51
|
Liss B, Striessnig J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 2019; 59:263-289. [PMID: 30625283 DOI: 10.1146/annurev-pharmtox-010818-021214] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) mainly arise from degeneration of dopamine neurons within the substantia nigra. As no disease-modifying PD therapies are available, and side effects limit long-term benefits of current symptomatic therapies, novel treatment approaches are needed. The ongoing phase III clinical study STEADY-PD is investigating the potential of the dihydropyridine isradipine, an L-type Ca2+ channel (LTCC) blocker, for neuroprotective PD therapy. Here we review the clinical and preclinical rationale for this trial and discuss potential reasons for the ambiguous outcomes of in vivo animal model studies that address PD-protective dihydropyridine effects. We summarize current views about the roles of Cav1.2 and Cav1.3 LTCC isoforms for substantia nigra neuron function, and their high vulnerability to degenerative stressors, and for PD pathophysiology. We discuss different dihydropyridine sensitivities of LTCC isoforms in view of their potential as drug targets for PD neuroprotection, and we conclude by considering how these aspects could guide further drug development.
Collapse
Affiliation(s)
- Birgit Liss
- Institut für Angewandte Physiologie, Universität Ulm, 89081 Ulm, Germany;
| | - Jörg Striessnig
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie, and Center for Molecular Biosciences Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
52
|
Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 2018; 148:462-479. [PMID: 30203851 DOI: 10.1111/jnc.14587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
Despite the importance of somatodendritic dopamine (DA) release in the Substantia Nigra pars compacta (SNc), its mechanism remains poorly understood. Using a novel approach combining fast-scan controlled-adsorption voltammetry (FSCAV) and single-unit electrophysiology, we have investigated the mechanism of somatodendritic release by directly correlating basal (non-stimulated) extracellular DA concentration ([DA]out ), with pharmacologically-induced changes of firing of nigral dopaminergic neurons in rat brain slices. FSCAV measurements indicated that basal [DA]out in the SNc was 40.7 ± 2.0 nM (at 34 ± 0.5°C), which was enhanced by amphetamine, cocaine, and L-DOPA, and reduced by VMAT2 inhibitor, Ro4-1284. Complete inhibition of firing by TTX decreased basal [DA]out , but this reduction was smaller than the effect of D2 receptor agonist, quinpirole. Despite similar effects on neuronal firing, the larger decrease in [DA]out evoked by quinpirole was attributed to cell membrane hyperpolarization and greater reduction in cytosolic free Ca2+ ([Ca2+ ]in ). Decreasing extracellular Ca2+ also reduced basal [DA]out , despite increasing firing frequency. Furthermore, inhibiting L-type Ca2+ channels decreased basal [DA]out , although specific Cav 1.3 channel inhibition did not affect firing rate. Inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) also decreased [DA]out , demonstrating the importance of intracellular Ca2+ stores for somatodendritic release. Finally, in vivo FSCAV measurements showed that basal [DA]out in the SNc was 79.8 ± 10.9 nM in urethane-anesthetized rats, which was enhanced by amphetamine. Overall, our findings indicate that although tonic somatodendritic DA release is largely independent of action potentials, basal [DA]out is strongly regulated by voltage-dependent Ca2+ influx and release of intracellular Ca2+ . OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Andrew G Yee
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Blaze Forbes
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pang-Ying Cheung
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Mark H Burrell
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter S Freestone
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Janusz Lipski
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
53
|
Tabata Y, Imaizumi Y, Sugawara M, Andoh-Noda T, Banno S, Chai M, Sone T, Yamazaki K, Ito M, Tsukahara K, Saya H, Hattori N, Kohyama J, Okano H. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Reports 2018; 11:1171-1184. [PMID: 30344006 PMCID: PMC6234903 DOI: 10.1016/j.stemcr.2018.09.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Parkinson disease (PD) is a progressive neurological disease caused by selective degeneration of dopaminergic (DA) neurons in the substantia nigra. Although most cases of PD are sporadic cases, familial PD provides a versatile research model for basic mechanistic insights into the pathogenesis of PD. In this study, we generated DA neurons from PARK2 patient-specific, isogenic PARK2 null and PARK6 patient-specific induced pluripotent stem cells and found that these neurons exhibited more apoptosis and greater susceptibility to rotenone-induced mitochondrial stress. From phenotypic screening with an FDA-approved drug library, one voltage-gated calcium channel antagonist, benidipine, was found to suppress rotenone-induced apoptosis. Furthermore, we demonstrated the dysregulation of calcium homeostasis and increased susceptibility to rotenone-induced stress in PD, which is prevented by T-type calcium channel knockdown or antagonists. These findings suggest that calcium homeostasis in DA neurons might be a useful target for developing new drugs for PD patients. Patient-derived DA neurons recapitulate several PD-related disease phenotypes Establishment of a system for drug screening against PD using patient-derived cells Calcium channel antagonists suppress rotenone-induced apoptosis in PARK2 DA neurons The involvement of dysregulated T-type calcium channels in the progression of PD
Collapse
Affiliation(s)
- Yoshikuni Tabata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Yoichi Imaizumi
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Michiko Sugawara
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoe Banno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Masashi Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Kappei Tsukahara
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
54
|
Inoue KI, Miyachi S, Nishi K, Okado H, Nagai Y, Minamimoto T, Nambu A, Takada M. Recruitment of calbindin into nigral dopamine neurons protects against MPTP-Induced parkinsonism. Mov Disord 2018; 34:200-209. [PMID: 30161282 DOI: 10.1002/mds.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/06/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parkinson's disease is caused by dopamine deficiency in the striatum, which is a result of loss of dopamine neurons from the substantia nigra pars compacta. There is a consensus that a subpopulation of nigral dopamine neurons that expresses the calcium-binding protein calbindin is selectively invulnerable to parkinsonian insults. The objective of the present study was to test the hypothesis that dopamine neuron degeneration might be prevented by viral vector-mediated gene delivery of calbindin into the dopamine neurons that do not normally contain it. METHODS A calbindin-expressing adenoviral vector was injected into the striatum of macaque monkeys to be conveyed to cell bodies of nigral dopamine neurons through retrograde axonal transport, or the calbindin-expressing lentiviral vector was injected into the nigra directly because of its predominant uptake from cell bodies and dendrites. The animals in which calbindin was successfully recruited into nigral dopamine neurons were administered systemically with MPTP. RESULTS In the monkeys that had received unilateral vector injections, parkinsonian motor deficits, such as muscular rigidity and akinesia/bradykinesia, appeared predominantly in the limbs corresponding to the non-calbindin-recruited hemisphere after MPTP administration. Data obtained from tyrosine hydroxylase immunostaining and PET imaging for the dopamine transporter revealed that the nigrostriatal dopamine system was preserved better on the calbindin-recruited side. Conversely, on the non-calbindin-recruited control side, many more dopamine neurons expressed α-synuclein. CONCLUSIONS The present results indicate that calbindin recruitment into nigral dopamine neurons protects against the onset of parkinsonian insults, thus providing a novel approach to PD prevention. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shigehiro Miyachi
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,Cognitive Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Katsunori Nishi
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan
| | - Haruo Okado
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi Nambu
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan
| |
Collapse
|
55
|
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative condition associated with tremor, rigidity, dementia, and gastrointestinal symptoms such as constipation, nausea and vomiting. The pathological hallmarks of PD are Lewy bodies and neurites in the brain and peripheral nerves. The major constituent of Lewy bodies is the neuronal protein α-synuclein. Misfolding of α-synuclein confers prion-like properties enabling its spread from cell to cell. Misfolded α-synuclein also serves as a template and induces misfolding of endogenous α-synuclein in recipient cells leading to the formation of oligomers that progress to fibrils and eventually Lewy bodies. Accumulating evidence suggests that PD may arise in the gut. Clinically, gastrointestinal symptoms often appear in patients before other neurological signs and aggregates of α-synuclein have been found in enteric nerves of PD patients. Importantly, patients undergoing vagotomy have a reduced risk of developing PD. Experimentally, abnormal forms of α-synuclein appear in enteric nerves before they appear in the brain and injection of abnormal α-synuclein into the wall of the intestine spreads to the vagus nerve. Ingested toxins and alterations in gut microbiota can induce α-synuclein aggregation and PD, however, it is not known how PD starts. Recently, it has been shown that sensory cells of the gut known as enteroendocrine cells (EECs) contain α-synuclein and synapse with enteric nerves, thus providing a connection from the gut to the brain. It is possible that abnormal α-synuclein first develops in EECs and spreads to the nervous system.
Collapse
Affiliation(s)
- Rodger A Liddle
- Department of Medicine, Duke University Medical Center and Department of Veterans Affairs Health Care System, Durham, NC 27710, United States.
| |
Collapse
|
56
|
Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB, Ohm JE. MPP + decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep 2018; 8:11715. [PMID: 30082759 PMCID: PMC6079049 DOI: 10.1038/s41598-018-29528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons (DNs), with currently available therapeutics, such as L-Dopa, only able to relieve some symptoms. Stem cell replacement is an attractive therapeutic option for PD patients, and DNs derived by differentiating patient specific stem cells under defined in-vitro conditions may present a viable opportunity to replace dying neurons. We adopted a previously published approach to differentiate Mesenchymal Stem Cells (MSCs) into DN using a 12-day protocol involving FGF-2, bFGF, SHH ligand and BDNF. While MSC-derived DNs have been characterized for neuronal markers and electrophysiological properties, we investigated store-operated calcium entry (SOCE) mechanisms of these DNs under normal conditions, and upon exposure to environmental neurotoxin, 1-methyl, 4-phenyl pyridinium ion (MPP+). Overall, we show that MSC-derived DNs are functional with regard to SOCE mechanisms, and MPP+ exposure dysregulates calcium signaling, making them vulnerable to neurodegeneration. Since in-vitro differentiation of MSCs into DNs is an important vehicle for PD disease modeling and regenerative medicine, the results of this study may help with understanding of the pathological mechanisms underlying PD.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Sumali Pandey
- Biosciences Department, Minnesota State University, Moorhead, Moorhead, MN, USA
| | - Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - James D Foster
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, TX, 78229, San Antonio, USA.
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|
57
|
Abstract
The development of an intervention to slow or halt disease progression remains the greatest unmet therapeutic need in Parkinson's disease. Given the number of failures of various novel interventions in disease-modifying clinical trials in combination with the ever-increasing costs and lengthy processes for drug development, attention is being turned to utilizing existing compounds approved for other indications as novel treatments in Parkinson's disease. Advances in rational and systemic drug repurposing have identified a number of drugs with potential benefits for Parkinson's disease pathology and offer a potentially quicker route to drug discovery. Here, we review the safety and potential efficacy of the most promising candidates repurposed as potential disease-modifying treatments for Parkinson's disease in the advanced stages of clinical testing.
Collapse
Affiliation(s)
- Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
58
|
Wu S, Lei L, Song Y, Liu M, Lu S, Lou D, Shi Y, Wang Z, He D. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: the role of mitochondria-associated membrane proteins in Parkinsonism. Exp Neurol 2018; 309:67-78. [PMID: 30076829 DOI: 10.1016/j.expneurol.2018.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is considered as a critical mechanism in the pathogenesis of Parkinson's disease (PD). Increasing evidence supports the notion of mitochondria-associated membranes (MAMs) in mitochondrial dysfunction; yet little is known about the role of MAMs-related proteins in the pathogenesis of PD. Herein we exposed the nematode Caenorhabditis elegans to 0.5-10.0 μM rotenone (RO) or 0.2-1.6 mM paraquat (PQ) for 3 days. Our results showed that both RO and PQ induced similar Parkinsonism including motor deficits and dopaminergic degeneration. RO/PQ caused mitochondrial damages characterized by the increase of vacuole areas and autophagy vesicles, but the decrease of mitochondrial cristae. RO/PQ-impacted mitochondrial function was also demonstrated by the decrease of ATP level and mitochondrial membrane potential. Additionally, the attachment or surrounding of endoplasmic reticulum to the damaged mitochondria indicates ultrastructural alterations in MAMs. Using fluorescently labeled transgenic nematodes, we further found that the expression of tomm-7 and genes of Complex I, II and III was reduced, whereas the expression of pink-1 was increased in the exposed animals. To determine MAMs in toxicity toward PD, we investigated the mutants of hop-1 and pink-1, encoding presenilin and PTEN-induced putative kinase 1 (PINK1) in mitochondria-associated membranes, respectively. Results demonstrated that the mutation of both hop-1 and pink-1 reduced the vulnerability of lethal, behavioral, and mitochondrial toxicity induced by RO/PQ. These findings suggest that presenilin and PINK1 play important roles in the RO/PQ-induced neurotoxicity through the mechanisms involved in mitochondria-associated membranes.
Collapse
Affiliation(s)
- Siyu Wu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Lili Lei
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Yang Song
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Mengting Liu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Shibo Lu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Dan Lou
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore 21205, USA
| | - Yonghong Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518# Ziyue RD, Shanghai 200241, China
| | - Zhibin Wang
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore 21205, USA.
| | - Defu He
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
59
|
Johnstone AD, Hallett RM, de Léon A, Carturan B, Gibon J, Barker PA. A novel method for quantifying axon degeneration. PLoS One 2018; 13:e0199570. [PMID: 30020957 PMCID: PMC6051587 DOI: 10.1371/journal.pone.0199570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
Axons normally degenerate during development of the mammalian nervous system, but dysregulation of the same genetically-encoded destructive cellular machinery can destroy crucial structures during adult neurodegenerative diseases. Nerve growth factor (NGF) withdrawal from dorsal root ganglia (DRG) axons is a well-established in vitro experimental model for biochemical and cell biological studies of developmental degeneration. Definitive methods for measuring axon degeneration have been lacking and here we report a novel method of axon degeneration quantification from bulk cultures of DRG that enables objective and automated measurement of axonal density over the entire field of radial axon outgrowth from the ganglion. As proof of principal, this new method, written as an R script called Axoquant 2.0, was used to examine the role of extracellular Ca2+ in the execution of cytoskeletal disassembly during degeneration of NGF-deprived DRG axons. This method can be easily applied to examine degenerative or neuroprotective effects of gene manipulations and pharmacological interventions.
Collapse
Affiliation(s)
- Aaron D. Johnstone
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Robin M. Hallett
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Andrés de Léon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Bruno Carturan
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip A. Barker
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
60
|
Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018; 9:455. [PMID: 29971039 PMCID: PMC6018545 DOI: 10.3389/fneur.2018.00455] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made uncovering the factors that render neurons vulnerable in Parkinson's disease (PD). However, the critical pathogenic events leading to cell loss remain poorly understood, complicating the development of disease-modifying interventions. Given that the cardinal motor symptoms and pathology of PD involve the loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc), a majority of the work in the PD field has focused on this specific neuronal population. PD however, is not a disease of DA neurons exclusively: pathology, most notably in the form of Lewy bodies and neurites, has been reported in multiple regions of the central and peripheral nervous system, including for example the locus coeruleus, the dorsal raphe nucleus and the dorsal motor nucleus of the vagus. Cell and/or terminal loss of these additional nuclei is likely to contribute to some of the other symptoms of PD and, most notably to the non-motor features. However, exactly which regions show actual, well-documented, cell loss is presently unclear. In this review we will first examine the strength of the evidence describing the regions of cell loss in idiopathic PD, as well as the order in which this loss occurs. Secondly, we will discuss the neurochemical, morphological and physiological characteristics that render SNc DA neurons vulnerable, and will examine the evidence for these characteristics being shared across PD-affected neuronal populations. The insights raised by focusing on the underpinnings of the selective vulnerability of neurons in PD might be helpful to facilitate the development of new disease-modifying strategies and improve animal models of the disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
61
|
Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT, Surmeier DJ. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018; 128:2266-2280. [PMID: 29708514 PMCID: PMC5983329 DOI: 10.1172/jci95898] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/13/2018] [Indexed: 01/04/2023] Open
Abstract
The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson's disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients. This treatment diminished cytosolic Ca2+ oscillations in SNc DA neurons without altering autonomous spiking or expression of Ca2+ channels, an effect mimicked by selectively knocking down expression of Cav1.3 channel subunits. Treatment also lowered mitochondrial oxidant stress, reduced a high basal rate of mitophagy, and normalized mitochondrial mass - demonstrating that Cav1 channels drive mitochondrial oxidant stress and turnover in vivo. Thus, chronic isradipine treatment remodeled SNc DA neurons in a way that should not only diminish their vulnerability to mitochondrial challenges, but to autophagic stress as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
62
|
Tian J, Vemula SR, Xiao J, Valente EM, Defazio G, Petrucci S, Gigante AF, Rudzińska‐Bar M, Wszolek ZK, Kennelly KD, Uitti RJ, van Gerpen JA, Hedera P, Trimble EJ, LeDoux MS. Whole-exome sequencing for variant discovery in blepharospasm. Mol Genet Genomic Med 2018; 6:601-626. [PMID: 29770609 PMCID: PMC6081235 DOI: 10.1002/mgg3.411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/01/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. METHODS We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. RESULTS Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. CONCLUSIONS Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns.
Collapse
Affiliation(s)
- Jun Tian
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
- Department of NeurologySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Satya R. Vemula
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics UnitIRCCS Santa Lucia FoundationRomeItaly
| | - Giovanni Defazio
- Department of Basic Clinical Sciences, Neuroscience and Sense OrgansAldo Moro University of BariBariItaly
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Simona Petrucci
- Department of Neurology and PsychiatrySapienza University of RomeRomeItaly
| | - Angelo Fabio Gigante
- Department of Basic Clinical Sciences, Neuroscience and Sense OrgansAldo Moro University of BariBariItaly
| | - Monika Rudzińska‐Bar
- Department of NeurologyFaculty of MedicineMedical University of SilesiaKatowicePoland
| | | | | | - Ryan J. Uitti
- Department of NeurologyMayo Clinic FloridaJacksonvilleFlorida
| | | | - Peter Hedera
- Department of NeurologyVanderbilt UniversityNashvilleTennessee
| | - Elizabeth J. Trimble
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Mark S. LeDoux
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| |
Collapse
|
63
|
Michels S, Ganjam GK, Martins H, Schratt GM, Wöhr M, Schwarting RKW, Culmsee C. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells. Cell Death Discov 2018; 4:54. [PMID: 29760952 PMCID: PMC5945680 DOI: 10.1038/s41420-018-0061-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Affective disorders such as major depression and bipolar disorder are among the most prevalent forms of mental illness and their etiologies involve complex interactions between genetic and environmental risk factors. Over the past ten years, several genome wide association studies (GWAS) have identified CACNA1C as one of the strongest genetic risk factors for the development of affective disorders. However, its role in disease pathogenesis is still largely unknown. Vulnerability to affective disorders also involves diverse environmental risk factors such as perinatal insults, childhood maltreatment, and other adverse pathophysiological or psychosocial life events. At the cellular level, such environmental influences may activate oxidative stress pathways, thereby altering neuronal plasticity and function. Mitochondria are the key organelles of energy metabolism and, further, highly important for the adaptation to oxidative stress. Accordingly, multiple lines of evidence including post-mortem brain and neuro-imaging studies suggest that psychiatric disorders are accompanied by mitochondrial dysfunction. In this study, we investigated the effects of Cacna1c downregulation in combination with glutamate-induced oxidative stress on mitochondrial function, Ca2+ homeostasis, and cell viability in mouse hippocampal HT22 cells. We found that the siRNA-mediated knockdown of Cacna1c preserved mitochondrial morphology, mitochondrial membrane potential, and ATP levels after glutamate treatment. Further, Cacna1c silencing inhibited excessive mitochondrial reactive oxygen species formation and calcium influx, and protected the HT22 cells from oxidative cell death. Overall, our findings suggest that the GWAS-confirmed psychiatric risk gene CACNA1C plays a major role in oxidative stress pathways with particular impact on mitochondrial integrity and function.
Collapse
Affiliation(s)
- Susanne Michels
- 1Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany
| | - Goutham K Ganjam
- 1Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany
| | - Helena Martins
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,3Department of Health Sciences and Technology, Systems Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Gerhard M Schratt
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,3Department of Health Sciences and Technology, Systems Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Markus Wöhr
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,4Department of Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University, Marburg, Germany
| | - Rainer K W Schwarting
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,4Department of Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University, Marburg, Germany
| | - Carsten Culmsee
- 1Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany
| |
Collapse
|
64
|
Imbriani P, Schirinzi T, Meringolo M, Mercuri NB, Pisani A. Centrality of Early Synaptopathy in Parkinson's Disease. Front Neurol 2018; 9:103. [PMID: 29545770 PMCID: PMC5837972 DOI: 10.3389/fneur.2018.00103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Significant advances have been made in the understanding of the numerous mechanisms involved in Parkinson’s disease (PD) pathogenesis. The identification of PD pathogenic mutations and the use of different animal models have contributed to better elucidate the processes underlying the disease. Here, we report a brief survey of some relevant cellular mechanisms, including autophagic–lysosomal dysfunction, endoplasmic reticulum stress, and mitochondrial impairment, with the main aim to focus on their potential convergent roles in determining early alterations at the synaptic level, mainly consisting in a decrease in dopamine release at nigrostriatal terminals and loss of synaptic plasticity at corticostriatal synapses. In a number of experimental models, this synaptopathy has been shown to be an initial, central event in PD pathogenesis, preceding neuronal damage, thereby representing a valuable tool for testing potential disease-modifying treatments.
Collapse
Affiliation(s)
- Paola Imbriani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia (IRCCS), Rome, Italy
| |
Collapse
|
65
|
Chao RY, Cheng CH, Wu SN, Chen PC. Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J Neurochem 2018; 144:483-497. [PMID: 29265365 DOI: 10.1111/jnc.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Intracellular protein trafficking is tightly regulated, and improper trafficking might be the fundamental provocateur for human diseases including neurodegeneration. In neurons, protein trafficking to and from the plasma membrane affects synaptic plasticity. Voltage-gated potassium channel 2.1 (Kv2.1) is a predominant delayed rectifier potassium (K+ ) current, and electrical activity patterns of dopamine (DA) neurons within the substantia nigra are generated and modulated by the orchestrated function of different ion channels. The pathological hallmark of Parkinson's disease (PD) is the progressive loss of these DA neurons, resulting in the degeneration of striatal dopaminergic terminals. However, whether trafficking of Kv2.1 channels contributes to PD remains unclear. In this study, we demonstrated that MPTP/MPP+ increases the surface expression of the Kv2.1 channel and causes nigrostriatal degeneration by using a subchronic MPTP mouse model. The inhibition of the Kv2.1 channel by using a specific blocker, guangxitoxin-1E, protected nigrostriatal projections against MPTP/MPP+ insult and thus facilitated the recovery of motor coordination. These findings highlight the importance of trafficking of Kv2.1 channels in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Yi Chao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
66
|
García-Beltrán O, Mena NP, Aguirre P, Barriga-González G, Galdámez A, Nagles E, Adasme T, Hidalgo C, Núñez MT. Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS One 2017; 12:e0189043. [PMID: 29228015 PMCID: PMC5724820 DOI: 10.1371/journal.pone.0189043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022] Open
Abstract
Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer’s diseases, Friedreich ataxia and Huntington’s disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Natalia P. Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pabla Aguirre
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Germán Barriga-González
- Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Departamento de Química, Santiago, Chile
| | - Antonio Galdámez
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Edgar Nagles
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Tatiana Adasme
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Integrative Center for Applied Biology and Chemistry (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, CEMC and ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| |
Collapse
|
67
|
Faustini G, Bono F, Valerio A, Pizzi M, Spano P, Bellucci A. Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease? Genes (Basel) 2017; 8:genes8120377. [PMID: 29292725 PMCID: PMC5748695 DOI: 10.3390/genes8120377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a movement disorder characterized by dopaminergic nigrostriatal neuron degeneration and the formation of Lewy bodies (LB), pathological inclusions containing fibrils that are mainly composed of α-synuclein. Dopaminergic neurons, for their intrinsic characteristics, have a high energy demand that relies on the efficiency of the mitochondria respiratory chain. Dysregulations of mitochondria, deriving from alterations of complex I protein or oxidative DNA damage, change the trafficking, size and morphology of these organelles. Of note, these mitochondrial bioenergetics defects have been related to PD. A series of experimental evidence supports that α-synuclein physiological action is relevant for mitochondrial homeostasis, while its pathological aggregation can negatively impinge on mitochondrial function. It thus appears that imbalances in the equilibrium between the reciprocal modulatory action of mitochondria and α-synuclein can contribute to PD onset by inducing neuronal impairment. This review will try to highlight the role of physiological and pathological α-synuclein in the modulation of mitochondrial functions.
Collapse
Affiliation(s)
- Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Federica Bono
- Laboratory of Personalized and Preventive Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
68
|
Cenci MA, Olanow CW. Translating scientific advances into disease-modifying therapies for Parkinson's Disease. Exp Neurol 2017; 298:135-136. [PMID: 29145992 DOI: 10.1016/j.expneurol.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Dept. Exp. Med. Science, Lund University, Lund (Sweden)
| | - C Warren Olanow
- Clintrex LLC; Department of Neurology and Department of Neurosciences, Mount Sinai School of Medicine, New York
| |
Collapse
|