51
|
Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LCS, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010; 74:276-90. [PMID: 20812953 DOI: 10.1111/j.1574-6941.2010.00962.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Seasonal changes and diversity of bacteria in Bohai Bay by RFLP analysis of PCR-amplified 16S rDNA gene fragments. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0456-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 2010; 76:4765-71. [PMID: 20495045 DOI: 10.1128/aem.00047-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel PCR primer system that targets a wide range of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD(alpha)) genes of both Gram-positive and Gram-negative bacteria was developed and used to study their abundance and diversity in two different soils in response to phenanthrene spiking. The specificities and target ranges of the primers predicted in silico were confirmed experimentally by cloning and sequencing of PAH-RHD(alpha) gene amplicons from soil DNA. Cloning and sequencing showed the dominance of phnAc genes in the contaminated Luvisol. In contrast, high diversity of PAH-RHD(alpha) genes of Gram-positive and Gram-negative bacteria was observed in the phenanthrene-spiked Cambisol. Quantitative real-time PCR based on the same primers revealed that 63 days after phenanthrene spiking, PAH-RHD(alpha) genes were 1 order of magnitude more abundant in the Luvisol than in the Cambisol, while they were not detected in both control soils. In conclusion, sequence analysis of the amplicons obtained confirmed the specificity of the novel primer system and revealed a soil type-dependent response of PAH-RHD(alpha) gene-carrying soil bacteria to phenanthrene spiking.
Collapse
|
54
|
Juhanson J, Truu J, Heinaru E, Heinaru A. Survival and catabolic performance of introducedPseudomonasstrains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 2009; 70:446-55. [PMID: 19732146 DOI: 10.1111/j.1574-6941.2009.00754.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jaanis Juhanson
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
55
|
Zhao S, Ramette A, Niu GL, Liu H, Zhou NY. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiol Ecol 2009; 70:159-67. [DOI: 10.1111/j.1574-6941.2009.00773.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
56
|
Adesina MF, Grosch R, Lembke A, Vatchev TD, Smalla K. In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response. FEMS Microbiol Ecol 2009; 69:62-74. [PMID: 19486156 DOI: 10.1111/j.1574-6941.2009.00685.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The rhizosphere competence of 15 in vitro antagonists of Rhizoctonia solani was determined 4 weeks after sowing inoculated lettuce seeds into nonsterile soil. Based on the colonization ability determined by selective plating, eight strains were selected for growth chamber experiments to determine their efficacy in controlling bottom rot caused by R. solani on lettuce. Although in the first experiment all antagonists colonized the rhizosphere of lettuce with CFU counts above 2 x 10(6) g(-1) of root fresh weight, only four isolates significantly reduced disease severity. In subsequent experiments involving these four antagonists, only Pseudomonas jessenii RU47 showed effective and consistent disease suppression. Plate counts and denaturing gradient gel electrophoresis (DGGE) fingerprints of Pseudomonas-specific gacA genes amplified from total community DNA confirmed that RU47 established as the dominant Pseudomonas population in the rhizosphere of inoculated lettuce plants. Furthermore, the DGGE fingerprint revealed that R. solani AG1-IB inoculation severely affected the bacterial and fungal community structure in the rhizosphere of lettuce and that these effects were much less pronounced in the presence of RU47. Although the exact mechanism of antagonistic activity and the ecology of RU47 remain to be further explored, our results suggest that RU47 is a promising agent to control bottom rot of lettuce.
Collapse
Affiliation(s)
- Modupe F Adesina
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), D-38104 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
57
|
Flocco CG, Gomes NCM, Mac Cormack W, Smalla K. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 2009; 11:700-14. [PMID: 19278452 DOI: 10.1111/j.1462-2920.2008.01858.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diversity of naphthalene dioxygenase genes (ndo) in soil environments from the Maritime Antarctic was assessed, dissecting as well the influence of the two vascular plants that grow in the Antarctic: Deschampsia antarctica and Colobanthus quitensis. Total community DNA was extracted from bulk and rhizosphere soil samples from Jubany station and Potter Peninsula, South Shetland Islands. ndo genes were amplified by a nested PCR and analysed by denaturant gradient gel electrophoresis approach (PCR-DGGE) and cloning and sequencing. The ndo-DGGE fingerprints of oil-contaminated soil samples showed even and reproducible patterns, composed of four dominant bands. The presence of vascular plants did not change the relative abundance of ndo genotypes compared with bulk soil. For non-contaminated sites, amplicons were not obtained for all replicates and the variability among the fingerprints was comparatively higher, likely reflecting a lower abundance of ndo genes. The phylogenetic analyses showed that all sequences were affiliated to the nahAc genes closely related to those described for Pseudomonas species and related mobile genetic elements. This study revealed that a microdiversity of nahAc-like genes exists in microbial communities of Antarctic soils and quantitative PCR indicated that their relative abundance was increased in response to anthropogenic sources of pollution.
Collapse
Affiliation(s)
- Cecilia G Flocco
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany.
| | | | | | | |
Collapse
|
58
|
Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 2009; 75:3859-65. [PMID: 19376893 DOI: 10.1128/aem.00414-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of genetically modified (GM), zeaxanthin-accumulating potato plants on microbial communities in the rhizosphere were compared to the effects of different potato cultivars. Two GM lines and their parental cultivar, as well as four other potato cultivars, were grown in randomized field plots at two sites and in different years. Rhizosphere samples were taken at three developmental stages during plant growth and analyzed using denaturing gradient gel electrophoresis (DGGE) fingerprints of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria, Bacillus, Streptomycetaceae, Pseudomonas, gacA, Fungi, and Ascomycetes. In the bacterial DGGE gels analyzed, significant differences between the parental cultivar and the two GM lines were detected mainly for Actinobacteria but also for Betaproteobacteria and Streptomycetaceae, yet these differences occurred only at one site and in one year. Significant differences occurred more frequently for Fungi, especially Ascomycetes, than for bacteria. When all seven plant genotypes were compared, DGGE analysis revealed that different cultivars had a greater effect on both bacterial and fungal communities than genetic modification. The effects of genetic modification were detected mostly at the senescence developmental stage of the plants. The site was the overriding factor affecting microbial community structure compared to the plant genotype. In general, the fingerprints of the two GM lines were more similar to that of the parental cultivar, and the differences observed did not exceed natural cultivar-dependent variability.
Collapse
|
59
|
Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:763-771. [PMID: 19108939 DOI: 10.1016/j.envpol.2008.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 05/27/2023]
Abstract
The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation.
Collapse
Affiliation(s)
- Gui-Lan Niu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
60
|
Aksoy HM, Ozman-Sullivan SK, Ocal H, Celik N, Sullivan GT. The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2008; 46:223-230. [PMID: 18483790 DOI: 10.1007/s10493-008-9155-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/22/2008] [Indexed: 05/26/2023]
Abstract
This study investigated Pseudomonas putida biotype B as a potential biological control agent of Tetranychus urticae. The bacteria were isolated from greenhouse soil from Carsamba, Turkey. The experiment was carried out in a completely randomized plot design under laboratory conditions. For this purpose, spraying and dipping applications of a suspension of P. putida biotype B (10(8)-10(9) colony forming units/ml) were applied to newly emerged, copulated females. Dead mite and egg counts were started on the 3rd day after treatments, and observations were continued daily until all the mites had died and egg hatching had finished. Both types of bacterial application significantly reduced total egg numbers and egg hatching, compared to their respective controls. Bacterial spraying was significantly more effective than dipping-the spray application demonstrated 100% efficacy and resulted in the fewest viable eggs. The results of this study indicated that P. putida biotype B has a strong efficacy in causing mortality in T. urticae.
Collapse
Affiliation(s)
- H Murat Aksoy
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, 55139, Samsun, Turkey
| | | | | | | | | |
Collapse
|
61
|
Marcial Gomes NC, Borges LR, Paranhos R, Pinto FN, Mendonça-Hagler LCS, Smalla K. Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol 2008; 66:96-109. [PMID: 18537833 DOI: 10.1111/j.1574-6941.2008.00519.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Municipal sewage, urban runoff and accidental oil spills are common sources of pollutants in urban mangrove forests and may have drastic effects on the microbial communities inhabiting the sediment. However, studies on microbial communities in the sediment of urban mangroves are largely lacking. In this study, we explored the diversity of bacterial communities in the sediment of three urban mangroves located in Guanabara Bay (Rio de Janeiro, Brazil). Analysis of sediment samples by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments suggested that the overall bacterial diversity was not significantly affected by the different levels of hydrocarbon pollution at each sampling site. However, DGGE and sequence analyses provided evidences that each mangrove sediment displayed a specific structure bacterial community. Although primer sets for Pseudomonas, alphaproteobacterial and actinobacterial groups also amplified ribotypes belonging to taxa not intended to be enriched, sequence analyses of dominant DGGE bands revealed ribotypes related to Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and Rhodocyclales. Members of these groups were often shown to be involved in aerobic or anaerobic degradation of hydrocarbon pollutants. Many of these sequences were only detected in the sampling sites with high levels of anthropogenic inputs of hydrocarbons. Many dominant DGGE ribotypes showed low levels of sequence identity to known sequences, indicating a large untapped bacterial diversity in mangrove ecosystems.
Collapse
|
62
|
Vestergård M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiol Ecol 2008; 64:78-89. [PMID: 18312375 DOI: 10.1111/j.1574-6941.2008.00447.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Differences in bacterial community composition (BCC) between bulk and rhizosphere soil and between rhizospheres of different plant species are assumed to be strongly governed by quantitative and qualitative rhizodeposit differences. However, data on the relationship between rhizodeposit amounts and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with (13)CO(2), root and rhizosphere soil (13)C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot (13)C enrichment (10-24%). AMF did not affect (13)C enrichment. Despite these clear indications of reduced rhizosphere carbon-input, denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles. These results show that a reduction in rhizosphere microbial activity is not necessarily accompanied by changes in BCC, whereas AMF presence inhibits proliferation of some bacterial taxa while stimulating others.
Collapse
Affiliation(s)
- Mette Vestergård
- Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
63
|
Lozada M, Riva Mercadal JP, Guerrero LD, Di Marzio WD, Ferrero MA, Dionisi HM. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol 2008; 8:50. [PMID: 18366740 PMCID: PMC2364624 DOI: 10.1186/1471-2180-8-50] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 03/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. RESULTS Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. CONCLUSION These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.
Collapse
Affiliation(s)
- Mariana Lozada
- Centro Nacional Patagónico (CENPAT-CONICET), Boulevard Brown 2825, Puerto Madryn (9120), Chubut, Argentina.
| | | | | | | | | | | |
Collapse
|
64
|
Coppotelli BM, Ibarrolaza A, Del Panno MT, Morelli IS. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil. MICROBIAL ECOLOGY 2008; 55:173-83. [PMID: 17694405 DOI: 10.1007/s00248-007-9265-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 04/18/2007] [Indexed: 05/16/2023]
Abstract
The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.
Collapse
Affiliation(s)
- B M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI, Facultad de Ciencias Exactas, UNLP-CONICET, Calle 50 y 115, La Plata 1900, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
65
|
Gomes NCM, Borges LR, Paranhos R, Pinto FN, Krögerrecklenfort E, Mendonça-Hagler LCS, Smalla K. Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl Environ Microbiol 2007; 73:7392-9. [PMID: 17905873 PMCID: PMC2168229 DOI: 10.1128/aem.01099-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves.
Collapse
Affiliation(s)
- Newton C Marcial Gomes
- Federal Biological Research Centre for Agriculture and Forestry (BBA), Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
66
|
Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Methods 2007; 69:470-9. [PMID: 17407797 DOI: 10.1016/j.mimet.2007.02.014] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 02/15/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
Bacterial communities of four arable soils--pelosol, gley, para brown soil, and podsol brown soil--were analysed by fingerprinting of 16S rRNA gene fragments amplified from total DNA of four replicate samples for each soil type. Fingerprints were generated in parallel by denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and single strand conformation polymorphism (SSCP) to test whether these commonly applied techniques are interchangeable. PCR amplicons could be separated with all three methods resulting in complex ribotype patterns. Although the fragments amplified comprised different variable regions and lengths, DGGE, T-RFLP and SSCP analyses led to similar findings: (a) a clustering of fingerprints which correlated with soil physico-chemical properties, (b) little variability between the four replicates of the same soil, (c) the patterns of the two brown soils were more similar to each other than to those of the other two soils, and (d) the fingerprints of the different soil types revealed significant differences in a permutation test, which was recently developed for this purpose.
Collapse
Affiliation(s)
- Kornelia Smalla
- Biologische Bundesanstalt für Land- und Forstwirtschaft (BBA), Messeweg 11-12, 38104 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 2006; 56:236-49. [PMID: 16629753 DOI: 10.1111/j.1574-6941.2005.00026.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints.
Collapse
Affiliation(s)
- Rodrigo Costa
- Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|