51
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021. [PMID: 33672997 DOI: 10.3390/ijms22041906.pmid:33672997;pmcid:pmc7918142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| |
Collapse
|
52
|
Krečak I, Gverić-Krečak V, Lapić I, Rončević P, Gulin J, Fumić K, Krečak F, Holik H, Duraković N. Circulating YKL-40 in Philadelphia-negative myeloproliferative neoplasms. Acta Clin Belg 2021; 76:32-39. [PMID: 31455178 DOI: 10.1080/17843286.2019.1659467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Objectives: Philadelphia-negative chronic myeloproliferative neoplasms (MPNs), essential thrombocythemia (ET), polycythemia vera (PV) and myelofibrosis (MF), are characterized by clonal myeloproliferation and a strong inflammatory atmosphere. YKL-40, expressed in granulocytes, macrophages, megakaryocytes and malignant cells, is an acute phase reactant with an important role in tissue remodeling and atherosclerotic inflammation. The aim of this study was to investigate serum YKL-40 levels in MPNs and to assess its clinical correlations. Methods: ELISA test was used to measure serum YKL-40 levels in 111 MPN patients and in 32 healthy controls. Results: Serum YKL-40 levels were higher in ET, post-ET MF, PV, post-PV MF and primary MF patients, when compared to healthy controls (p < 0.001). Higher serum YKL-40 levels were associated with parameters indicative of the increased inflammatory state (higher C-reactive protein, poor performance status, presence of constitutional symptoms and cardiovascular risk factors). Additionally, higher serum YKL-40 levels in MF patients were associated with blast phase disease, lower hemoglobin and higher Dynamic International Prognostic Scoring System score. In the multivariate Cox regression models, higher serum YKL-40 levels in ET and PV patients were independently associated with an increased risk of thrombosis (HR 4.64, p = 0.031) and impaired survival in MF patients (HR 4.31, p = 0.038). Conclusion: These results indicate that higher circulating YKL-40 levels in MPNs might have a pathophysiological role in disease progression and thrombosis development. Assessing circulating YKL-40 could help in identification of ET and PV patients at a high risk of future cardiovascular events and has a good potential for improving prognostication of MF patients.
Collapse
Affiliation(s)
- Ivan Krečak
- Department of Internal Medicine, General Hospital of Sibenik-Knin County, Sibenik, Croatia
| | - Velka Gverić-Krečak
- Department of Internal Medicine, General Hospital of Sibenik-Knin County, Sibenik, Croatia
| | - Ivana Lapić
- Department of Laboratory Diagnostics of Inborn Errors of Metabolism, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Pavle Rončević
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Josipa Gulin
- Department of Laboratory Diagnostics of Inborn Errors of Metabolism, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ksenija Fumić
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Filip Krečak
- School of Medicine, University of Split, Split, Croatia
| | - Hrvoje Holik
- Department of Internal Medicine, “Dr. Josip Bencevic” General Hospital, Slavonski Brod, Croatia
| | - Nadira Duraković
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
53
|
Ramanathan G, Fleischman AG. The Microenvironment in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2020; 35:205-216. [PMID: 33641864 DOI: 10.1016/j.hoc.2020.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic inflammation is a hallmark of myeloproliferative neoplasms (MPNs), with elevated levels of proinflammatory cytokines being commonly found in all 3 subtypes. Systemic inflammation is responsible for the constitutional symptoms, thrombosis risk, premature atherosclerosis, and disease evolution in MPN. Although the neoplastic clone and their differentiated progeny drive the inflammatory process, they also induce ancillary cytokine secretion from nonmalignant cells. Here, the authors describe the inflammatory milieu in MPN based on soluble factors and cellular mediators. They also discuss the prognostic value of cytokine measurements in patients with MPN and potential therapeutic strategies that target the cellular players in inflammation.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Sprague Hall B100, Irvine, CA 92617, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Sprague Hall B100, Irvine, CA 92617, USA; Department of Biological Chemistry, Irvine Chao Family Comprehensive Cancer Center, University of California, 839 Health Sciences Road, Sprague Hall 126, Irvine, CA 92617, USA.
| |
Collapse
|
54
|
Bewersdorf JP, Zeidan AM. Novel and combination therapies for polycythemia vera and essential thrombocythemia: the dawn of a new era. Expert Rev Hematol 2020; 13:1189-1199. [PMID: 33076714 DOI: 10.1080/17474086.2020.1839887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Essential thrombocythemia (ET) and polycythemia vera (PV) belong to the BCR-ABL1-negative myeloproliferative neoplasms and are characterized by the clonal proliferation of hematopoietic stem and progenitor cells. The contribution of aberrant immune regulation within the bone marrow microenvironment to ET and PV pathogenesis as well as the underlying molecular landscape is becoming increasingly understood. AREAS COVERED Authors searched PubMed and conference abstracts in August 2020 for preclinical and clinical studies to provide an overview of the immune pathobiology in ET and PV and the rationale for several novel agents. A discussion of recent clinical trials on interferon and ruxolitinib in ET and PV patients is provided followed by an outline of the future challenges in the field particularly for novel therapeutics and an increasingly individualized, molecularly driven approach to treatment selection. Several novel agents are currently being actively evaluated and are reviewed herein as well. EXPERT OPINION While hydroxyurea remains the first-line treatment for cytoreduction in most high-risk ET and PV patients, the disease-modifying potential of IFN is promising and could make it a preferred option for selected patients. Advances in molecular testing will enable a more individualized approach to prognostication and treatment selection.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center , New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center , New Haven, CT, USA.,Cancer Outcomes, Public Policy and Effectiveness Research (COPPER) Center, Yale Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center , New Haven, CT, USA
| |
Collapse
|
55
|
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020. [PMID: 32967342 DOI: 10.3390/cells9092136.pmid:32967342;pmcid:pmc7564952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
56
|
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020; 9:cells9092136. [PMID: 32967342 PMCID: PMC7564952 DOI: 10.3390/cells9092136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (M.V.); Tel.: +39-052-190-6655 (E.M.); +39-052-103-3032 (M.V.)
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (S.G.)
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (S.G.)
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (M.V.); Tel.: +39-052-190-6655 (E.M.); +39-052-103-3032 (M.V.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| |
Collapse
|
57
|
Allain-Maillet S, Bosseboeuf A, Mennesson N, Bostoën M, Dufeu L, Choi EH, Cleyrat C, Mansier O, Lippert E, Le Bris Y, Gombert JM, Girodon F, Pettazzoni M, Bigot-Corbel E, Hermouet S. Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent Cytokines in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092446. [PMID: 32872203 PMCID: PMC7564615 DOI: 10.3390/cancers12092446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Inflammation plays a major role in myeloproliferative neoplasms (MPNs) as regulator of malignant cell growth and mediator of clinical symptoms. Yet chronic inflammation may also be an early event that facilitates the development of MPNs. Here we analysed 42 inflammatory cytokines and report that in patients as well as in UT-7 cell lines, interleukin-1β and interferon-induced protein 10 (IP-10) were the main inflammatory molecules found to be induced by JAK2V617F, the most frequent driving mutation in MPNs. All other inflammatory cytokines were not linked to JAK2V617F, which implies that inflammation likely precedes MPN development at least in subsets of MPN patients. Consistently, a possible cause of early, chronic inflammation may be auto-immunity against glucolipids: we report that 20% of MPN patients presented with anti-glucosylsphingoside auto-antibodies. Since existing treatments can reduce glucosylsphingoside, this lysosphingolipid could become a new therapeutic target for subsets of MPN patients, in addition to JAK2V617F and inflammation. Abstract Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1β, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1β, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1β and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.
Collapse
Affiliation(s)
- Sophie Allain-Maillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Adrien Bosseboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Nicolas Mennesson
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Mégane Bostoën
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Laura Dufeu
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Eun Ho Choi
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Cédric Cleyrat
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Olivier Mansier
- Laboratoire d’Hématologie, CHU de Bordeaux, 33600 Pessac, France;
- INSERM U1034, Université de Bordeaux, UFR Sciences de la Vie et de la Santé, 33000 Bordeaux, France
| | - Eric Lippert
- Laboratoire d’Hématologie, CHU de Brest, 29200 Brest, France;
- INSERM, Etablissement Français du Sang (EFS), UMR 1078, GGB, Université de Brest, 29200 Brest, France
| | - Yannick Le Bris
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
| | | | - François Girodon
- Laboratoire d’Hématologie, CHU Dijon, 21034 Dijon, France;
- INSERM, UMR 1231, University of Bourgogne Franche-Comté, 21078 Dijon, France
| | - Magali Pettazzoni
- LBMMS, Service de Biochimie et Biologie Moléculaire Grand Est, UF des Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, 69677 Bron CEDEX, France;
| | - Edith Bigot-Corbel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire de Biochimie, CHU de Nantes, 44093 Nantes, France
| | - Sylvie Hermouet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
- Correspondence: ; Tel.: +33-228080355
| |
Collapse
|
58
|
Christensen SF, Scherber RM, Brochmann N, Goros M, Gelfond J, Andersen CL, Flachs EM, Mesa R. Body Mass Index and Total Symptom Burden in Myeloproliferative Neoplasms Discovery of a U-shaped Association. Cancers (Basel) 2020; 12:E2202. [PMID: 32781663 PMCID: PMC7465643 DOI: 10.3390/cancers12082202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Elevated body mass index (BMI) is a global health problem, leading to enhanced mortality and the increased risk of several cancers including essential thrombocythemia (ET), a subtype of the Philadelphia-chromosome negative myeloproliferative neoplasms (MPN). Furthermore, evidence states that BMI is associated with the severity of symptom burden among cancer patients. MPN patients often suffer from severe symptom burden. The purpose of this study was to examine whether deviations from a normal BMI in an MPN population are associated with higher symptom burden and reduced quality of life (QoL). A combined analysis of two large cross-sectional surveys, the Danish Population-based Study, MPNhealthSurvey (n = 2044), and the international Fatigue Study (n = 1070), was performed. Symptoms and QoL were assessed using the validated Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF). Analysis of covariance was used to estimate the effects of different BMI categories on symptom scores while adjusting for age, sex, and MPN subtype. A U-shaped association between BMI and Total Symptom Burden was observed in both datasets with significantly higher mean scores for underweight and obese patients relative to normal weight (mean difference: underweight 5.51 (25.8%), p = 0.006; obese 5.70 (26.6%) p < 0.001). This is an important finding, as BMI is a potentially modifiable factor in the care of MPN patients.
Collapse
Affiliation(s)
| | - Robyn Marie Scherber
- Department of Hematology/Oncology, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA;
- Hematologic Malignancies, Incyte Corporation, Wilmington, DE 19803, USA
| | - Nana Brochmann
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark;
| | - Martin Goros
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.G.); (J.G.)
| | - Jonathan Gelfond
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.G.); (J.G.)
| | | | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, 2400 Copenhagen, Denmark;
| | - Ruben Mesa
- Department of Hematology/Oncology, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA;
| |
Collapse
|
59
|
Masarova L, Bose P, Verstovsek S. The Rationale for Immunotherapy in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2020; 14:310-327. [PMID: 31228096 DOI: 10.1007/s11899-019-00527-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The classic, chronic Philadelphia chromosome negative myeloproliferative neoplasms (MPN)-essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)-are clonal malignancies of hematopoietic stem cells and are associated with myeloproliferation, organomegaly, and constitutional symptoms. Expanding knowledge that chronic inflammation and a dysregulated immune system are central to the pathogenesis and progression of MPNs serves as a driving force for the development of agents affecting the immune system as therapy for MPN. This review describes the rationale and potential impact of anti-inflammatory, immunomodulatory, and targeted agents in MPNs. RECENT FINDINGS The advances in molecular insights, especially the discovery of the Janus kinase 2 (JAK2) V617F mutation and its role in JAK-STAT pathway dysregulation, led to the development of the JAK inhibitor ruxolitinib, which currently represents the cornerstone of medical therapy in MF and hydroxyurea-resistant/intolerant PV. However, there remain significant unmet needs in the treatment of these patients, and many agents continue to be investigated. Novel, more selective JAK inhibitors might offer reduced myelosuppression or even improvement of blood counts. The recent approval of a novel, long-acting interferon for PV patients in Europe, might eventually lead to its broader clinical use in all MPNs. Targeted immunotherapy involving monoclonal antibodies, checkpoint inhibitors, or therapeutic vaccines against selected MPN epitopes could further enhance tumor-specific immune responses. Immunotherapeutic approaches are expanding and hopefully will extend the therapeutic armamentarium in patients with myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA.
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA
| |
Collapse
|
60
|
Longhitano L, Li Volti G, Giallongo C, Spampinato M, Barbagallo I, Di Rosa M, Romano A, Avola R, Tibullo D, Palumbo GA. The Role of Inflammation and Inflammasome in Myeloproliferative Disease. J Clin Med 2020; 9:E2334. [PMID: 32707883 PMCID: PMC7464195 DOI: 10.3390/jcm9082334] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are rare hematological conditions known as myeloproliferative neoplasms (MPNs). They are characterized for being BCR-ABL negative malignancies and affected patients often present with symptoms which can significantly impact their quality of life. MPNs are characterized by a clonal proliferation of an abnormal hematopoietic stem/progenitor cell. In MPNs; cells of all myeloid lineages; including those involved in the immune and inflammatory response; may belong to the malignant clone thus leading to an altered immune response and an overexpression of cytokines and inflammatory receptors; further worsening chronic inflammation. Many of these cytokines; in particular, IL-1β and IL-18; are released in active form by activating the inflammasome complexes which in turn mediate the inflammatory process. Despite this; little is known about the functional effects of stem cell-driven inflammasome signaling in MPN pathogenesis. In this review we focused on the role of inflammatory pathway and inflammasome in MPN diseases. A better understanding of the inflammatory-state-driving MPNs and of the role of the inflammasome may provide new insights on possible therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Ignazio Barbagallo
- Section of Biochemistry, Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy;
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Giuseppe Alberto Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
61
|
Holmström MO, Hasselbalch HC, Andersen MH. Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:E1763. [PMID: 32630667 PMCID: PMC7407874 DOI: 10.3390/cancers12071763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPN) are neoplastic diseases of the hematopoietic stem cells in the bone marrow. MPN are characterized by chronic inflammation and immune dysregulation. Of interest, the potent immunostimulatory cytokine interferon-α has been used to treat MPN for decades. A deeper understanding of the anti-cancer immune response and of the different immune regulatory mechanisms in patients with MPN has paved the way for an increased perception of the potential of cancer immunotherapy in MPN. Therapeutic vaccination targeting the driver mutations in MPN is one recently described potential new treatment modality. Furthermore, T cells can directly react against regulatory immune cells because they recognize proteins like arginase and programmed death ligand 1 (PD-L1). Therapeutic vaccination with arginase or PD-L1 therefore offers a novel way to directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens like mutant CALR and mutant JAK2. Other therapeutic options that could be used in concert with therapeutic cancer vaccines are immune checkpoint-blocking antibodies and interferon-α. For more advanced MPN, adoptive cellular therapy is a potential option that needs more preclinical investigation. In this review, we summarize current knowledge about the immune system in MPN and discuss the many opportunities for anti-cancer immunotherapy in patients with MPN.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
62
|
Lee J, Godfrey AL, Nangalia J. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Rev 2020; 42:100708. [PMID: 32571583 DOI: 10.1016/j.blre.2020.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis are chronic myeloid disorders associated most often with mutations in JAK2, MPL and CALR, and in some patients with additional acquired genomic lesions. Whilst the molecular mechanisms downstream of these mutations are now clearer, it is apparent that clinical phenotype in MPN is a product of complex interactions, acting between individual mutations, between disease subclones, and between the tumour and background host factors. In this review we first discuss MPN phenotypic driver mutations and the factors that interact with them to influence phenotype. We consider the importance of ongoing studies of clonal haematopoiesis, which may inform a better understanding of why MPN develop in specific individuals. We then consider how best to deploy genomic testing in a clinical environment and the challenges as well as opportunities that may arise from more routine, comprehensive genomic analysis of patients with MPN.
Collapse
Affiliation(s)
- Joe Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK.
| |
Collapse
|
63
|
Bartalucci N, Guglielmelli P, Vannucchi AM. Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert Opin Ther Targets 2020; 24:615-628. [PMID: 32366208 DOI: 10.1080/14728222.2020.1762176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN). PV is characterized by erythrocytosis, leukocytosis, thrombocytosis, increased hematocrit, and hemoglobin in the peripheral blood. Splenomegaly and myelofibrosis often occur in PV patients. Almost all PV patients harbor a mutation in the JAK2 gene, mainly represented by the JAK2V617F point mutation. AREAS COVERED This article examines the recent in vitro and in vivo available models of PV and moreover, it offers insights on emerging biomarkers and therapeutic targets. The evidence from mouse models, resembling a PV-like phenotype generated by different technical approaches, is discussed. The authors searched PubMed, books, and clinicaltrials.gov for original and review articles and drugs development status including the terms Myeloproliferative Neoplasms, Polycythemia Vera, erythrocytosis, hematocrit, splenomegaly, bone marrow fibrosis, JAK2V617F, Hematopoietic Stem Cells, MPN cytoreductive therapy, JAK2 inhibitor, histone deacetylase inhibitor, PV-like phenotype, JAK2V617F BMT, transgenic JAK2V617F mouse, JAK2 physiologic promoter. EXPERT OPINION Preclinical models of PV are valuable tools for enabling an understanding of the pathophysiology and the molecular mechanisms of the disease. These models provide new biological insights on the contribution of concomitant mutations and the efficacy of novel drugs in a 'more faithful' setting. This may facilitate an enhanced understanding of pathogenetic mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| |
Collapse
|
64
|
Øbro NF, Grinfeld J, Belmonte M, Irvine M, Shepherd MS, Rao TN, Karow A, Riedel LM, Harris OB, Baxter EJ, Nangalia J, Godfrey A, Harrison CN, Li J, Skoda RC, Campbell PJ, Green AR, Kent DG. Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. Hemasphere 2020; 4:e371. [PMID: 32647796 PMCID: PMC7306314 DOI: 10.1097/hs9.0000000000000371] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.
Collapse
Affiliation(s)
- Nina F. Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Jacob Grinfeld
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5NG, United Kingdom
| | - Melissa Irvine
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Mairi S. Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Tata Nageswara Rao
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Axel Karow
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa M. Riedel
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Oliva B. Harris
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - E. Joanna Baxter
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anna Godfrey
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Claire N. Harrison
- Department of Hematology, Guy's and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Juan Li
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Radek C. Skoda
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Peter J. Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - David G. Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5NG, United Kingdom
| |
Collapse
|
65
|
Differential cytokine network profile in polycythemia vera and secondary polycythemia. Sci Rep 2020; 10:7032. [PMID: 32341381 PMCID: PMC7468352 DOI: 10.1038/s41598-020-63680-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Polycythemia vera (PV) is a clonal disorder resulting from neoplastic transformation of hematopoietic stem cells, while secondary polycythemia (SP) is a disease characterized by increased absolute red blood cell mass caused by stimulation of red blood cell production. Although the physiopathology of SP and PV is distinct, patients with these diseases share similar symptoms. The early differential diagnosis may improve the quality of life and decrease the disease burden in PV patients, as well as enable curative treatment for SP patients. PV is considered an oncoinflammatory disease because PV patients exhibit augmented levels of several pro-inflammatory cytokines. In this sense, we examined whether analysis of the cytokine production profile of SP and PV patients would help to distinguish them, despite their clinical similarities. Here we reported that SP patients exhibited decreased plasma levels of, IL-17A, IFN-γ, IL-12p70 and TNF-α when compared with PV patients, suggesting that analysis of the cytokine production profile may be an useful diagnostic biomarker to distinguish PV from SP patients.
Collapse
|
66
|
Podoltsev NA, Wang X, Wang R, Hofmann JN, Liao LM, Zeidan AM, Mesa R, Ma X. Lifestyle factors and risk of myeloproliferative neoplasms in the NIH-AARP diet and health study. Int J Cancer 2020; 147:948-957. [PMID: 31904114 DOI: 10.1002/ijc.32853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The etiology of Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) is largely unknown. We assessed potential associations between lifestyle factors and MPN risk in the NIH-AARP Diet and Health Study. In this prospective cohort with 463,049 participants aged 50-71 years at baseline (1995-1996) and a median follow-up of 15.5 years, we identified 490 MPN cases, including 190 with polycythemia vera (PV) and 146 with essential thrombocythemia (ET). Multivariable Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Smoking was not associated with MPN risk in the overall cohort, but analyses stratified by sex suggested that smoking increased the risk of MPN in women (former smoker vs. nonsmokers, HR = 1.43, 95% CI: 1.03-2.00, p = 0.03; current smokers vs. nonsmokers, HR = 1.71, 95% CI: 1.08-2.71, p = 0.02). Coffee consumption was inversely associated with the risk of PV (high vs. low intake, HR = 0.53, 95% CI: 0.33-0.84, p-trend < 0.01), but not the risk of ET or MPN overall. Further analysis revealed an inverse association between the amount of caffeine intake and PV risk (high vs. low intake, HR = 0.55, 95% CI: 0.39-0.79, p-trend < 0.01). While the consumption of caffeinated coffee appeared to confer a protective effect against PV, the consumption of decaffeinated coffee did not. This large prospective study identified smoking as a risk factor for MPN in women and suggests that caffeine intake is associated with a lower risk of PV.
Collapse
Affiliation(s)
- Nikolai A Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT
| | - Xiaoyi Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT
| | - Ruben Mesa
- Mays Cancer Center, University of Texas, San Antonio, TX
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| |
Collapse
|
67
|
Cingam S, Flatow-Trujillo L, Andritsos LA, Arana Yi C. Ruxolitinib In The Treatment Of Polycythemia Vera: An Update On Health-Related Quality Of Life And Patient-Reported Outcomes. J Blood Med 2019; 10:381-390. [PMID: 31814788 PMCID: PMC6861552 DOI: 10.2147/jbm.s177692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023] Open
Abstract
Polycythemia vera (PV) is a rare myeloproliferative neoplasm (MPN) associated with significant impairment in quality of life (QoL) due to disease-related symptoms and complications. Assessment of disease burden constitutes standard monitoring of symptoms and response. Conventional treatments for MPN, such as hydroxyurea, phlebotomy, or interferon, have not shown a significant impact in QoL or patient-reported outcomes (PRO). Ruxolitinib (RUX) is a JAK2 inhibitor approved for patients intolerant or resistant to hydroxyurea (HA). We conducted a systematic review of clinical trials of RUX in patients with PV that incorporated PRO measures to evaluate the effects on PRO and QoL. Three randomized Phase 3 studies reported in four publications were relevant for analysis. Although the small number of trials and potential for treatment bias in the review, treatment with RUX was associated with improved QoL and PRO in PV patients intolerant or resistant to hydroxyurea.
Collapse
Affiliation(s)
- Shashank Cingam
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Lainey Flatow-Trujillo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Leslie A Andritsos
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Cecilia Arana Yi
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| |
Collapse
|
68
|
Le Gall-Ianotto C, Le Calloch R, Couturier MA, Chauveau A, Lippert E, Carré JL, Misery L, Ianotto JC. Aquagenic pruritus in essential thrombocythemia is associated with a higher risk of thrombosis. J Thromb Haemost 2019; 17:1950-1955. [PMID: 31344312 DOI: 10.1111/jth.14588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Thromboses and phenotypic evolutions (leukemia, myelofibrosis) are the most frequent complications in polycythemia vera (PV) and essential thrombocythemia (ET). Aquagenic pruritus (AP) is not only PV symptom, but is also present in ET. The presence of pruritus in PV is associated with a lower risk of arterial thrombosis. AIMS To date, no equivalent study has been done to analyse the impact of AP for ET patients. MATERIALS & METHODS We used the data from our cohort of patients with myeloproliferative neoplasms seen in our institution (OBENE database, NCT02897297). We collect information at diagnosis, presence or not of AP and all types of complications during their follow-up. To avoid masked PV, all JAK2 positive cases were tested isotopic red mass cell if appropriate. RESULTS Among 396 ET patients, presence of AP was found in 42 (10.6%). ET patients with AP were more proliferative, more symptomatic at diagnosis and more difficult to treat. Furthermore, they presented increased risk of thromboses (30.9 versus 17%, P = .03; OR = 2.2 [1.01;4.66]) and phenotypic evolutions (33.3 versus 13.3%, P = .0007; OR = 3.2 [1.44;6.77]), during follow-up. DISCUSSION Aquagenic pruritus is classically associated to PV. But we confirmed here that AP is also present in ET and characterizes patients with higher risk of morbidity (thrombotic events and phenotypic evolutions). CONCLUSIONS The systematic determination of the presence of AP in ET patients should permit us to better identify these high-risk patients for better management and follow-up.
Collapse
Affiliation(s)
- Christelle Le Gall-Ianotto
- Department of Dermatology, University Hospital of Brest, Brest, France
- Laboratory of Interactions Neurons-Keratinocytes, University of Brest, Brest, France
| | - Ronan Le Calloch
- Department of Internal Medicine-Hematology, Hospital of Cornouaille, Quimper, France
| | | | - Aurélie Chauveau
- Laboratory of Hematology, University Hospital of Brest, Brest, France
- France Intergroup of Myeloproliferative Neoplasms (FIM), France
| | - Eric Lippert
- Laboratory of Hematology, University Hospital of Brest, Brest, France
- France Intergroup of Myeloproliferative Neoplasms (FIM), France
| | - Jean-Luc Carré
- Laboratory of Interactions Neurons-Keratinocytes, University of Brest, Brest, France
- Laboratory of Biochemistry, University Hospital of Brest, Brest, France
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest, Brest, France
- Laboratory of Interactions Neurons-Keratinocytes, University of Brest, Brest, France
| | - Jean-Christophe Ianotto
- Department of Clinical Hematology, University Hospital of Brest, Brest, France
- France Intergroup of Myeloproliferative Neoplasms (FIM), France
| |
Collapse
|
69
|
Cuthbert D, Stein BL. Polycythemia Vera-Associated Complications: Pathogenesis, Clinical Manifestations, And Effects On Outcomes. J Blood Med 2019; 10:359-371. [PMID: 31695542 PMCID: PMC6805785 DOI: 10.2147/jbm.s189922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Polycythemia vera is a Philadelphia-negative chronic myeloproliferative neoplasm, characterized by erythrocytosis, which is unique, compared to essential thrombocytosis and primary myelofibrosis. Though longevity can usually be expected, vascular morbidity is associated with this condition, as well as a propensity to evolve into myelofibrosis (post-PV MF) and acute myeloid leukemia. In addition, patients can have a pronounced symptom burden. Herein, contributors to the symptomatic burden, as well as the thrombotic and transformative tendencies are reviewed. From a symptom perspective, some are explained by cytokine release, others by microvascular complications, whereas certain symptoms can herald disease evolution. Thrombosis has multifactorial contributors, including but not limited to gender, and inflammatory stress; investigators have recently hypothesized that microparticles and Neutrophil Extracellular Trap Formations may add to thrombotic burden. Finally, we examine the progression to post-PV MF as well as leukemic transformation, highlighting well-established risk factors including age and leukocytosis, certain treatments, and the presence of “non-driver” mutations.
Collapse
Affiliation(s)
- Danielle Cuthbert
- McGaw Medical Center of Northwestern University, Department of Internal Medicine, Chicago, IL 60611, USA
| | - Brady Lee Stein
- Northwestern University Feinberg School of Medicine, Division of Hematology/Oncology, Department of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
70
|
Grunwald MR, Burke JM, Kuter DJ, Gerds AT, Stein B, Walshauser MA, Parasuraman S, Colucci P, Paranagama D, Savona MR, Mesa R. Symptom Burden and Blood Counts in Patients With Polycythemia Vera in the United States: An Analysis From the REVEAL Study. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:579-584.e1. [PMID: 31303457 PMCID: PMC8148986 DOI: 10.1016/j.clml.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Approximately 50% of patients with polycythemia vera (PV) have PV-related symptoms at diagnosis; these symptoms might develop or worsen with time. Symptoms have been shown to negatively affect quality of life and interfere with daily activities. To our knowledge, an analysis to evaluate the relationship between blood count control and symptoms has not been published. PATIENTS AND METHODS The Prospective Observational Study of Patients with Polycythemia Vera in US Clinical Practices (REVEAL; NCT02252159) is a multicenter, noninterventional, nonrandomized prospective observational study of patients with PV in the United States. Patients included were required to have a complete blood count result within 30 days before completing the at-enrollment Myeloproliferative Neoplasm Self-Assessment Form Total Symptom Score (MPN-SAF TSS). Symptom severity was compared between those who had blood count control versus those who did not. RESULTS At the time of enrollment, 1714 patients (94.5%) were being managed with cytoreductive therapy; 468 patients (25.8%) had complete hematologic remission (CHR), 1614 patients (89.0%) had ≥1 controlled blood count, and 1122 patients (61.9%) had ≥2 controlled blood counts. Mean MPN-SAF TSSs were similar across patients in different blood count control groups. Fatigue was the most frequently reported symptom. The severity of individual symptoms, except those of pruritus and night sweats, was not affected by CHR or the number of blood counts that were controlled. CONCLUSION Symptom burden in patients with PV can persist despite control of blood counts, which suggests some discordance between laboratory values and symptom burden. Consequently, regular monitoring of symptom burden should be factored into the assessment of disease control.
Collapse
Affiliation(s)
- Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC.
| | - John M Burke
- US Oncology Hematology Research Program, Rocky Mountain Cancer Centers, Aurora, CO
| | - David J Kuter
- Center for Hematology, Massachusetts General Hospital, Boston, MA
| | - Aaron T Gerds
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Brady Stein
- Department of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Mark A Walshauser
- Department of Medical Oncology and Hematology, Cancer Care Specialists of Illinois, Swansea, IL
| | | | | | | | - Michael R Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruben Mesa
- Department of Hematology and Oncology, The University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
71
|
Gene expression profiling distinguishes prefibrotic from overtly fibrotic myeloproliferative neoplasms and identifies disease subsets with distinct inflammatory signatures. PLoS One 2019; 14:e0216810. [PMID: 31071164 PMCID: PMC6534080 DOI: 10.1371/journal.pone.0216810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) share similar molecular characteristics in that they frequently harbor hotspot mutations in JAK2, CALR or MPL, leading to activated JAK/STAT signaling. However, these MPN have distinct symptoms, morphology, and natural histories, including different tendencies to progress to fibrosis. Although the role of inflammation in tissue fibrosis is well recognized, inflammatory gene expression in bone marrows involved by MPN has been understudied. We analyzed the expression of inflammatory genes by directly measuring RNA transcript abundance in bone marrow biopsies of 108 MPN patients. Unsupervised analyses identified gene expression patterns that distinguish prefibrotic (grade 1–2) MPN from overtly fibrotic (grade 2–3) MPN with high sensitivity and specificity in two independent cohorts. Furthermore, prefibrotic and overtly fibrotic MPN are separable into subsets with different activities in biological pathways linked to inflammation, including cytokines, chemokines, interferon response, and toll-like receptor signaling. In conclusion, this study demonstrates that MPN with overt fibrosis is associated with significant inflammatory gene upregulation in the bone marrow, revealing potential roles for multiple pro-inflammatory signaling networks in the development of myelofibrosis and suggesting potential therapeutic mechanisms to alleviate this process in the bone marrow microenvironment.
Collapse
|
72
|
Wang Y, Zuo X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 2019; 1:100005. [PMID: 33604548 PMCID: PMC7885877 DOI: 10.1016/j.cytox.2019.100005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
MPN is a chronic inflammation-driven tumor model. Many cytokines are involved in pathogenesis and progression of MPN. IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, TGF-β and IFNs are critical in MPN. Cytokine directed therapy could be an alternative treatment for MPN in future.
Classical myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). MPN has been defined as a chronic inflammation-driven tumor model. It is clear that there is a close link between chronic inflammation and MPN pathogenesis. Several studies have demonstrated cytokine profiles in MPN patients. Other studies have used cell lines or animal models aiming to clarify the underlying mechanism of cytokines in the pathogenesis of MPN. However, important questions remain: (1) among all these cytokines, which are more predictive? and (2) which are more critical? In this review, we summarize cytokines that have been investigated in MPN and highlight several cytokines that may be more significant in MPN. We suggest that cytokines are more critical in PMF than PV or ET. These cytokines include IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, IFNs and TGF-β, all of which should be more closely investigated in MPN. Based on our extensive literature search, several key factors have emerged in our understanding of MPN: first, TNF-α could correlate with MPN progression including PMF, PV and ET. IL-1β plays a role in PMF progression, while it showed no relation with PV or ET. Second, IL-8 could be a prognostic factor for PMF, and IL-6 could be important for MPN progression. Third, VEGF and PDGF play an indirect role in MPN development and their inhibitors could be effective. Fourth, different subtypes of IFNs could have different effects in MPN. Finally, TGF-β is closely linked to MF, although the data are inconsistent. Agents that have targeted these cytokines described above are already in clinical trials, and some of them have even been used to treat MPN patients. Taken together, it will be critical to continue to investigate the precise role of these cytokines in the pathogenesis and progression of MPN.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| |
Collapse
|
73
|
He Z, Chen M, Huang Y, Chen L, Wang B, Wang H, Yang M, Xiao X, Lu Y, Chen J, Wu Y. Acute myeloid leukemia in an 86-year-old man with AML1/ETO treated with Homoharringtonine and Arsenic Trioxide: A case report. Medicine (Baltimore) 2019; 98:e14998. [PMID: 30921216 PMCID: PMC6456030 DOI: 10.1097/md.0000000000014998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RATIONALE Acute myeloid leukemia (AML) is a malignantly clonal and highly heterogeneous disease. Although the treatment of AML has brought promising outcomes for younger patients, prognosis of the elderly remains dismal. Innovative regimens are increasingly necessary to be investigated. PATIENT CONCERNS We present an 86-year-old AML patient with fever, cough, and sputum production. DIAGNOSES A diagnosis of AML with maturation (AML-M2) and AML1/ETO was made. INTERVENTIONS The patient was treated with a regimen of Homoharringtonine coupled with arsenic trioxide. OUTCOMES The AML-M2 patient with AML1/ETO achieved incomplete remission, but showed few toxic side effects and improved survival. Besides, we analyzed the dynamic counts of complete blood cells during the treatment. The count of white blood cell had a positive correlation with the percentage of blast cells (r = 0.65), both of which had a negative correlation with the percentage of segmented neutrophils (r = -0.63, -0.89). LESSONS Homoharringtonine and arsenic trioxide may induce both the apoptosis and differentiation of leukemic cells in AML-M2 with AML1/ETO.
Collapse
|
74
|
O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: Causes and consequences. Adv Biol Regul 2018; 71:55-68. [PMID: 30528537 DOI: 10.1016/j.jbior.2018.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are haematopoietic stem cell-derived clonal disorders characterised by proliferation of some or all myeloid lineages, depending on the subtype. MPNs are classically categorized into three disease subgroups; essential thrombocythaemia (ET), polycythaemia vera (PV) and primary myelofibrosis (PMF). The majority (>85%) of patients carry a disease-initiating or driver mutation, the most prevalent occurring in the janus kinase 2 gene (JAK2 V617F), followed by calreticulin (CALR) and myeloproliferative leukaemia virus (MPL) genes. Although these diseases are characterised by shared clinical, pathological and molecular features, one of the most challenging aspects of these disorders is the diverse clinical features which occur in each disease type, with marked variability in risks of disease complications and progression to leukaemia. A remarkable aspect of MPN biology is that the JAK2 V617F mutation, often occurring in the absence of additional mutations, generates a spectrum of phenotypes from asymptomatic ET through to aggressive MF, associated with a poor outcome. The mechanisms promoting MPN heterogeneity remain incompletely understood, but contributing factors are broad and include patient characteristics (gender, age, comorbidities and environmental exposures), additional somatic mutations, target disease-initiating cell, bone marrow microenvironment and germline genetic associations. In this review, we will address these in detail and discuss their role in heterogeneity of MPN disease phenotypes. Tailoring patient management according to the multiple different factors that influence disease phenotype may prove to be the most effective approach to modify the natural history of the disease and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Jennifer O'Sullivan
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom.
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
75
|
Krecak I, Gveric-Krecak V, Roncevic P, Basic-Kinda S, Gulin J, Lapic I, Fumic K, Ilic I, Horvat I, Zadro R, Holik H, Coha B, Peran N, Aurer I, Durakovic N. Serum chitotriosidase: a circulating biomarker in polycythemia vera. ACTA ACUST UNITED AC 2018; 23:793-802. [PMID: 29993340 DOI: 10.1080/10245332.2018.1498157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Serum chitotriosidase activity (CHIT1) is a biomarker of macrophage activation with an important role in inflammation-induced tissue remodeling and fibrosis. Macrophages have been described to play a crucial role in regulating pathological erythropoiesis in polycythemia vera (PV). The aim of this study was to evaluate CHIT1 in patients diagnosed with Philadelphia-negative myeloproliferative neoplasms (MPNs). METHODS Using fluorometric assay, we measured CHIT1 in 28 PV, 27 essential thrombocythemia (ET), 17 primary myelofibrosis (PMF), 19 patients with secondary myelofibrosis and in 25 healthy controls. RESULTS CHIT1 was significantly higher in PV (p < .001) and post-PV myelofibrosis (MF) transformation (post-PV MF) (p = .020), but not in ET (p = .080), post-ET MF transformation (p = .086), and PMF patients (p = .287), when compared to healthy controls. CHIT1 in PV was positively correlated with hemoglobin (p = .026), hematocrit (p = .012), absolute basophil count (p = .030) and the presence of reticulin fibrosis in the bone marrow (p = .023). DISCUSSION A positive correlation between CHIT1 and these distinct laboratory PV features might imply macrophages closely related to clonal erythropoiesis as cells of CHIT1 origin. In addition, a positive association between CHIT1 and reticulin fibrosis might indicate its potential role in PV progression. CONCLUSION CHIT1 might be considered as a circulating biomarker in PV. Additional studies are needed to clarify the role of CHIT1 in promoting disease progression and bone marrow fibrosis in PV.
Collapse
Affiliation(s)
- Ivan Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Velka Gveric-Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Pavle Roncevic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Sandra Basic-Kinda
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Josipa Gulin
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ivana Lapic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ksenija Fumic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia.,d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| | - Ivana Ilic
- e Department of Pathology and Cytology, University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Ivana Horvat
- g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Renata Zadro
- d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia.,g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Hrvoje Holik
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Bozena Coha
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Nena Peran
- i Department of Laboratory Diagnostics , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Igor Aurer
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Nadira Durakovic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
76
|
Holmström MO, Hasselbalch HC. Cancer immune therapy for myeloid malignancies: present and future. Semin Immunopathol 2018; 41:97-109. [PMID: 29987478 DOI: 10.1007/s00281-018-0693-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
The myelodysplastic syndromes, the chronic myeloproliferative neoplasms, and the acute myeloid leukemia are malignancies of the myeloid hematopoietic stem cells of the bone marrow. The diseases are characterized by a dysregulation of the immune system as both the cytokine milieu, immune phenotype, immune regulation, and expression of genes related to immune cell functions are deregulated. Several treatment strategies try to circumvent this deregulation, and several clinical and preclinical trials have shown promising results, albeit not in the same scale as chimeric antigen receptor T cells have had in the treatment of refractory lymphoid malignancies. The use of immune checkpoint blocking antibodies especially in combination with hypomethylating agents has had some success-a success that will likely be enhanced by therapeutic cancer vaccination with tumor-specific antigens. In the chronic myeloproliferative neoplasms, the recent identification of immune responses against the Januskinase-2 and calreticulin exon 9 driver mutations could also be used in the vaccination setting to enhance the anti-tumor immune response. This immune response could probably be enhanced by the concurrent use of immune checkpoint inhibitors or by vaccination with epitopes from immune regulatory proteins such as arginase-1 and programmed death ligand-1. Herein, we provide an overview of current cancer immune therapeutic treatment strategies as well as potential future cancer immune therapeutic treatment options for the myeloid malignancies.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark. .,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Herlev, Denmark.
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
| |
Collapse
|
77
|
Serum of myeloproliferative neoplasms stimulates hematopoietic stem and progenitor cells. PLoS One 2018; 13:e0197233. [PMID: 29851963 PMCID: PMC5979002 DOI: 10.1371/journal.pone.0197233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Background Myeloproliferative neoplasms (MPN)—such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF)—are typically diseases of the elderly caused by acquired somatic mutations. However, it is largely unknown how the malignant clone interferes with normal hematopoiesis. In this study, we analyzed if serum of MPN patients comprises soluble factors that impact on hematopoietic stem and progenitor cells (HPCs). Methods CD34+ HPCs were cultured in medium supplemented with serum samples of PV, ET, or MF patients, or healthy controls. The impact on proliferation, maintenance of immature hematopoietic surface markers, and colony forming unit (CFU) potential was systematically analyzed. In addition, we compared serum of healthy young (<25 years) and elderly donors (>50 years) to determine how normal aging impacts on the hematopoiesis-supportive function of serum. Results Serum from MF, PV and ET patients significantly increased proliferation as compared to controls. In addition, serum from MF and ET patients attenuated the loss of a primitive immunophenotype during in vitro culture. The CFU counts were significantly higher if HPCs were cultured with serum of MPN patients as compared to controls. Furthermore, serum of healthy young versus old donors did not evoke significant differences in proliferation or immunophenotype of HPCs, whereas the CFU frequency was significantly increased by serum from elderly patients. Conclusion Our results indicate that serum derived from patients with MPN comprises activating feedback signals that stimulate the HPCs–and this stimulatory signal may result in a viscous circle that further accelerates development of the disease.
Collapse
|
78
|
Zacharaki D, Ghazanfari R, Li H, Lim HC, Scheding S. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals. Eur J Haematol 2018; 101:57-67. [DOI: 10.1111/ejh.13079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Dimitra Zacharaki
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Roshanak Ghazanfari
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Hongzhe Li
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Hooi Ching Lim
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Stefan Scheding
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
- Department of Hematology; Skåne University Hospital Lund; Lund Sweden
| |
Collapse
|
79
|
Asada N. Regulation of Malignant Hematopoiesis by Bone Marrow Microenvironment. Front Oncol 2018; 8:119. [PMID: 29740536 PMCID: PMC5924781 DOI: 10.3389/fonc.2018.00119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) that give rise to all kinds of hematopoietic lineage cells on various demands throughout life are maintained in a specialized microenvironment called “niche” in the bone marrow (BM). Defining niche cells and unveiling its function have been the subject of intense study, and it is becoming increasingly clear how niche cells regulate HSCs in normal hematopoiesis. Leukemia stem cells (LSCs), which are able to produce leukemic cells and maintain leukemic clones, are assumed to share common features with healthy HSCs. Accumulating evidence suggests that LSCs reside in a specialized BM microenvironment; moreover, LSCs could control and rebuild the microenvironment to enhance their progression and survival. This article discusses the recent advances in our knowledge of the microenvironment supporting malignant hematopoiesis, including LSC niche.
Collapse
Affiliation(s)
- Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
80
|
Lim KH, Chen CGS, Chang YC, Chiang YH, Kao CW, Wang WT, Chang CY, Huang L, Lin CS, Cheng CC, Cheng HI, Su NW, Lin J, Chang YF, Chang MC, Hsieh RK, Lin HC, Kuo YY. Increased B cell activation is present in JAK2V617F-mutated, CALR-mutated and triple-negative essential thrombocythemia. Oncotarget 2018; 8:32476-32491. [PMID: 28415571 PMCID: PMC5464803 DOI: 10.18632/oncotarget.16381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/28/2017] [Indexed: 01/19/2023] Open
Abstract
Essential thrombocythemia (ET) is a BCL-ABL1-negative myeloproliferative neoplasm. We have reported that increased activated B cells can facilitate platelet production mediated by cytokines regardless JAK2 mutational status in ET. Recently, calreticulin (CALR) mutations were discovered in ~30% JAK2/MPL-unmutated ET and primary myelofibrosis. Here we sought to screen for CALR mutations and to evaluate B cell immune profiles in a cohort of adult Taiwanese ET patients. B cell populations, granulocytes/monocytes membrane-bound B cell-activating factor (mBAFF) levels, B cells toll-like receptor 4 (TLR4) expression and intracellular levels of interleukin (IL)-1β/IL-6 and the expression of CD69, CD80, and CD86 were quantified by flow cytometry. Serum BAFF concentration was measured by ELISA. 48 healthy adults were used for comparison. 19 (35.2%) of 54 ET patients harbored 8 types of CALR exon 9 mutations including 4 (7.4%) patients with concomitant JAK2V617F mutations. Compared to JAK2V617F mutation, CALR mutations correlated with younger age at diagnosis (p=0.04), higher platelet count (p=0.004), lower hemoglobin level (p=0.013) and lower leukocyte count (p=0.013). Multivariate analysis adjusted for age, sex, follow-up period and hematological parameters confirmed that increased activated B cells were universally present in JAK2-mutated, CALR-mutated and triple-negative ET patients when compared to healthy adults. JAK2- and CALR-mutated ET have significantly higher fraction of B cells with TLR4 expression when compared to triple-negative ET (p=0.019 and 0.02, respectively). CALR-mutated ET had significantly higher number of CD69-positive activated B cells when compared to triple-negative ET (p=0.035). In conclusion, increased B cell activation is present in ET patients across different mutational subgroups.
Collapse
Affiliation(s)
- Ken-Hong Lim
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Cheng Chang
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Hao Chiang
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Chen-Wei Kao
- Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Wei-Ting Wang
- Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Chiao-Yi Chang
- Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ling Huang
- Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ching-Sung Lin
- Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Chun-Chia Cheng
- Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hung-I Cheng
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Nai-Wen Su
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Johnson Lin
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Fang Chang
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Chih Chang
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ruey-Kuen Hsieh
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Huan-Chau Lin
- Department of Internal Medicine, Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Yuan-Yeh Kuo
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
81
|
Craver BM, El Alaoui K, Scherber RM, Fleischman AG. The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies. Cancers (Basel) 2018; 10:cancers10040104. [PMID: 29614027 PMCID: PMC5923359 DOI: 10.3390/cancers10040104] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) maintain an organism's immune system for a lifetime, and derangements in HSC proliferation and differentiation result in hematologic malignancies. Chronic inflammation plays a contributory if not causal role in HSC dysfunction. Inflammation induces HSC exhaustion, which promotes the emergence of mutant clones that may be resistant to an inflammatory microenvironment; this likely promotes the onset of a myeloid hematologic malignancy. Inflammatory cytokines are characteristically high in patients with myeloid malignancies and are linked to disease initiation, symptom burden, disease progression, and worsened prognostic survival. This review will cover our current understanding of the role of inflammation in the initiation, progression, and complications of myeloid hematologic malignancies, drawing from clinical studies as well as murine models. We will also highlight inflammation as a therapeutic target in hematologic malignancies.
Collapse
Affiliation(s)
- Brianna M Craver
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Kenza El Alaoui
- Department of Internal Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium.
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Robyn M Scherber
- Department of Hematology and Oncology, Mays MD Anderson Cancer Center, University of Texas San Antonio, San Antonio, TX 78249, USA.
| | - Angela G Fleischman
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA.
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
82
|
Pagnano KBB. Inflammatory picture of Philadelphia-negative myeloproliferative neoplasms. Hematol Transfus Cell Ther 2018; 40:101-102. [PMID: 30057980 PMCID: PMC6001930 DOI: 10.1016/j.htct.2018.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
83
|
Tashi T, Swierczek S, Kim SJ, Salama ME, Song J, Heikal N, King KY, Hickman K, Litton S, Prchal JT. Pegylated interferon Alfa-2a and hydroxyurea in polycythemia vera and essential thrombocythemia: differential cellular and molecular responses. Leukemia 2018; 32:1830-1833. [PMID: 29556018 DOI: 10.1038/s41375-018-0080-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tsewang Tashi
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sabina Swierczek
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Soo Jin Kim
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mohamed E Salama
- Department of Pathology, ARUP Institute of Research and Development, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jihyun Song
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nahla Heikal
- Department of Pathology, ARUP Institute of Research and Development, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katherine Y King
- Department of Pediatric Infectious Diseases and Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Kim Hickman
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Scott Litton
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Josef T Prchal
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Pathology, ARUP Institute of Research and Development, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
84
|
Holmström MO, Riley CH, Skov V, Svane IM, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncoimmunology 2018; 7:e1433521. [PMID: 29872567 DOI: 10.1080/2162402x.2018.1433521] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4+ T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University, Herlev, Denmark
| | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Abstract
Chronic myeloproliferative neoplasms (MPN) characteristically arise from a somatic mutation in the pluripotent hematopoietic stem cell, and most common recurring mutations are in the JAK2, CALR, and cMPL genes. However, these mutations are not founder mutations, but mainly drive the disease phenotype and a pre-existing germline predisposition has been long speculated, but has not been clearly defined to date. Genome-wide association studies in family clusters of MPN have identified a number of genetic variants that are associated with increased germline risk for developing clonal MPN. The strongest association discovered so far is the presence of JAK2 46/1 haplotype, and subsequently, many studies have found additional variants in other genes, most notably in TERT gene. However, these still account for a small fraction of familial MPN, and more in-depth studies including whole genome sequencing are needed to gain better insight into familial genetic predisposition of clonal MPNs.
Collapse
|
86
|
Cacemiro MDC, Cominal JG, Tognon R, Nunes NDS, Simões BP, Figueiredo-Pontes LLD, Catto LFB, Traina F, Souto EX, Zambuzi FA, Frantz FG, Castro FAD. Philadelphia-negative myeloproliferative neoplasms as disorders marked by cytokine modulation. Hematol Transfus Cell Ther 2018; 40:120-131. [PMID: 30057985 PMCID: PMC6001283 DOI: 10.1016/j.htct.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Background Cytokines are key immune mediators in physiological and disease processes, whose increased levels have been associated with the physiopathology of hematopoietic malignancies, such as myeloproliferative neoplasms. Methods This study examined the plasma cytokine profiles of patients with essential thrombocythemia, primary myelofibrosis, polycythemia vera and of healthy subjects, and analyzed correlations with JAK2 V617F status and clinical-hematological parameters. Results The proinflammatory cytokine levels were increased in myeloproliferative neoplasm patients, and the presence of the JAK2 V617F mutation was associated with high IP-10 levels in primary myelofibrosis patients. Conclusions Essential thrombocythemia, primary myelofibrosis, and polycythemia vera patients exhibited different patterns of cytokine production, as revealed by cytokine network correlations. Together, these findings suggest that augmented cytokine levels are associated with the physiopathology of myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Maira da Costa Cacemiro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Juçara Gastaldi Cominal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Raquel Tognon
- Universidade Federal de Juiz de Fora (UFJF), Governador Valadares, MG, Brazil
| | - Natalia de Souza Nunes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Belinda Pinto Simões
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRPUSP), Ribeirão Preto, SP, Brazil
| | | | - Luiz Fernando Bazzo Catto
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRPUSP), Ribeirão Preto, SP, Brazil
| | - Fabíola Traina
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRPUSP), Ribeirão Preto, SP, Brazil
| | - Elizabeth Xisto Souto
- Hospital Estadual de Transplantes Euryclides de Jesus Zerbini, São Paulo, SP, Brazil
| | - Fabiana Albani Zambuzi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Fabiani Gai Frantz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Fabíola Attié de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
87
|
Kobayashi SS, Vali S, Kumar A, Singh N, Abbasi T, Sayeski PP. Identification of myeloproliferative neoplasm drug agents via predictive simulation modeling: assessing responsiveness with micro-environment derived cytokines. Oncotarget 2017; 7:35989-36001. [PMID: 27056884 PMCID: PMC5094977 DOI: 10.18632/oncotarget.8540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/10/2016] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that the bone marrow micro-environment supports the myeloproliferative neoplasms (MPN) phenotype including via the production of cytokines that can induce resistance to frontline MPN therapies. However, the mechanisms by which this occurs are poorly understood. Moreover, the ability to rapidly identify drug agents that can act as adjuvants to existing MPN frontline therapies is virtually non-existent. Here, using a novel predictive simulation approach, we sought to determine the effect of various drug agents on MPN cell lines, both with and without the micro-environment derived inflammatory cytokines. We first created individual simulation models for two representative MPN cell lines; HEL and SET-2, based on their genomic mutation and copy number variation (CNV) data. Running computational simulations on these virtual cell line models, we identified a synergistic effect of two drug agents on cell proliferation and viability; namely, the Jak2 kinase inhibitor, G6, and the Bcl-2 inhibitor, ABT737. IL-6 did not show any impact on the cells due to the predicted lack of IL-6 signaling within these cells. Interestingly, TNFα increased the sensitivity of the single drug agents and their use in combination while IFNγ decreased the sensitivity. In summary, this study predictively identified two drug agents that reduce MPN cell viability via independent mechanisms that was prospectively validated. Moreover, their efficacy is either potentiated or inhibited, by some of the micro-environment derived cytokines. Lastly, this study has validated the use of this simulation based technology to prospectively determine such responses.
Collapse
Affiliation(s)
- Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | | | - Ansu Kumar
- Cellworks Research India Pvt Ltd., Cellworks Group Inc., Bangalore, India
| | - Neeraj Singh
- Cellworks Research India Pvt Ltd., Cellworks Group Inc., Bangalore, India
| | | | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
88
|
Lussana F, Rambaldi A. Inflammation and myeloproliferative neoplasms. J Autoimmun 2017; 85:58-63. [DOI: 10.1016/j.jaut.2017.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/14/2023]
|
89
|
Hemmati S, Haque T, Gritsman K. Inflammatory Signaling Pathways in Preleukemic and Leukemic Stem Cells. Front Oncol 2017; 7:265. [PMID: 29181334 PMCID: PMC5693908 DOI: 10.3389/fonc.2017.00265] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare subset of bone marrow cells that usually exist in a quiescent state, only entering the cell cycle to replenish the blood compartment, thereby limiting the potential for errors in replication. Inflammatory signals that are released in response to environmental stressors, such as infection, trigger active cycling of HSCs. These inflammatory signals can also directly induce HSCs to release cytokines into the bone marrow environment, promoting myeloid differentiation. After stress myelopoiesis is triggered, HSCs require intracellular signaling programs to deactivate this response and return to steady state. Prolonged or excessive exposure to inflammatory cytokines, such as in prolonged infection or in chronic rheumatologic conditions, can lead to continued HSC cycling and eventual HSC loss. This promotes bone marrow failure, and can precipitate preleukemic states or leukemia through the acquisition of genetic and epigenetic changes in HSCs. This can occur through the initiation of clonal hematopoiesis, followed by the emergence preleukemic stem cells (pre-LSCs). In this review, we describe the roles of multiple inflammatory signaling pathways in the generation of pre-LSCs and in progression to myelodysplastic syndrome (MDS), myeloproliferative neoplasms, and acute myeloid leukemia (AML). In AML, activation of some inflammatory signaling pathways can promote the cycling and differentiation of LSCs, and this can be exploited therapeutically. We also discuss the therapeutic potential of modulating inflammatory signaling for the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Shayda Hemmati
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tamanna Haque
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Kira Gritsman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
90
|
Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Ellervik C, Skov V, Kjær L, Pallisgaard N, Kruse TA, Thomassen M, Troelsen J, Hasselbalch HC, Ottesen JT. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS One 2017; 12:e0183620. [PMID: 28859112 PMCID: PMC5578482 DOI: 10.1371/journal.pone.0183620] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Collapse
Affiliation(s)
- Morten Andersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Zamra Sajid
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rasmus K. Pedersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Christina Ellervik
- Department of Laboratory Medicine at Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jesper Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Johnny T. Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
91
|
Chen Y, Han X, Wang F, Bai B, Wang Y. A rare vascular complication in a patient with essential thrombocythaemia: spontaneous abdominal aortic dissection. Intern Med J 2017; 47:589-592. [PMID: 28503875 DOI: 10.1111/imj.13407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/23/2017] [Accepted: 02/11/2017] [Indexed: 11/30/2022]
Abstract
A 27-year-old woman complained of waist and back pain. Abdominal computed tomography angiography showed abdominal aortic dissection, the blood count revealed a high platelet count of 1655 × 109 /L. Negative for JAK2V617F, CALR and MPL mutations (i.e. triple-negative), the patient was diagnosed as essential thrombocythaemia (ET) with abdominal aortic dissection and was treated with cytoreduction and antiplatelet drugs. Cases of abdominal aortic dissection in ET have not been previously reported. As such, we proposed a mechanism of abdominal aortic dissection caused by endothelial dysfunction and further emphasised appropriate management in ET with abdominal aortic dissection.
Collapse
Affiliation(s)
- Ye Chen
- Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xue Han
- Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Beibei Bai
- Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingchun Wang
- Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
92
|
Socoro-Yuste N, Čokić VP, Mondet J, Plo I, Mossuz P. Quantitative Proteome Heterogeneity in Myeloproliferative Neoplasm Subtypes and Association with JAK2 Mutation Status. Mol Cancer Res 2017; 15:852-861. [PMID: 28314843 DOI: 10.1158/1541-7786.mcr-16-0495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/23/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022]
Abstract
Apart from well-known genetic abnormalities, several studies have reported variations in protein expression in Philadelphia-negative myeloproliferative neoplasm (MPN) patients that could contribute toward their clinical phenotype. In this context, a quantitative mass spectrometry proteomics protocol was used to identify differences in the granulocyte proteome with the goal to characterize the pathogenic role of aberrant protein expression in MPNs. LC/MS-MS (LTQ Orbitrap) coupled to iTRAQ labeling showed significant and quantitative differences in protein content among various MPN subtypes [polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)], and according to the genetic status of JAK2 (JAK2V617F presence and JAK2V617F allele burden). A number of differentially expressed proteins were identified, with the most frequent being members of the RAS GTPase family and oxidative stress regulatory proteins. Subsequent analysis found that calreticulin (CALR), known to be involved in calcium homeostasis and apoptotic signaling, was overexpressed in JAK2V617F granulocytes compared with JAK2 wild type and independently of the JAK2V617F allele burden. Finally, it was demonstrated, in a Ba/F3 cell model, that increased calreticulin expression was directly linked to JAK2V617F and could be regulated by JAK2 kinase inhibitors.Implications: In conclusion, these results reveal proteome alterations in MPN granulocytes depending on the phenotype and genotype of patients, highlighting new oncogenic mechanisms associated with JAK2 mutations and overexpression of calreticulin. Mol Cancer Res; 15(7); 852-61. ©2017 AACR.
Collapse
Affiliation(s)
- Nuria Socoro-Yuste
- TheREx Team (Thérapeutique Recombinante Expérimentale), TIMC-IMAG Laboratory, (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble), Grenoble Alpes University, Grenoble, France.
| | - Vladan P Čokić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Julie Mondet
- TheREx Team (Thérapeutique Recombinante Expérimentale), TIMC-IMAG Laboratory, (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble), Grenoble Alpes University, Grenoble, France
| | - Isabelle Plo
- INSERM, UMR1170. Gustave Roussy. Université Paris-Sud., Villejuif, France
| | - Pascal Mossuz
- TheREx Team (Thérapeutique Recombinante Expérimentale), TIMC-IMAG Laboratory, (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble), Grenoble Alpes University, Grenoble, France.,Laboratoire d'Hématologie Cellulaire, Institut de Biologie et Pathologie, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
93
|
Iwaki N, Gion Y, Kondo E, Kawano M, Masunari T, Moro H, Nikkuni K, Takai K, Hagihara M, Hashimoto Y, Yokota K, Okamoto M, Nakao S, Yoshino T, Sato Y. Elevated serum interferon γ-induced protein 10 kDa is associated with TAFRO syndrome. Sci Rep 2017; 7:42316. [PMID: 28205564 PMCID: PMC5304226 DOI: 10.1038/srep42316] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/05/2017] [Indexed: 01/09/2023] Open
Abstract
Multicentric Castleman disease (MCD) is a heterogeneous lymphoproliferative disorder. It is characterized by inflammatory symptoms, and interleukin (IL)-6 contributes to the disease pathogenesis. Human herpesvirus 8 (HHV-8) often drives hypercytokinemia in MCD, although the etiology of HHV-8-negative MCD is idiopathic (iMCD). A distinct subtype of iMCD that shares a constellation of clinical features including thrombocytopenia (T), anasarca (A), fever (F), reticulin fibrosis (R), and organomegaly (O) has been reported as TAFRO-iMCD, however the differences in cytokine profiles between TAFRO-iMCD and iMCD have not been established. We retrospectively compared levels of serum interferon γ-induced protein 10 kDa (IP-10), platelet-derived growth factor (PDGF)-AA, interleukin (IL)-10, and other cytokines between 11 cases of TAFRO-iMCD, 6 cases of plasma cell type iMCD, and 21 healthy controls. During flare-ups, patients with TAFRO-iMCD had significantly higher serum IP-10 and tended to have lower PDGF-AA levels than the other 2 groups. In addition, serum IL-10, IL-23, and vascular endothelial growth factor-A were elevated in both TAFRO-iMCD and iMCD. Elevated serum IP-10 is associated with inflammatory diseases including infectious diseases. There was a strong correlation between high serum IP-10 and the presence of TAFRO-iMCD, suggesting that IP-10 might be involved in the pathogenesis of TAFRO-iMCD.
Collapse
Affiliation(s)
- Noriko Iwaki
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Hematology/Respiratory Medicine Kanazawa University Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Yuka Gion
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eisei Kondo
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Taro Masunari
- Department of Hematology, Chugoku Central Hospital, Fukuyama, Japan
| | - Hiroshi Moro
- Division of Clinical Infection Control and Prevention, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Nikkuni
- Division of Hematology, Niigata City General Hospital, Niigata, Japan
| | - Kazue Takai
- Division of Hematology, Niigata City General Hospital, Niigata, Japan
| | - Masao Hagihara
- Department of Hematology, Eiju General Hospital, Tokyo, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenji Yokota
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Masataka Okamoto
- Department of Hematology and Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinji Nakao
- Hematology/Respiratory Medicine Kanazawa University Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuharu Sato
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| |
Collapse
|
94
|
Mesa R, Vannucchi AM, Yacoub A, Zachee P, Garg M, Lyons R, Koschmieder S, Rinaldi C, Byrne J, Hasan Y, Passamonti F, Verstovsek S, Hunter D, Jones MM, Zhen H, Habr D, Martino B. The efficacy and safety of continued hydroxycarbamide therapy versus switching to ruxolitinib in patients with polycythaemia vera: a randomized, double-blind, double-dummy, symptom study (RELIEF). Br J Haematol 2017; 176:76-85. [PMID: 27858987 PMCID: PMC5215488 DOI: 10.1111/bjh.14382] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
The randomized, double-blind, double-dummy, phase 3b RELIEF trial evaluated polycythaemia vera (PV)-related symptoms in patients who were well controlled with a stable dose of hydroxycarbamide (also termed hydroxyurea) but reported PV-related symptoms. Patients were randomized 1:1 to ruxolitinib 10 mg BID (n = 54) or hydroxycarbamide (prerandomization dose/schedule; n = 56); crossover to ruxolitinib was permitted after Week 16. The primary endpoint, ≥50% improvement from baseline in myeloproliferative neoplasm -symptom assessment form total symptom score cytokine symptom cluster (TSS-C; sum of tiredness, itching, muscle aches, night sweats, and sweats while awake) at Week 16, was achieved by 43·4% vs. 29·6% of ruxolitinib- and hydroxycarbamide-treated patients, respectively (odds ratio, 1·82; 95% confidence interval, 0·82-4·04; P = 0·139). The primary endpoint was achieved by 34% of a subgroup who maintained their hydroxycarbamide dose from baseline to Weeks 13-16. In a post hoc analysis, the primary endpoint was achieved by more patients with stable screening-to-baseline TSS-C scores (ratio ≤ 2) receiving ruxolitinib than hydroxycarbamide (47·4% vs. 25·0%; P = 0·0346). Ruxolitinib treatment after unblinding was associated with continued symptom score improvements. Adverse events were primarily grades 1/2 with no unexpected safety signals. Ruxolitinib was associated with a nonsignificant trend towards improved PV-related symptoms versus hydroxycarbamide, although an unexpectedly large proportion of patients who maintained their hydroxycarbamide dose reported symptom improvement.
Collapse
Affiliation(s)
- Ruben Mesa
- Mayo Clinic Cancer CenterScottsdaleAZUSA
| | - Alessandro M. Vannucchi
- Center for Research and Innovation of Myeloproliferative NeoplasmsAOU CareggiUniversity of FlorenceFlorenceItaly
| | | | | | | | - Roger Lyons
- Texas Oncology and US Oncology ResearchSan AntonioTXUSA
| | - Steffen Koschmieder
- Department of Haematology, Oncology, Haemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Ciro Rinaldi
- University of Lincoln and United Lincolnshire Hospital TrustLincolnUK
| | | | - Yasmin Hasan
- Sandwell and West Birmingham Hospitals NHS TrustWest BromwichUK
| | | | | | | | | | | | - Dany Habr
- Novartis PharmaceuticalsEast HanoverNJUSA
| | - Bruno Martino
- Azienda Ospedaliera Bianchi Melacrino MorelliReggio CalabriaItaly
| |
Collapse
|
95
|
CCL2 is a KIT D816V-dependent modulator of the bone marrow microenvironment in systemic mastocytosis. Blood 2016; 129:371-382. [PMID: 27856463 DOI: 10.1182/blood-2016-09-739003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Systemic mastocytosis (SM) is characterized by abnormal accumulation of neoplastic mast cells harboring the activating KIT mutation D816V in the bone marrow and other internal organs. As found in other myeloproliferative neoplasms, increased production of profibrogenic and angiogenic cytokines and related alterations of the bone marrow microenvironment are commonly found in SM. However, little is known about mechanisms and effector molecules triggering fibrosis and angiogenesis in SM. Here we show that KIT D816V promotes expression of the proangiogenic cytokine CCL2 in neoplastic mast cells. Correspondingly, the KIT-targeting drug midostaurin and RNA interference-mediated knockdown of KIT reduced expression of CCL2. We also found that nuclear factor κB contributes to KIT-dependent upregulation of CCL2 in mast cells. In addition, CCL2 secreted by KIT D816V+ mast cells was found to promote the migration of human endothelial cells in vitro. Furthermore, knockdown of CCL2 in neoplastic mast cells resulted in reduced microvessel density and reduced tumor growth in vivo compared with CCL2-expressing cells. Finally, we measured CCL2 serum concentrations in patients with SM and found that CCL2 levels were significantly increased in mastocytosis patients compared with controls. CCL2 serum levels were higher in patients with advanced SM and were found to correlate with poor survival. In summary, we have identified CCL2 as a novel KIT D816V-dependent key regulator of vascular cell migration and angiogenesis in SM. CCL2 expression correlates with disease severity and prognosis. Whether CCL2 may serve as a therapeutic target in advanced SM remains to be determined in forthcoming studies.
Collapse
|
96
|
Socoro-Yuste N, Dagher MC, Gonzalez De Peredo A, Mondet J, Zaccaria A, Roux Dalvai F, Plo I, Cahn JY, Mossuz P. Ph(-) myeloproliferative neoplasm red blood cells display deregulation of IQGAP1-Rho GTPase signaling depending on CALR/JAK2 status. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2758-2765. [PMID: 27566291 DOI: 10.1016/j.bbamcr.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
Besides genetic abnormalities in MPN patients, several studies have reported alterations in protein expression that could contribute towards the clinical phenotype. However, little is known about protein modifications in Ph- MPN erythrocytes. In this context, we used a quantitative mass spectrometry proteomics approach to study the MPN erythrocyte proteome. LC-MS/MS (LTQ Orbitrap) analysis led to the identification of 51 and 86 overexpressed proteins in Polycythemia Vera and Essential Thrombocythemia respectively, compared with controls. Functional comparison using pathway analysis software showed that the Rho GTPase family signaling pathways were deregulated in MPN patients. In particular, IQGAP1 was significantly overexpressed in MPNs compared with controls. Additionally, Western-blot analysis not only confirmed IQGAP1 overexpression, but also showed that IQGAP1 levels depended on the patient's genotype. Moreover, we found that in JAK2V617F patients IQGAP1 could bind RhoA, Rac1 and Cdc42 and consequently recruit activated GTP-Rac1 and the cytoskeleton motility protein PAK1. In CALR(+) patients, IQGAP1 was not overexpressed but immunoprecipitated with RhoGDI. In JAK2V617F transduced Ba/F3 cells we confirmed JAK2 inhibitor-sensitive overexpression of IQGAP1/PAK1. Altogether, our data demonstrated alterations of IQGAP1/Rho GTPase signaling in MPN erythrocytes dependent on JAK2/CALR status, reinforcing the hypothesis that modifications in erythrocyte signaling pathways participate in Ph- MPN pathogenesis.
Collapse
Affiliation(s)
- Nuria Socoro-Yuste
- TheREx Team "Thérapeutique recombinante expérimentale", TIMC-IMAG Laboratory, "Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble", UMR, UJF, CNRS 5525, University of Grenoble Alpes, France.
| | - Marie-Claire Dagher
- TheREx Team "Thérapeutique recombinante expérimentale", TIMC-IMAG Laboratory, "Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble", UMR, UJF, CNRS 5525, University of Grenoble Alpes, France
| | - Anne Gonzalez De Peredo
- Plateforme Protéomique de la Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, CNRS, UMR, 5089 Toulouse, France
| | - Julie Mondet
- TheREx Team "Thérapeutique recombinante expérimentale", TIMC-IMAG Laboratory, "Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble", UMR, UJF, CNRS 5525, University of Grenoble Alpes, France
| | - Affif Zaccaria
- Department of clinical proteomics, University of Geneva, Switzerland
| | - Florence Roux Dalvai
- Plateforme Protéomique de la Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, CNRS, UMR, 5089 Toulouse, France
| | - Isabelle Plo
- INSERM, UMR1170, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Jean Yves Cahn
- TheREx Team "Thérapeutique recombinante expérimentale", TIMC-IMAG Laboratory, "Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble", UMR, UJF, CNRS 5525, University of Grenoble Alpes, France; Clinique Universitaire d'Hématologie, Grenoble Alpes University Hospital, France
| | - Pascal Mossuz
- TheREx Team "Thérapeutique recombinante expérimentale", TIMC-IMAG Laboratory, "Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble", UMR, UJF, CNRS 5525, University of Grenoble Alpes, France; Laboratoire d'Hématologie cellulaire, Institut de Biologie et Pathologie, Grenoble Alpes University Hospital, France
| |
Collapse
|
97
|
Vaddi K, Verstovsek S, Kiladjian JJ. Ruxolitinib: a targeted treatment option for patients with polycythemia vera. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2016; 6:7-19. [PMID: 31360077 PMCID: PMC6467337 DOI: 10.2147/blctt.s101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm characterized by erythrocytosis and the presence of Janus kinase (JAK) 2V617F or similar mutations. This review summarizes the pathophysiology of PV, the challenges associated with traditional treatment options, and the scientific rationale and supportive clinical evidence for targeted therapy with ruxolitinib. Accumulating evidence indicates that activating mutations in JAK2 drive the PV disease state. Traditional PV treatment strategies, including aspirin, phlebotomy, and cytoreductive agents such as hydroxyurea, provide clinical benefits for some but not all patients and may not adequately treat PV-related symptoms. Furthermore, traditional treatment approaches are associated with potential side effects that may limit their usage and lead some patients to discontinue the treatment. Ruxolitinib is an orally available small-molecule tyrosine kinase inhibitor that is a potent and selective inhibitor of JAK1/JAK2. Ruxolitinib is approved in the US for patients with PV with an inadequate response or intolerance to hydroxyurea and in Europe for adults with PV who are resistant to or intolerant of hydroxyurea. In the Phase III RESPONSE registration trial, ruxolitinib was superior to the best available therapy in patients with PV who were resistant to or intolerant of hydroxyurea in controlling hematocrit levels, reducing spleen volume, and improving PV-related symptoms and quality-of-life measures. The most common nonhematologic adverse events in ruxolitinib-treated patients were headache, diarrhea, pruritus, and fatigue in the RESPONSE trial; hematologic adverse events were primarily grade 1 or 2. In the Phase IIIb nonregistration RELIEF trial, there were nonsignificant trends toward an improved symptom control in patients with PV on a stable hydroxyurea dose who were generally well controlled but reported disease-associated symptoms and switched to ruxolitinib vs those who continued hydroxyurea therapy. Updated treatment guidelines will be important for educating physicians about the role of ruxolitinib in the treatment of patients with PV.
Collapse
Affiliation(s)
- Kris Vaddi
- Drug Discovery, Incyte Corporation, Wilmington, DE,
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Jacques Kiladjian
- Clinical Investigations Center, Hôpital Saint-Louis et Université Paris Diderot, Paris, France
| |
Collapse
|
98
|
Mesa R, Miller CB, Thyne M, Mangan J, Goldberger S, Fazal S, Ma X, Wilson W, Paranagama DC, Dubinski DG, Boyle J, Mascarenhas JO. Myeloproliferative neoplasms (MPNs) have a significant impact on patients' overall health and productivity: the MPN Landmark survey. BMC Cancer 2016; 16:167. [PMID: 26922064 PMCID: PMC4769833 DOI: 10.1186/s12885-016-2208-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Background The Philadelphia chromosome−negative myeloproliferative neoplasms (MPN) myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) negatively affect patient quality of life (QoL) and are associated with increased risk of mortality. Methods The MPN Landmark survey was conducted from May to July 2014 in patients with MF, PV, or ET under active management in the United States. The survey assessed respondent perceptions of disease burden and treatment management and included questions on overall disease burden, QoL, activities of daily living, and work productivity. Outcomes were further analyzed by calculated (ie, not respondent-reported) prognostic risk score and symptom severity quartile. Results The survey was completed by 813 respondents (MF, n = 207; PV, n = 380; ET, n = 226). The median respondent age in each of the 3 MPN subtypes ranged from 62 to 66 years; median disease duration was 4 to 7 years. Many respondents reported that they had experienced MPN-related symptoms ≥1 year before diagnosis (MF, 49 %; PV, 61 %; ET, 58 %). Respondents also reported that MPN-related symptoms reduced their QoL, including respondents with low prognostic risk scores (MF, 67 %; PV, 62 %; ET, 57 %) and low symptom severity (MF, 51 %; PV, 33 %; ET, 15 %). Many respondents, including those with a low prognostic risk score, reported that their MPN had caused them to cancel planned activities or call in sick to work at least once in the preceding 30 days (cancel planned activities: MF, 56 %; PV, 35 %; ET, 35 %; call in sick: MF, 40 %; PV, 21 %; ET, 23 %). Conclusions These findings of the MPN Landmark survey support previous research about the symptom burden experienced by patients with MPNs and are the first to detail the challenges that patients with MPNs experience related to reductions in activities of daily living and work productivity. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2208-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruben Mesa
- Division of Hematology & Medical Oncology, Mayo Clinic Cancer Center, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| | - Carole B Miller
- St. Agnes Hospital, 900 S Caton Ave, Baltimore, MD, 21229, USA.
| | - Maureen Thyne
- Weill Cornell Medical College, 525 E 68Th St Starr 341, New York, NY, 10065, USA.
| | - James Mangan
- University of Pennsylvania, Abramson Cancer Center, Perelman Center for Advanced Medicine, West Pavilion, 2nd Floor, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Sara Goldberger
- Cancer Support Community, 165 W46th Street Suite 1002, New York, NY, 10036, USA.
| | - Salman Fazal
- Allegheny Health Network, 4815 Liberty, Mellon Suite 340, Pittsburgh, PA, 15224, USA.
| | - Xiaomei Ma
- Yale School of Public Health, Laboratory of Epidemiology and Public Health, 60 College Street, Suite 406, New Haven, CT, 06510, USA.
| | - Wendy Wilson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, LF-210, Seattle, WA, 98109, USA.
| | | | - David G Dubinski
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE, 19803, USA.
| | - John Boyle
- ICF International, 530 Gaither Road, Suite 500, Rockville, MD, 20850, USA.
| | - John O Mascarenhas
- Icahn School of Medicine at Mount Sinai, Ruttenberg Treatment Center, 1470 Madison Avenue, 3rd Floor, New York, NY, 10029, USA.
| |
Collapse
|
99
|
Mesa R, Verstovsek S, Kiladjian J, Griesshammer M, Masszi T, Durrant S, Passamonti F, Harrison CN, Pane F, Zachee P, Zhen H, Jones MM, Parasuraman S, Li J, Côté I, Habr D, Vannucchi AM. Changes in quality of life and disease‐related symptoms in patients with polycythemia vera receiving ruxolitinib or standard therapy. Eur J Haematol 2016; 97:192-200. [DOI: 10.1111/ejh.12707] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Ruben Mesa
- Mayo Clinic Cancer Center Scottsdale AZ USA
| | - Srdan Verstovsek
- The University of Texas MD Anderson Cancer Center Houston TX USA
| | | | | | - Tamas Masszi
- St. István and St. László Hospital Budapest Hungary
- Semmelweis University Budapest Hungary
| | - Simon Durrant
- Royal Brisbane & Women's Hospital Brisbane Qld Australia
| | | | | | | | | | | | | | | | - Jingjin Li
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| | - Isabelle Côté
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| | - Dany Habr
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| | | |
Collapse
|
100
|
Association of TNF polymorphisms with JAK2 (V617F) myeloproliferative neoplasms in Brazilian patients. Blood Cells Mol Dis 2015; 57:54-7. [PMID: 26852656 DOI: 10.1016/j.bcmd.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/19/2023]
Abstract
The classical chromosome Philadelphia-negative myeloproliferative neoplasms (MPNs) are a group of disorders that share clinical, hematological, and histological features. Proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) are elevated in patients with MPN. The aim of this study was to verify the association between the polymorphisms of TNF gene (-308G/A and -238 G/A) in BCR-ABL-negative MPN in our population. Blood samples obtained from MPN patients were genotyped for the JAK2V617F mutation and both TNF polymorphisms using PCR-RFLP. Thirty three (26.8%) patients with polycythemia vera (PV), 35 (28.7%) essential thrombocythemia (ET), 22 (17.7%) primary myelofibrosis (PMF), and 33 (26.8%) with unclassifiable MPN (MPNu) were included in the study. The JAK2 V617F mutation was detected in 94 (76.42%) patients. Were observed a significant increase on the frequency of the TNF-238 GA genotype in MPN patients compared to controls (OR=2.21, 95% CI=1.02-4.80, P<0.04). The distribution of the genotypes and allelic frequencies of TNF-308 was significantly different among the MPNs, JAK2V617F positive, PV and PMF, and controls. Our data has demonstrated that the polymorphisms on TNF-238 GA, TNF-308 GA were associated to MPN development in this population, triggered by JAK2 V617F mutation.
Collapse
|