs or indication of increased suicidal ideation or behavior. At Week 3, mean change from Baseline in MADRS total score was -14.9 (95% CI, -20.7 to -9.2), and -1.3 (SD = 1.29) in the CGI-S. Both response and remission were evident in 8 (42.1%) participants. Larger, comparator-controlled trials are necessary to understand if this paradigm can optimize treatment-outcome where antidepressant drug withdrawal would be problematic.
Collapse
Affiliation(s)
| | - Megan Croal
- COMPASS Pathfinder Ltd, London, United Kingdom
| | - David Feifel
- Kadima Neuropsychiatry Institute, San Diego, CA, USA
| | - John R Kelly
- Department of Psychiatry, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | | | | | - Veronica O'Keane
- Department of Psychiatry, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Stephanie Knatz Peck
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | | | | | - Joyce Tsai
- COMPASS Pathfinder Ltd, London, United Kingdom
| | | | | |
Collapse
|
81
|
Sadee W. Ligand-Free Signaling of G-Protein-Coupled Receptors: Physiology, Pharmacology, and Genetics. Molecules 2023; 28:6375. [PMID: 37687205 PMCID: PMC10489045 DOI: 10.3390/molecules28176375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are ubiquitous sensors and regulators of cellular functions. Each GPCR exists in complex aggregates with multiple resting and active conformations. Designed to detect weak stimuli, GPCRs can also activate spontaneously, resulting in basal ligand-free signaling. Agonists trigger a cascade of events leading to an activated agonist-receptor G-protein complex with high agonist affinity. However, the ensuing signaling process can further remodel the receptor complex to reduce agonist affinity, causing rapid ligand dissociation. The acutely activated ligand-free receptor can continue signaling, as proposed for rhodopsin and μ opioid receptors, resulting in robust receptor activation at low agonist occupancy with enhanced agonist potency. Continued receptor stimulation can further modify the receptor complex, regulating sustained ligand-free signaling-proposed to play a role in opioid dependence. Basal, acutely agonist-triggered, and sustained elevated ligand-free signaling could each have distinct functions, reflecting multi-state conformations of GPCRs. This review addresses basal and stimulus-activated ligand-free signaling, its regulation, genetic factors, and pharmacological implications, focusing on opioid and serotonin receptors, and the growth hormone secretagogue receptor (GHSR). The hypothesis is proposed that ligand-free signaling of 5-HT2A receptors mediate therapeutic effects of psychedelic drugs. Research avenues are suggested to close the gaps in our knowledge of ligand-free GPCR signaling.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Aether Therapeutics Inc., Austin, TX 78756, USA
| |
Collapse
|
82
|
Dodd S, Norman TR, Eyre HA, Stahl SM, Phillips A, Carvalho AF, Berk M. Psilocybin in neuropsychiatry: a review of its pharmacology, safety, and efficacy. CNS Spectr 2023; 28:416-426. [PMID: 35811423 DOI: 10.1017/s1092852922000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Psilocybin is a tryptamine alkaloid found in some mushrooms, especially those of the genus Psilocybe. Psilocybin has four metabolites including the pharmacologically active primary metabolite psilocin, which readily enters the systemic circulation. The psychoactive effects of psilocin are believed to arise due to the partial agonist effects at the 5HT2A receptor. Psilocin also binds to various other receptor subtypes although the actions of psilocin at other receptors are not fully explored. Psilocybin administered at doses sufficient to cause hallucinogenic experiences has been trialed for addictive disorders, anxiety and depression. This review investigates studies of psilocybin and psilocin and assesses the potential for use of psilocybin and a treatment agent in neuropsychiatry. The potential for harm is also assessed, which may limit the use of psilocybin as a pharmacotherapy. Careful evaluation of the number needed to harm vs the number needed to treat will ultimately justify the potential clinical use of psilocybin. This field needs a responsible pathway forward.
Collapse
Affiliation(s)
- Seetal Dodd
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Trevor R Norman
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Harris A Eyre
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Neuroscience-Inspired Policy Initiative, Organisation for Economic Co-Operation and Development (OECD), Meadows Mental Health Policy Institute and the PRODEO Institute, Paris, France
- Global Brain Health Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Brain Health Nexus, Cohen Veterans Network, Boston, MA, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arnie Phillips
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - André F Carvalho
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
83
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
84
|
Delli Pizzi S, Chiacchiaretta P, Sestieri C, Ferretti A, Onofrj M, Della Penna S, Roseman L, Timmermann C, Nutt DJ, Carhart-Harris RL, Sensi SL. Spatial Correspondence of LSD-Induced Variations on Brain Functioning at Rest With Serotonin Receptor Expression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:768-776. [PMID: 37003409 DOI: 10.1016/j.bpsc.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) is an atypical psychedelic compound that exerts its effects through pleiotropic actions, mainly involving 1A/2A serotoninergic (5-HT) receptor subtypes. However, the mechanisms by which LSD promotes a reorganization of the brain's functional activity and connectivity are still partially unknown. METHODS Our study analyzed resting-state functional magnetic resonance imaging data acquired from 15 healthy volunteers undergoing LSD single-dose intake. A voxelwise analysis investigated the alterations of the brain's intrinsic functional connectivity and local signal amplitude induced by LSD or by a placebo. Quantitative comparisons assessed the spatial overlap between these 2 indices of functional reorganization and the topography of receptor expression obtained from a publicly available collection of in vivo, whole-brain atlases. Finally, linear regression models explored the relationships between changes in resting-state functional magnetic resonance imaging and behavioral aspects of the psychedelic experience. RESULTS LSD elicited modifications of the cortical functional architecture that spatially overlapped with the distribution of serotoninergic receptors. Local signal amplitude and functional connectivity increased in regions belonging to the default mode and attention networks associated with high expression of 5-HT2A receptors. These functional changes correlate with the occurrence of simple and complex visual hallucinations. At the same time, a decrease in local signal amplitude and intrinsic connectivity was observed in limbic areas, which are dense with 5-HT1A receptors. CONCLUSIONS This study provides new insights into the neural processes underlying the brain network reconfiguration induced by LSD. It also identifies a topographical relationship between opposite effects on brain functioning and the spatial distribution of different 5-HT receptors.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - David J Nutt
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom; Psychedelics Division-Neuroscape, Neurology, University of California San Francisco, San Francisco, California
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
85
|
Meyer M, Slot J. The evolution and ecology of psilocybin in nature. Fungal Genet Biol 2023; 167:103812. [PMID: 37210028 DOI: 10.1016/j.fgb.2023.103812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.
Collapse
Affiliation(s)
- Matthew Meyer
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
86
|
Vogt SB, Ley L, Erne L, Straumann I, Becker AM, Klaiber A, Holze F, Vandersmissen A, Mueller L, Duthaler U, Rudin D, Luethi D, Varghese N, Eckert A, Liechti ME. Acute effects of intravenous DMT in a randomized placebo-controlled study in healthy participants. Transl Psychiatry 2023; 13:172. [PMID: 37221177 DOI: 10.1038/s41398-023-02477-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
N,N-dimethyltryptamine (DMT) is distinct among classic serotonergic psychedelics because of its short-lasting effects when administered intravenously. Despite growing interest in the experimental and therapeutic use of intravenous DMT, data are lacking on its clinical pharmacology. We conducted a double-blind, randomized, placebo-controlled crossover trial in 27 healthy participants to test different intravenous DMT administration regimens: placebo, low infusion (0.6 mg/min), high infusion (1 mg/min), low bolus + low infusion (15 mg + 0.6 mg/min), and high bolus + high infusion (25 mg + 1 mg/min). Study sessions lasted for 5 h and were separated by at least 1 week. Participant's lifetime use of psychedelics was ≤20 times. Outcome measures included subjective, autonomic, and adverse effects, pharmacokinetics of DMT, and plasma levels of brain-derived neurotropic factor (BDNF) and oxytocin. Low (15 mg) and high (25 mg) DMT bolus doses rapidly induced very intense psychedelic effects that peaked within 2 min. DMT infusions (0.6 or 1 mg/min) without a bolus induced slowly increasing and dose-dependent psychedelic effects that reached plateaus after 30 min. Both bolus doses produced more negative subjective effects and anxiety than infusions. After stopping the infusion, all drug effects rapidly decreased and completely subsided within 15 min, consistent with a short early plasma elimination half-life (t1/2α) of 5.0-5.8 min, followed by longer late elimination (t1/2β = 14-16 min) after 15-20 min. Subjective effects of DMT were stable from 30 to 90 min, despite further increasing plasma concentrations, thus indicating acute tolerance to continuous DMT administration. Intravenous DMT, particularly when administered as an infusion, is a promising tool for the controlled induction of a psychedelic state that can be tailored to the specific needs of patients and therapeutic sessions.Trial registration: ClinicalTrials.gov identifier: NCT04353024.
Collapse
Affiliation(s)
- Severin B Vogt
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Laura Ley
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Livio Erne
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anja Vandersmissen
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Lorenz Mueller
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Deborah Rudin
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dino Luethi
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
87
|
Singh S, Botvinnik A, Shahar O, Wolf G, Yakobi C, Saban M, Salama A, Lotan A, Lerer B, Lifschytz T. Effect of psilocybin on marble burying in ICR mice: role of 5-HT1A receptors and implications for the treatment of obsessive-compulsive disorder. Transl Psychiatry 2023; 13:164. [PMID: 37164956 PMCID: PMC10172379 DOI: 10.1038/s41398-023-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Preliminary clinical findings, supported by preclinical studies employing behavioral paradigms such as marble burying, suggest that psilocybin may be effective in treating obsessive-compulsive disorder. However, the receptor mechanisms implicated in the putative anti-obsessional effect are not clear. On this background, we set out to explore (1) the role of serotonin 2A (5-HT2A) and serotonin 1A (5-HT1A) receptors in the effect of psilocybin on marble burying; (2) the effect of staggered versus bolus psilocybin administration and persistence of the effect; (3) the effect of the 5-HT1A partial agonist, buspirone, on marble-burying and the head twitch response (HTR) induced by psilocybin, a rodent correlate of psychedelic effects. Male ICR mice were administered psilocybin 4.4 mg/kg, escitalopram 5 mg/kg, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) 2 mg/kg, M100907 2 mg/kg, buspirone 5 mg/kg, WAY100635 2 mg/kg or combinations, intraperitoneally, and were tested on the marble burying test. HTR was examined in a magnetometer-based assay. The results show that (1) Psilocybin and escitalopram significantly reduced marble burying. The effect of psilocybin was not attenuated by the 5-HT2A antagonist, M100907. The 5-HT1A agonist, 8-OH-DPAT, reduced marble burying as did the 5-HT1A partial agonist, buspirone. The effect of 8-OH-DPAT was additive to that of psilocybin, but that of buspirone was not. The 5-HT1A antagonist, WAY100635, attenuated the effect of 8-OH-DPAT and buspirone but not the effect of psilocybin. (2) Psilocybin injections over 3.5 h had no effect on marble burying and the effect of bolus injection was not persistent. (3) Co-administration of buspirone with psilocybin blocked its effect on HTR. These data suggest that neither 5-HT2A nor 5-HT1A receptors are pivotally implicated in the effect of psilocybin on marble burying. Co-administration with buspirone may block the psychedelic effects of psilocybin without impeding its anti-obsessional effects.
Collapse
Affiliation(s)
- Sandeep Singh
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Alexander Botvinnik
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Orr Shahar
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Gilly Wolf
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
- Department of Psychology, School of Sciences Achva, Academic College Municipality of Be'er Tuvia, Tuvia, Israel
| | - Corel Yakobi
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Michal Saban
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Adham Salama
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Amit Lotan
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel.
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Hadassah Medical Center, Hebrew University Jerusalem, Jerusalem, Israel.
| |
Collapse
|
88
|
Glatfelter GC, Naeem M, Pham DNK, Golen JA, Chadeayne AR, Manke DR, Baumann MH. Receptor Binding Profiles for Tryptamine Psychedelics and Effects of 4-Propionoxy- N,N-dimethyltryptamine in Mice. ACS Pharmacol Transl Sci 2023; 6:567-577. [PMID: 37082754 PMCID: PMC10111620 DOI: 10.1021/acsptsci.2c00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 03/12/2023]
Abstract
Analogues of 4-phosphoryloxy-N,N-dimethyltryptamine (psilocybin) are being sold on recreational drug markets and developed as potential medications for psychedelic-assisted therapies. Many of these tryptamine-based psilocybin analogues produce psychedelic-like effects in rodents and humans primarily by agonist activity at serotonin 2A receptors (5-HT2A). However, the comprehensive pharmacological target profiles for these compounds compared to psilocybin and its active metabolite 4-hydroxy-N,N-dimethyltryptamine (psilocin) are unknown. The present study determined the receptor binding profiles of various tryptamine-based psychedelics structurally related to psilocybin across a broad range of potential targets. Specifically, we examined tryptamine psychedelics with different 4-position (hydroxy, acetoxy, propionoxy) and N,N-dialkyl (dimethyl, methyl-ethyl, diethyl, methyl-propyl, ethyl-propyl, diisopropyl, methyl-allyl, diallyl) substitutions. Further, the psilocybin analogue 4-propionoxy-N,N-dimethyltryptamine (4-PrO-DMT) was administered to mice in experiments measuring head twitch response (HTR), locomotor activity, and body temperature. Overall, the present pharmacological profile screening data show that the tryptamine psychedelics target multiple serotonin receptors, including serotonin 1A receptors (5-HT1A). 4-Acetoxy and 4-propionoxy analogues of 4-hydroxy compounds displayed somewhat weaker binding affinities but similar target profiles across 5-HT receptors and other identified targets. Additionally, differential binding screen profiles were observed with N,N-dialkyl position variations across several non-5-HT receptor targets (i.e., alpha receptors, dopamine receptors, histamine receptors, and serotonin transporters), which could impact in vivo pharmacological effects of the compounds. In mouse experiments, 4-PrO-DMT displayed dose-related psilocybin-like effects to produce 5-HT2A-mediated HTR (0.3-3 mg/kg s.c.) as well as 5-HT1A-mediated hypothermia and hypolocomotion (3-30 mg/kg s.c.). Lastly, our data support a growing body of evidence that the 5-HT2A-mediated HTR induced by tryptamine psychedelics is attenuated by 5-HT1A receptor agonist activity at high doses in mice.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224 United States
| | - Marilyn Naeem
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Duyen N. K. Pham
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - James A. Golen
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | | | - David R. Manke
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224 United States
| |
Collapse
|
89
|
Kozell LB, Eshleman AJ, Swanson TL, Bloom SH, Wolfrum KM, Schmachtenberg JL, Olson RJ, Janowsky A, Abbas AI. Pharmacologic Activity of Substituted Tryptamines at 5-Hydroxytryptamine (5-HT) 2A Receptor (5-HT 2AR), 5-HT 2CR, 5-HT 1AR, and Serotonin Transporter. J Pharmacol Exp Ther 2023; 385:62-75. [PMID: 36669875 PMCID: PMC10029822 DOI: 10.1124/jpet.122.001454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Novel psychoactive substances, including synthetic substituted tryptamines, represent a potential public health threat. Additionally, some substituted tryptamines are being studied under medical guidance as potential treatments of psychiatric disorders. Characterizing the basic pharmacology of substituted tryptamines will aid in understanding differences in potential for harm or therapeutic use. Using human embryonic kidney cells stably expressing 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT2C receptors (5-HT1AR, 5-HT2AR, and 5HT2CR, respectively) or the serotonin transporter (SERT), we measured affinities, potencies and efficacies of 21 substituted tryptamines. With the exception of two 4-acetoxy compounds, substituted tryptamines exhibited affinities and potencies less than one micromolar at the 5-HT2AR, the primary target for psychedelic effects. In comparison, half or more exhibited low affinities/potencies at 5-HT2CR, 5-HT1AR, and SERT. Sorting by the ratio of 5-HT2A to 5-HT2C, 5-HT1A, or SERT affinity revealed chemical determinants of selectivity. We found that although 4-substituted compounds exhibited affinities that ranged across a factor of 100, they largely exhibited high selectivity for 5-HT2ARs versus 5-HT1ARs and 5-HT2CRs. 5-substituted compounds exhibited high affinities for 5-HT1ARs, low affinities for 5-HT2CRs, and a range of affinities for 5-HT2ARs, resulting in selectivity for 5-HT2ARs versus 5-HT2CRs but not versus 5-HT1ARs. Additionally, a number of psychedelics bound to SERT, with non-ring-substituted tryptamines most consistently exhibiting binding. Interestingly, substituted tryptamines and known psychedelic standards exhibited a broad range of efficacies, which were lower as a class at 5-HT2ARs compared with 5-HT2CRs and 5-HT1ARs. Conversely, coupling efficiency/amplification ratio was highest at 5-HT2ARs in comparison with 5-HT2CRs and 5-HT1ARs. SIGNIFICANCE STATEMENT: Synthetic substituted tryptamines represent both potential public health threats and potential treatments of psychiatric disorders. The substituted tryptamines tested differed in affinities, potencies, and efficacies at 5-hydroxytryptamine (5-HT)2A, 5-HT2C, and 5HT1A receptors and the serotonin transporter (SERT). Several compounds were highly selective for and coupled very efficiently downstream of 5-HT2A versus 5-HT1A and 5-HT2C receptors, and some bound SERT. This basic pharmacology of substituted tryptamines helps us understand the pharmacologic basis of their potential for harm and as therapeutic agents.
Collapse
Affiliation(s)
- Laura B Kozell
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Amy J Eshleman
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Tracy L Swanson
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Shelley H Bloom
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Katherine M Wolfrum
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Jennifer L Schmachtenberg
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Randall J Olson
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Aaron Janowsky
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| | - Atheir I Abbas
- Veterans Affairs Portland Health Care System (L.B.K., A.J.E., T.L.S., S.H.B., K.M.W., J.L.S., A.J., A.I.A.) and Departments of Psychiatry (L.B.K., A.J.E., T.L.S., A.J., A.I.A.) and Behavioral Neuroscience (L.B.K., R.J.O., A.I.A.), Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
90
|
Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME. Pharmacokinetics and Pharmacodynamics of Oral Psilocybin Administration in Healthy Participants. Clin Pharmacol Ther 2023; 113:822-831. [PMID: 36507738 DOI: 10.1002/cpt.2821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Psilocybin is being investigated as a potential treatment for psychiatric and neurological disorders. Only a few studies have evaluated the pharmacokinetics (PKs) of psilocybin and have used body weight-adjusted dosing. Data on PKs and the PK-pharmacodynamic (PD) relationship of fixed doses that are commonly used are unavailable. The present study characterized the PKs and PK-PD relationship of 15, 25, and 30 mg of orally administered psilocybin in 28, 23, and 28 healthy subjects, respectively. Plasma levels of unconjugated psilocin (the psychoactive metabolite of psilocybin) and corresponding subjective effects were repeatedly assessed up to 24 hours. PK parameters were determined using compartmental modeling. Concentration-subjective effect relationships were described using PK-PD modeling. Mean (95% confidence interval) maximal psilocin concentrations were 11 ng/mL (10-13), 17 ng/mL (16-19), and 21 ng/mL (19-24) after the administration of 15, 25, and 30 mg psilocybin, respectively. Maximal concentrations were reached after an average of 2 hours. Elimination half-lives were 1.8 hours (1.7-2.0), 1.4 hours (1.2-1.7), and 1.8 hours (1.6-1.9) for 15, 25, and 30 mg psilocybin, respectively. Mean (± SD) durations of subjective effects were 5.6 ± 2.2 hours, 5.5 ± 1.6 hours, and 6.4 ± 2.2 hours, and maximal effects ("any drug" effects) were 58% ± 25%, 73% ± 27%, and 80% ± 18% after 15, 25, and 30 mg psilocybin, respectively. Psilocin exhibited dose-proportional PKs. The duration and intensity of subjective effects were dose-dependent. Body weight did not influence pharmacokinetics or the response to psilocybin. These data may serve as a reference for future clinical trials.
Collapse
Affiliation(s)
- Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Karolina E Kolaczynska
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
91
|
Kopra EI, Ferris JA, Winstock AR, Kuypers KP, Young AH, Rucker JJ. Investigation of self-treatment with lysergic acid diethylamide and psilocybin mushrooms: Findings from the Global Drug Survey 2020. J Psychopharmacol 2023:2698811231158245. [PMID: 36876583 DOI: 10.1177/02698811231158245] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Growing numbers of people are using psychedelics for personal psychotherapy outside clinical settings, but research on such use is scarce. AIMS This study investigated the patterns of use, self-reported outcomes and outcome predictors of psychedelic 'self-treatment' of mental health conditions or specific worries/concerns in life. METHODS We use data from the Global Drug Survey 2020, a large online survey on drug use collected between November 2019 and February 2020. In all, 3364 respondents reported their self-treatment experiences with lysergic acid diethylamide (N = 1996) or psilocybin mushrooms (N = 1368). The primary outcome of interest was the 17-item self-treatment outcome scale, items reflecting aspects of well-being, psychiatric symptoms, social-emotional skills, and health behaviours. RESULTS Positive changes were observed across all 17 outcome items, with the strongest benefits on items related to insight and mood. Negative effects were reported by 22.5% of respondents. High intensity of psychedelic experience, seeking advice before treatment, treating with psilocybin mushrooms and treating post-traumatic stress disorder were associated with higher scores on the self-treatment outcome scale after averaging values across all 17 items. Younger age, high intensity of experience and treating with LSD were associated with increased number of negative outcomes. CONCLUSIONS This study brings important insights into self-treatment practices with psychedelics in a large international sample. Outcomes were generally favourable, but negative effects appeared more frequent than in clinical settings. Our findings can help inform safe practices of psychedelic use in the community, and inspire clinical research. Future research can be improved with utilisation of prospective designs and additional predictive variables.
Collapse
Affiliation(s)
- Emma I Kopra
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jason A Ferris
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Adam R Winstock
- Institute of Epidemiology and Health Care, University College London, London, UK.,Global Drug Survey Ltd, London, UK
| | - Kim Pc Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
92
|
Pedicini M, Cordner ZA. Utility of preclinical models in the study of psilocybin - A comprehensive review. Neurosci Biobehav Rev 2023; 146:105046. [PMID: 36646257 DOI: 10.1016/j.neubiorev.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Interest in the therapeutic potential of psilocybin across a broad range of neuropsychiatric disorders is rapidly expanding. Despite promising clinical data and tremendous public enthusiasm, complimentary basic and translational studies - which are critical for advancing our understanding of psilocybin's biological effects and promoting innovation - have been relatively few. As with all work involving the study of complex neuropsychopharmacology, the search for deeper understanding of biological mechanisms, and the need for nuanced behavioral analyses in the context of both normal and diseased states, the roles for preclinical models are clear. A systematic search of the literature identified 57 articles involving the study of psilocybin in preclinical rodent models. A comprehensive review and thematic analysis identified 4 broad areas of investigation - pharmacology, toxicity, effects on disease models, and molecular mechanisms - with pharmacology studies accounting for the majority. Though these papers represent a still remarkably small body of literature, several important conclusions can already be drawn, and several areas of high priority for future work can be identified.
Collapse
Affiliation(s)
- Megan Pedicini
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD 21287, USA.
| | - Zachary A Cordner
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD 21287, USA.
| |
Collapse
|
93
|
Kisely S, Connor M, Somogyi AA, Siskind D. A systematic literature review and meta-analysis of the effect of psilocybin and methylenedioxymethamphetamine on mental, behavioural or developmental disorders. Aust N Z J Psychiatry 2023; 57:362-378. [PMID: 35285280 DOI: 10.1177/00048674221083868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES There is an increasing interest in combining psilocybin or methylenedioxymethamphetamine with psychological support in treating psychiatric disorders. Although there have been several recent systematic reviews, study and participant numbers have been limited, and the field is rapidly evolving with the publication of more studies. We therefore conducted a systematic review of PubMed, MEDLINE, PsycINFO, the Cochrane Central Register of Controlled Trials, Embase, and CINAHL for randomised controlled trials of methylenedioxymethamphetamine and psilocybin with either inactive or active controls. METHODS Outcomes were psychiatric symptoms measured by standardised, validated and internationally recognised instruments at least 2 weeks following drug administration, Quality was independently assessed using the Cochrane risk of bias assessment tool and Grading of Recommendations Assessment, Development and Evaluation framework. RESULTS There were eight studies on methylenedioxymethamphetamine and six on psilocybin. Diagnoses included post-traumatic stress disorder, long-standing/treatment-resistant depression, obsessive-compulsive disorder, social anxiety in adults with autism, and anxiety or depression in life-threatening disease. The most information and strongest association was for the change in methylenedioxymethamphetamine scores compared to active controls in post-traumatic stress disorder (k = 4; standardised mean difference = -0.86; 95% confidence interval = [-1.23, -0.50]; p < 0.0001). There were also small benefits for social anxiety in adults with autism. Psilocybin was superior to wait-list but not niacin (active control) in life-threatening disease anxiety or depression. It was equally as effective as escitalopram in long-standing depression for the primary study outcome and superior for most of the secondary outcomes in analyses uncorrected for multiple comparisons. Both agents were well tolerated in supervised trials. Trial quality varied with only small proportions of potential participants included in the randomised phase. Overall certainty of evidence was low or very low using the Grading of Recommendations Assessment, Development and Evaluation framework. CONCLUSION Methylenedioxymethamphetamine and psilocybin may show promise in highly selected populations when administered in closely supervised settings and with intensive support.
Collapse
Affiliation(s)
- Steve Kisely
- School of Medicine, The University of Queensland, Woolloongabba, QLD, Australia.,Addiction and Mental Health Services, Metro South Health Service, Woolloongabba, QLD, Australia.,Departments of Psychiatry, Community Health & Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Connor
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Dan Siskind
- School of Medicine, The University of Queensland, Woolloongabba, QLD, Australia.,Addiction and Mental Health Services, Metro South Health Service, Woolloongabba, QLD, Australia
| |
Collapse
|
94
|
Neumann J, Azatsian K, Höhm C, Hofmann B, Gergs U. Cardiac effects of ephedrine, norephedrine, mescaline, and 3,4-methylenedioxymethamphetamine (MDMA) in mouse and human atrial preparations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:275-287. [PMID: 36319858 PMCID: PMC9831963 DOI: 10.1007/s00210-022-02315-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 01/11/2023]
Abstract
The use of recreational drugs like ephedrine, norephedrine, 3,4-methylenedioxymethamphetamine (MDMA), and mescaline can lead to intoxication and, at worst, to death. One reason for a fatal course of intoxication with these drugs might lie in cardiac arrhythmias. To the best of our knowledge, their inotropic effects have not yet been studied in isolated human cardiac preparations. Therefore, we measured inotropic effects of the hallucinogenic drugs ephedrine, norephedrine, mescaline, and MDMA in isolated mouse left atrial (mLA) and right atrial (mRA) preparations as well as in human right atrial (hRA) preparations obtained during cardiac surgery. Under these experimental conditions, ephedrine, norephedrine, and MDMA increased force of contraction (mLA, hRA) and beating rate (mRA) in a time- and concentration-dependent way, starting at 1-3 µM but these drugs were less effective than isoprenaline. Mescaline alone or in the presence of phosphodiesterase inhibitors did not increase force in mLA or hRA. The positive inotropic effects of ephedrine, norephedrine, or MDMA were accompanied by increases in the rate of tension and relaxation and by shortening of time of relaxation and, moreover, by an augmented phosphorylation state of the inhibitory subunit of troponin in hRA. All effects were greatly attenuated by cocaine (10 µM) or propranolol (10 µM) treatment. In summary, the hallucinogenic drugs ephedrine, norephedrine, and MDMA, but not mescaline, increased force of contraction and increased protein phosphorylation presumably, in part, by a release of noradrenaline in isolated human atrial preparations and thus can be regarded as indirect sympathomimetic drugs in the human atrium.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097, Halle, Germany
| | - Karyna Azatsian
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097, Halle, Germany
| | - Christian Höhm
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097, Halle, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, D-06097, Halle, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097, Halle, Germany.
| |
Collapse
|
95
|
Oster E, Čudina N, Pavasović H, Prevendar Crnić A, Božić F, Fadel C, Giorgi M. Intoxication of dogs and cats with common stimulating, hallucinogenic and dissociative recreational drugs. Vet Anim Sci 2023; 19:100288. [PMID: 36798946 PMCID: PMC9926018 DOI: 10.1016/j.vas.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pets can have accidental, intentional, or malicious exposure to illicit drugs. It is a growing concern over the last decade because there is an increase in usage of illicit drugs in humans and diagnosis is difficult. Owners are often not aware of exposure, or they are reluctant to admit possession of recreational drugs in the household due to potential legal consequences. In addition, illicit drugs sold on the black market are often adulterated with other substances resulting in non-specific clinical presentation and aggravation of symptoms. There are affordable onsite diagnostic tests on the market which could facilitate diagnosis of intoxication with illicit drugs, but they give a lot of false positive results due to low specificity of the tests. In this paper we gathered information about the most common recreational drugs such as amphetamines, methamphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), phencyclidine (PCP), lysergic acid diethylamide (LSD), psilocybin mushrooms and cocaine in terms of toxicokinetic properties, mechanism of toxic action, clinical presentation and treatment in dogs and cats.
Collapse
Affiliation(s)
- Ena Oster
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Nikola Čudina
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Hrvoje Pavasović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Andreja Prevendar Crnić
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Frane Božić
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Charbel Fadel
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Italy,Corresponding author at: Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| |
Collapse
|
96
|
Vamvakopoulou IA, Narine KAD, Campbell I, Dyck JRB, Nutt DJ. Mescaline: The forgotten psychedelic. Neuropharmacology 2023; 222:109294. [PMID: 36252614 DOI: 10.1016/j.neuropharm.2022.109294] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mescaline (3,4,5-trimethoxyphenethylamine) is one of the oldest hallucinogens, with evidence of use dating back 5700 years. Mescaline is a naturally occurring alkaloid found in cacti, mainly in the peyote cactus (Lophophora williamsii) and in the cacti of the Echinopsis genus. Since the prohibition of psychoactive substances in the early 70s, research on mescaline and other classical psychedelics has been limited. OBJECTIVES This article aims to review the pharmacology and behavioural effects of mescaline, focusing on preclinical and clinical research. FINDINGS Mescaline is a serotonin 5HT2A/2C receptor agonist, with its main hallucinogenic effects being mediated via its 5HT2A receptor agonist action. It also exerts effects via agonist binding at α1A/2A noradrenaline and D1/2/3 dopamine receptors. Overall, mescaline has anxiolytic-like effects in animals and increases prosocial behaviour, locomotion, and response reactivity. In humans, mescaline can induce euphoria, hallucinations, improvements in well-being and mental health conditions, and psychotomimetic effects in a naturalistic or religious setting. CONCLUSION The pharmacological mechanisms of mescaline are similar to those of other classical psychedelics, like psilocybin and lysergic acid diethylamide (LSD). Mescaline appears to be safe to consume, with most intoxications being mild and easily treatable. Improvement in mental well-being and its ability to overcome alcoholism render mescaline potentially beneficial in clinical settings. This article is part of the Special Issue on 'Psilocybin Research'.
Collapse
Affiliation(s)
- Ioanna A Vamvakopoulou
- Neural Therapeutics Inc., Toronto, Ontario, Canada; Centre for Psychiatry, Division of Brain Sciences, Imperial College London, Commonwealth Building, Hammersmith Campus, 160 Du Cane Road, London, W12 0NN, United Kingdom
| | | | - Ian Campbell
- Neural Therapeutics Inc., Toronto, Ontario, Canada
| | - Jason R B Dyck
- Neural Therapeutics Inc., Toronto, Ontario, Canada; Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David J Nutt
- Neural Therapeutics Inc., Toronto, Ontario, Canada; Centre for Psychiatry, Division of Brain Sciences, Imperial College London, Commonwealth Building, Hammersmith Campus, 160 Du Cane Road, London, W12 0NN, United Kingdom.
| |
Collapse
|
97
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
98
|
Glatfelter GC, Pottie E, Partilla JS, Sherwood AM, Kaylo K, Pham DNK, Naeem M, Sammeta VR, DeBoer S, Golen JA, Hulley EB, Stove CP, Chadeayne AR, Manke DR, Baumann MH. Structure-Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogues to Produce Pharmacological Effects in Mice. ACS Pharmacol Transl Sci 2022; 5:1181-1196. [PMID: 36407948 PMCID: PMC9667540 DOI: 10.1021/acsptsci.2c00177] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
4-Phosphoryloxy-N,N-dimethyltryptamine (psilocybin) is a naturally occurring tertiary amine found in many mushroom species. Psilocybin is a prodrug for 4-hydroxy-N,N-dimethyltryptamine (psilocin), which induces psychedelic effects via agonist activity at the serotonin (5-HT) 2A receptor (5-HT2A). Several other 4-position ring-substituted tryptamines are present in psilocybin-containing mushrooms, including the secondary amine 4-phosphoryloxy-N-methyltryptamine (baeocystin) and the quaternary ammonium 4-phosphoryloxy-N,N,N-trimethyltryptamine (aeruginascin), but these compounds are not well studied. Here, we investigated the structure-activity relationships for psilocybin, baeocystin, and aeruginascin, as compared to their 4-acetoxy and 4-hydroxy analogues, using in vitro and in vivo methods. Broad receptor screening using radioligand binding assays in transfected cells revealed that secondary and tertiary tryptamines with either 4-acetoxy or 4-hydroxy substitutions display nanomolar affinity for most human 5-HT receptor subtypes tested, including the 5-HT2A and the serotonin 1A receptor (5-HT1A). The same compounds displayed affinity for 5-HT2A and 5-HT1A in mouse brain tissue in vitro and exhibited agonist efficacy in assays examining 5-HT2A-mediated calcium mobilization and β-arrestin 2 recruitment. In mouse experiments, only the tertiary amines psilocin, psilocybin, and 4-acetoxy-N,N-dimethyltryptamine (psilacetin) induced head twitch responses (ED50 0.11-0.29 mg/kg) indicative of psychedelic-like activity. Head twitches were blocked by 5-HT2A antagonist pretreatment, supporting 5-HT2A involvement. Both secondary and tertiary amines decreased body temperature and locomotor activity at higher doses, the effects of which were blocked by 5-HT1A antagonist pretreatment. Across all assays, the pharmacological effects of 4-acetoxy and 4-hydroxy compounds were similar, and these compounds were more potent than their 4-phosphoryloxy counterparts. Importantly, psilacetin appears to be a prodrug for psilocin that displays substantial serotonin receptor activities of its own.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | - John S. Partilla
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| | | | - Kristi Kaylo
- Usona
Institute, Madison, Wisconsin 53711, United States
| | - Duyen N. K. Pham
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Marilyn Naeem
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Vamshikrishna Reddy Sammeta
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Stacie DeBoer
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - James A. Golen
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Elliott B. Hulley
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | | | - David R. Manke
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
99
|
Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, Eckert A, Liechti ME. Ketanserin Reverses the Acute Response to LSD in a Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Participants. Int J Neuropsychopharmacol 2022; 26:97-106. [PMID: 36342343 PMCID: PMC9926053 DOI: 10.1093/ijnp/pyac075] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) is currently being investigated in psychedelic-assisted therapy. LSD has a long duration of acute action of 8-11 hours. It produces its acute psychedelic effects via stimulation of the serotonin 5-hydroxytryptamine-2A (HT2A) receptor. Administration of the 5-HT2A antagonist ketanserin before LSD almost fully blocks the acute subjective response to LSD. However, unclear is whether ketanserin can also reverse the effects of LSD when administered after LSD. METHODS We used a double-blind, randomized, placebo-controlled, crossover design in 24 healthy participants who underwent two 14-hour sessions and received ketanserin (40 mg p.o.) or placebo 1 hour after LSD (100 µg p.o.). Outcome measures included subjective effects, autonomic effects, acute adverse effects, plasma brain-derived neurotrophic factor levels, and pharmacokinetics up to 12 hours. RESULTS Ketanserin reversed the acute response to LSD, thereby significantly reducing the duration of subjective effects from 8.5 hours with placebo to 3.5 hours. Ketanserin also reversed LSD-induced alterations of mind, including visual and acoustic alterations and ego dissolution. Ketanserin reduced adverse cardiovascular effects and mydriasis that were associated with LSD but had no effects on elevations of brain-derived neurotrophic factor levels. Ketanserin did not alter the pharmacokinetics of LSD. CONCLUSIONS These findings are consistent with an interaction between ketanserin and LSD and the view that LSD produces its psychedelic effects only when occupying 5-HT2A receptors. Ketanserin can effectively be used as a planned or rescue option to shorten and attenuate the LSD experience in humans in research and LSD-assisted therapy. TRIAL REGISTRY ClinicalTrials.gov (NCT04558294).
Collapse
Affiliation(s)
- Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ioanna Istampoulouoglou
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland,Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Correspondence: Matthias E. Liechti, MD, Clinical Pharmacology, University Hospital Basel, Schanzenstrasse 55, Basel, CH-4056, Switzerland ()
| |
Collapse
|
100
|
Solmi M, Chen C, Daure C, Buot A, Ljuslin M, Verroust V, Mallet L, Khazaal Y, Rothen S, Thorens G, Zullino D, Gobbi G, Rosenblat J, Husain MI, De Gregorio D, Castle D, Sabé M. A century of research on psychedelics: A scientometric analysis on trends and knowledge maps of hallucinogens, entactogens, entheogens and dissociative drugs. Eur Neuropsychopharmacol 2022; 64:44-60. [PMID: 36191546 DOI: 10.1016/j.euroneuro.2022.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022]
Abstract
A scientometric analysis was realized to outline clinical research on psychedelics over the last century. Web of Science Core Collection was searched up to March 18, 2022, for publications on psychedelics. Network analyses and bibliometrics were combined, to identify research themes and trends with Bibliometrix and CiteSpace. The primary aim was to measure research trends evolution over time, and the secondary aims were to identify bibliometric performance and influence networks of publications, authors, institutions, and countries. Sensitivity analyses were conducted for 2016-2022, and 2021 time periods. We included 31,687 documents (591,329 references), which aggregated into a well-structured network with credible clustering. Research productivity was split into an early less productive period mainly focusing on safety issues, and a "psychedelic renaissance" after the 1990s. Major trends were identified for hallucinogens/entheogens, entactogens, novel psychoactive substances (NPS), and on dissociative substances. There was a translational evolution from the bench to the bedside, with phase 2 and 3 trials and/or evidence synthesis in particular. The most recent trends concerned NPS, ketamine-associated brain changes, and ayahuasca-assisted psychotherapy. The USA and Canada were the most productive settings for the research overall, and more recently this geographical distribution became more prominent, reflecting legislative context/policy making. A translational evolution of psychedelics has been occurring, that has brought approval of esketamine for depression and will likely lead to approval of additional psychedelics across mental and physical conditions. Toxicology screening tools for NPS are urgently needed, which in turn might follow the same translational evolution of psychedelics in the future.
Collapse
Affiliation(s)
- Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Chaomei Chen
- College of Computing & Informatics, Drexel University, Philadelphia, PA, USA
| | - Charles Daure
- Université de Paris, INSERM UMRS1144, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Anne Buot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Michael Ljuslin
- Palliative Medicine Division, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Verroust
- Centre d'histoire des sciences, des sociétés et des conflits, Université Picardie Jules-Vernes, Amiens, France; UR PsyComAdd, hôpital Paul Brousse, Villejuif, France
| | - Luc Mallet
- Univ Paris-Est Créteil, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Créteil, France; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France; Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| | - Yasser Khazaal
- Addiction Medicine, Lausanne University Hospital and Lausanne University, Switzerland Bugnon 23 a, 1011, Lausanne, Switzerland
| | - Stephane Rothen
- Division of Addiction Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 70, Grand-Pré, CH-1202 Geneva, Switzerland
| | - Gabriel Thorens
- Division of Addiction Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 70, Grand-Pré, CH-1202 Geneva, Switzerland
| | - Daniele Zullino
- Division of Addiction Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 70, Grand-Pré, CH-1202 Geneva, Switzerland
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Joshua Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Alberta, Edmonton, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - David Castle
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Michel Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland.
| |
Collapse
|