51
|
Celik C, Gencay A, Ocsoy I. Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochim Biophys Acta Gen Subj 2021; 1865:129801. [PMID: 33238195 PMCID: PMC7680693 DOI: 10.1016/j.bbagen.2020.129801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to lack of approved drugs and vaccines, the medical world has resorted to older drugs, produced for viral infections and other diseases, as a remedy to combat COVID-19. The accumulating evidence from in vitro and in vivo studies for SARS-CoV and MERS-CoV have demonstrated that several polyphenols found in plants and zinc- polyphenol clusters have been in use as herbal medicines have antiviral activities against viruses with various mechanisms. SCOPE OF REVIEW Curcumin, zinc and zinc-ionophores have been considered as nutraceuticals and nutrients showing great antiviral activities with their medicinal like activities. MAJOR CONCLUSIONS In this work, we discussed the potential prophylactic and/or therapeutic effects of curcumin, zinc and zinc-ionophores in treatment of viral infections including COVID-19. GENERAL SIGNIFICANCE Curcuminoids and Zinc classified as nutraceuticals under GRAS (Generally Recognized As Safe) by FDA can provide complementary treatment for COVID 19 patients with their immunity-boosting and antiviral properties.
Collapse
Affiliation(s)
- Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ayse Gencay
- Department of Virology, Faculty of Veterinary, Erciyes University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
52
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
53
|
Kumar A, Singh AK, Tripathi G. Phytochemicals as Potential Curative Agents against Viral Infection: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200910093524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present pandemic erupted due to highly contagious coronavirus SARS-CoV-
2, and lack of any efficient therapy to restrain its infection and treatment, led the scientific
community to re-evaluate the efficacy of commonly available phytochemicals as potential
therapeutic agents. The vast pharmacological activities and medicinal significance of the
plant-derived natural products against a diverse range of physiological disorders and diseases
are well documented. Under the current health emergency across the world, there is an
urgent requirement of repurposing of the available FDA approved drugs and natural products
which could help in controlling the infections and alleviating the severity of the diseases
as discovering entirely new chemical entity as a novel drug would be a protracted and
costly journey. Some of the phytochemicals have already displayed potential anti-viral
activity against different targets of SARS-CoV-2 virus. The present review would provide an account of the
prevalent phytochemicals with antiviral activities, which would help in the development of promising drug therapy
for the treatment of COVID-19 and similar such highly infectious viruses.
Collapse
Affiliation(s)
- Abhijeet Kumar
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| | - Anil Kumar Singh
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| | - Garima Tripathi
- Department of Chemistry, T. N. B. College, TMBU, Bhagalpur, Bihar, India
| |
Collapse
|
54
|
Khosravi A, Hasani A, Rahimi K, Aliaghaei A, Pirani M, Azad N, Ramezani F, Tamimi A, Behnam P, Raoofi A, Fathabadi FF, Abdi S, Abdollahifar MA, Hejazi F. Ameliorating effects of curcumin-loaded superparamagnetic iron oxide nanoparticles (SPIONs) on the mouse testis exposed to the transient hyperthermia: A molecular and stereological study. Acta Histochem 2020; 122:151632. [PMID: 33128988 DOI: 10.1016/j.acthis.2020.151632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Testicular hyperthermia can have negative effects on male fertility. Despite reported therapeutic benefits of curcumin, several factors often limit its application such as low water solubility and instable structure. Curcumin-loaded superparamagnetic iron oxide nanoparticles (SPIONs) were designed to solve its limitation of use. In the present study, we evaluated the effect of curcumin-loaded SPIONs on transient testicular hyperthermia in mouse. MATERIALS AND METHOD A total of 18 adult male NMRI mice were divided into three groups (n = 6): I. Controls (Cont), II. Scrotal hyperthermia (Hyp), III. Scrotal hyperthermia + curcumin-loaded iron particles (240 μL) (Hyp + Cur). After seventy days, the animals were sacrificed and used for further molecular and stereological evaluations. RESULTS Sperm count, motility and viability significantly decreased in group hyp as compared to cont group. Furthermore, Sperm DNA fragmentation and cell apoptosis in testes increased remarkably in group hyp, compared with group cont. Stereological study showed a reduction in number of spermatogenic and Leydig cells, as well as reduced weight and volume of testes in hyp group. Degenerative appearance of testes exposed to hyperthermia was also observed. In addition, higher mRNA expression of inflammatory cytokines (IL1-α, IL6, and TNF-α) was detected in group hyp compared to cont group. However, curcumin-loaded SPIONs alleviated all of the pathologic changes in the Hyp + Cur group compared to the hyp group. CONCLUSION Here, we used nanoparticle form of curcumin in testicular hyperthermia model and showed its ameliorating effects on testes damages caused by heat stress, which can be an appropriate method to overcome the problems that limit curcumin application in cases with increased intra testicular temperature.
Collapse
|
55
|
Jennings MR, Parks RJ. Curcumin as an Antiviral Agent. Viruses 2020; 12:v12111242. [PMID: 33142686 PMCID: PMC7693600 DOI: 10.3390/v12111242] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different fungi, bacteria and viruses. In this review, we summarize recent studies supporting the development of curcumin and its derivatives as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-8123
| |
Collapse
|
56
|
Shirani F, Khorvash F, Arab A. Review on selected potential nutritional intervention for treatment and prevention of viral infections: possibility of recommending these for Coronavirus 2019. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1825483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fatemeh Shirani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Khorvash
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
57
|
Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. J Biomol Struct Dyn 2020; 40:2024-2037. [PMID: 33078675 DOI: 10.1080/07391102.2020.1835719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inspired by the 'There is no scientific evidence that turmeric prevents COVID-19' statement made by WHO, the protective or therapeutic potential of the compounds in turmeric contents was investigated against COVID-19 with in silico methodology. The drugs used for experimental COVID-19 therapies were included in this study using the same method for comparison with turmeric components. The 30 turmeric compounds and nine drugs were performed in the docking procedure for vital proteins of COVID-19. With evaluations based on docking scores, the Prime MMGBSA binding free energy and protein-ligand interactions were identified in detail. The 100 ns MD simulations were also performed to assess the stability of the ligands at the binding site of the target proteins. The Root Mean Square Deviation (RMSD) is used to obtain the average displacement for a particular frame concerning a reference frame. The results of this study are suggesting that turmeric spice have a potential to inhibit the SARS-CoV-2 vital proteins and can be use a therapeutic or protective agent against SARS-CoV-2 via inhibiting key protein of the SARS-CoV-2 virus. The compound 4, 23 and 6 are the most prominent inhibitor for the main protease, the spike glycoprotein and RNA polymerase of virus, respectively. The MD simulation validated the stability of ligand-protein interactions. The compactness of the complexes was shown using a radius of gyration. ADME properties of featured compounds are in range of 95% drug molecules. It is hoped that the outputs of this study will contribute to the struggle of humanity with COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Emirik
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
58
|
AbouAitah K, Swiderska-Sroda A, Kandeil A, Salman AMM, Wojnarowicz J, Ali MA, Opalinska A, Gierlotka S, Ciach T, Lojkowski W. Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs. Int J Nanomedicine 2020; 15:5181-5202. [PMID: 32801685 PMCID: PMC7398888 DOI: 10.2147/ijn.s247692] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses. Materials and Methods In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explored as a novel antiviral nanoformulations targeting the highly pathogenic avian influenza H5N1 virus. Also, the immunomodulatory effects were investigated in vitro tests and anti-inflammatory activity was determined in vivo using the acute carrageenan-induced paw edema rat model. Results Prodrugs alone or the MSNs displayed weaker antiviral effects as evidenced by virus titers and plaque formation compared to nanoformulations. The MSNs-NH2-SH and MSNs-NH2-SH-QR2 nanoformulations displayed a strong virucidal by inactivating the H5N1 virus. They induced also strong immunomodulatory effects: they inhibited cytokines (TNF-α, IL-1β) and nitric oxide production by approximately 50% for MSNs-NH2-SH-QR2 (containing both SH and QR). Remarkable anti-inflammatory effects were observed during in vivo tests in an acute carrageenan-induced rat model. Conclusion Our preliminary findings show the potential of nanotechnology for the application of natural prodrug substances to produce a novel safe, effective, and affordable antiviral drug.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland.,Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C.12622, Dokki, Giza, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Division, National Research Centre (NRC) P.C.12622, Dokki, Giza, Egypt
| | - Asmaa M M Salman
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622, Dokki, Giza, Egypt
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Division, National Research Centre (NRC) P.C.12622, Dokki, Giza, Egypt
| | - Agnieszka Opalinska
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
59
|
Yang F, Zhang Y, Tariq A, Jiang X, Ahmed Z, Zhihao Z, Idrees M, Azizullah A, Adnan M, Bussmann RW. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytother Res 2020; 34:3124-3136. [PMID: 32468635 PMCID: PMC7283886 DOI: 10.1002/ptr.6770] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022]
Abstract
The recent and ongoing outbreak of coronavirus disease (COVID‐19) is a huge global challenge. The outbreak, which first occurred in Wuhan City, Hubei Province, China and then rapidly spread to other provinces and to more than 200 countries abroad, has been declared a global pandemic by the World Health Organization. Those with compromised immune systems and/or existing respiratory, metabolic or cardiac problems are more susceptible to the infection and are at higher risk of serious illness or even death. The present review was designed to report important functional food plants with immunomodulatory and anti‐viral properties. Data on medicinal food plants were retrieved and downloaded from English‐language journals using online search engines. The functional food plants herein documented might not only enhance the immune system and cure respiratory tract infections but can also greatly impact the overall health of the general public. As many people in the world are now confined to their homes, inclusion of these easily accessible plants in the daily diet may help to strengthen the immune system and guard against infection by SARS‐CoV‐2. This might reduce the risk of COVID‐19 and initiate a rapid recovery in cases of SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Fan Yang
- The Medical Center of General Practice, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yue Zhang
- The Medical Center of General Practice and Nephrology Department, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Xinjiang Institute of Ecology and Geography, Cele, Xinjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolan Jiang
- The Medical Center of General Practice, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zeeshan Ahmed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Xinjiang Institute of Ecology and Geography, Cele, Xinjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhihao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Xinjiang Institute of Ecology and Geography, Cele, Xinjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Idrees
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
| | - Azizullah Azizullah
- Department of Botanical Studies and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical Studies and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rainer W Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
60
|
Zhang Z, Morris‐Natschke SL, Cheng Y, Lee K, Li R. Development of anti‐influenza agents from natural products. Med Res Rev 2020; 40:2290-2338. [DOI: 10.1002/med.21707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi‐Jun Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Susan L. Morris‐Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Yung‐Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kuo‐Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Chinese Medicine Research and Development Center China Medical University and Hospital Taichung Taiwan
| | - Rong‐Tao Li
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
61
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
62
|
Nilashi M, Samad S, Yusuf SYM, Akbari E. Can complementary and alternative medicines be beneficial in the treatment of COVID-19 through improving immune system function? J Infect Public Health 2020; 13:893-896. [PMID: 32451258 PMCID: PMC7237937 DOI: 10.1016/j.jiph.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mehrbakhsh Nilashi
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Sarminah Samad
- Department of Business Administration, College of Business and Administration, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Salma Yasmin Mohd Yusuf
- Primary Care Medicine Discipline, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000, Selangor, Malaysia
| | - Elnaz Akbari
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
63
|
Mani Mishra P, Uversky VN, Nandi CK. Serum albumin-mediated strategy for the effective targeting of SARS-CoV-2. Med Hypotheses 2020; 140:109790. [PMID: 32353740 PMCID: PMC7195355 DOI: 10.1016/j.mehy.2020.109790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Novel coronavirus (NCoV-19), also known as SARS CoV-2, is a pathogen causing an emerging infection that rapidly increases in incidence and geographic range, is associated with the ever-increasing morbidity and mortality rates, and shows sever economic impact worldwide. The WHO declares the NCoV-19 infection disease (COVID-19) a Public Health Emergency of International Concern on 30 January 2020 and subsequently, on March 11, 2020, declared it a Global Pandemic. Although some people infected with SARS CoV-2 have no symptoms, the spectrum of symptomatic infection ranges from mild to critical, with most COVID-19 infections being not severe. The common mild symptoms include body aches, dry cough, fatigue, low-grade fever, nasal congestion, and sore throat. More severe COVID-19 symptoms are typical of pneumonia, and upon progression, the patient's condition can worsen with severe respiratory and cardiac problems. Currently, there is no drug or vaccine for curing patients. It has been observed that people with challenged immunity are highly prone to SARS CoV-2 infection and least likely to recover. Also, older adults and people of any age with serious underlying medical conditions might be at higher risk for severe forms of COVID-19. We are suggesting here a strategy for the COVID-19 treatment that could be effective in curing the patients in the current scenario when no efficient medicine or Vaccine is currently available, and Clinicians solely depend upon the performing trials with drugs with known antiviral activities. Our proposed strategy is based on the compilation of published scientific research and concepts. The different published research indicates the success of a similar strategy in different physiological conditions, and such a strategy is widely studied at the cellular level and in animal models.
Collapse
Affiliation(s)
- Pushpendra Mani Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region 142290, Russia.
| | - Chayan K Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
64
|
Lobo de Sá FD, Butkevych E, Nattramilarasu PK, Fromm A, Mousavi S, Moos V, Golz JC, Stingl K, Kittler S, Seinige D, Kehrenberg C, Heimesaat MM, Bereswill S, Schulzke JD, Bücker R. Curcumin Mitigates Immune-Induced Epithelial Barrier Dysfunction by Campylobacter jejuni. Int J Mol Sci 2019; 20:ijms20194830. [PMID: 31569415 PMCID: PMC6802366 DOI: 10.3390/ijms20194830] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10−/− mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response—represented by TNF-α, IL-1β, and IL-6 secretion—was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.
Collapse
Affiliation(s)
- Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Anja Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Verena Moos
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Julia C Golz
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany.
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany.
| | - Sophie Kittler
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, 30559 Hannover, Germany.
| | - Diana Seinige
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, 30559 Hannover, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
65
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
66
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
68
|
Vora J, Patel S, Sinha S, Sharma S, Srivastava A, Chhabria M, Shrivastava N. Structure based virtual screening, 3D-QSAR, molecular dynamics and ADMET studies for selection of natural inhibitors against structural and non-structural targets of Chikungunya. J Biomol Struct Dyn 2018; 37:3150-3161. [PMID: 30114965 DOI: 10.1080/07391102.2018.1509732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transmission of mosquito-borne Chikungunya virus (CHIKV) has large epidemics worldwide. Till date, there are neither anti-viral drugs nor vaccines available for the treatment of Chikungunya. Accumulated evidences suggest that some natural compounds i.e., Epigallocatechin gallate, Harringtonine, Apigenin, Chrysin, Silybin, etc. have the capability to inhibit CHIKV replication in vitro. Natural compounds are known to possess less or no side effects. Therefore, natural compound in its purified or crude extracts form could be the preeminent and safe mode of therapies for Chikungunya. Wet lab screening and identification of natural compounds against Chikungunya targets is a time consuming and expensive exercise. In the present study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), Three Dimensional Quantitative Structure Activity Relation (3D-QSAR) and ADME properties to screen out potential compounds. Aim of the study is to identify potential lead/s from natural sources using in silico techniques that can be developed as a drug like molecule against Chikungunya infection and replication. Three softwares were used for molecular docking studies. Potential ligands selected by docking studies were subsequently subjected 3D-QSAR studies to predict biological activity. Based on docking scores and pIC50 value, potential anti-Chikungunya compounds were identified. Best docked receptor-ligands were also subjected to MD for more accurate estimation. Lipinski's rule and ADME studies of the identified compounds were also studied to assess their drug likeness properties. Results of in silico findings, led to identification of few best fit compounds of natural origin against targets of Chikungunya virus which may lead to discovery of new drugs for Chikungunya. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaykant Vora
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India.,b Registered Ph.D. student of Gujarat University , Ahmedabad , Gujarat , India
| | - Shivani Patel
- c Department of Pharmaceutical Chemistry , L.M. College of Pharmacy , Ahmedabad , Gujarat , India
| | - Sonam Sinha
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India.,b Registered Ph.D. student of Gujarat University , Ahmedabad , Gujarat , India
| | - Sonal Sharma
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| | - Anshu Srivastava
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| | - Mahesh Chhabria
- c Department of Pharmaceutical Chemistry , L.M. College of Pharmacy , Ahmedabad , Gujarat , India
| | - Neeta Shrivastava
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| |
Collapse
|
69
|
Richart SM, Li YL, Mizushina Y, Chang YY, Chung TY, Chen GH, Tzen JTC, Shia KS, Hsu WL. Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. J Food Drug Anal 2018; 26:1015-1023. [PMID: 29976394 PMCID: PMC9303033 DOI: 10.1016/j.jfda.2017.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 12/01/2022] Open
Abstract
Curcumin (Cur), a polyphenolic compound extracted from spice and common food colourant turmeric, contains versatile bio-activities. Monoacetylcurcumin (MAC), a structural analogue of Cur, differs from Cur by acetyl modification, but retains enone groups. Comparative analysis revealed MAC effectively inhibited influenza virus infection (IAV) to a similar extent as, if not superior to, curcumin. Both compounds mildly reduced viral NA activity. Surprisingly, unlike Cur, the MAC inhibition of IAV did not occur through the blocking of HA activity. However, MAC strongly dampened Akt phosphorylation, the prerequisite signalling for efficient IAV propagation. A much stronger inhibition effect on IAV infection was observed when MAC treatment was in combination with Cur. Collectively, MAC demonstrated clear antiviral activity, and likely inhibited IAV via multiple mechanisms that were not identical to Cur. Importantly, Cur and MAC in combination synergistically inhibited IAV infection.
Collapse
Affiliation(s)
- Sarah M. Richart
- Department of Biology and Chemistry, Azusa Pacific University, Azusa, CA,
USA
| | - Yi-Lin Li
- Department of Biology and Chemistry, Azusa Pacific University, Azusa, CA,
USA
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung,
Taiwan
| | - Yoshiyuki Mizushina
- Graduate School of Agriculture, Shinshu University, Kamiina-gun, Nagano, 399-4598,
Japan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, 402,
Taiwan
| | - Tse-Yu Chung
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung,
Taiwan
| | - Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung,
Taiwan
| | - Jason Tze-Cheng Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung,
Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institute, Miaoli County, 35053,
Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung,
Taiwan
- Corresponding author: Graduate Institute of Microbiology and Public Health, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan. Fax: +886 4 22852186. E-mail address: (W.-L. Hsu)
| |
Collapse
|
70
|
Kurskaya OG, Murashkina TA, Alekseev AY, Sharshov KA, Romakh LP, Derko AA, Troitskii AV, Bystrova TN, Shkurupy VA, Shestopalov AM. Study of Antiviral Efficiency of Oxidized Dextrans In Vitro and In Vivo. Bull Exp Biol Med 2018; 165:248-251. [PMID: 29923002 DOI: 10.1007/s10517-018-4140-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 01/06/2023]
Abstract
Antiviral efficiency of oxidized dextrans (OD) with different molecular weights and oxidation degree (OD40min, OD70min, OD40max, and OD70 max) was studied in vitro and in vivo. Dextrans OD40max and OD70max prevented the development of the cytopathic effect of influenza A(H1N1)pdm09 virus in more than 50% MDCK cells vs. control (no OD). Four intranasal doses of OD40min, OD40max, and OD70min and one intranasal dose of OD70max before infection of BALB/c mice with A(H1N1)pdm09 influenza virus significantly reduced mortality and prolonged life span in comparison with controls receiving saline. These and our previous data attest to clear-cut preventive effect of OD in influenza infection.
Collapse
Affiliation(s)
- O G Kurskaya
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia.
| | - T A Murashkina
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - A Yu Alekseev
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - K A Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - L P Romakh
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - A A Derko
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - A V Troitskii
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - T N Bystrova
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - V A Shkurupy
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia.,Novosibirsk Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A M Shestopalov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| |
Collapse
|
71
|
Banuppriya G, Sribalan R, Padmini V. Synthesis and characterization of curcumin-sulfonamide hybrids: Biological evaluation and molecular docking studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Cardea S, Baldino L, Reverchon E. Comparative study of PVDF-HFP-curcumin porous structures produced by supercritical assisted processes. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
73
|
Ahmadi F, Vahedpour T, Alizadeh AA. The evaluation of Cr-curcumin-DNA complexation by experimental and theoretical approaches. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:35-52. [PMID: 29336691 DOI: 10.1080/15257770.2017.1414241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromium(III) chloride mediates DNA-DNA cross-linking. Some chromium complexes promote programmed cell death in specific ligand environment through binding to DNA. One strategy that can be supposed for reduction of Cr3+ binding affinity to DNA is using curcumin as a chelator. In the current study, the [Cr(Curcumin)(EtOH)2](NO3)2 (CCC) was synthesized and characterized by UV/Vis, FT-IR, CHN and spectrophotometric titration techniques. The mole ratio plot revealed a 1:1 complex between Cr3+ and curcumin in solution. Binding interaction of this complex with calf thymus-DNA (CT-DNA) was investigated using UV/Vis, circular dichroism (CD), FT-IR and cyclic voltammetry. The intrinsic binding constants of CCC with DNA, measured by UV/Vis and cyclic voltammetry, were 1.60 × 105 and 1.13 × 105, respectively. The thermodynamic studies showed that the reaction is enthalpy and entropy favoured. CD analysis revealed that only Λ-CCC interacts with DNA and Δ-CCC form has no tendency towards DNA. Based on FT-IR studies, it was understood that CCC interacts with DNA via minor groove binding. The docking simulation was carried out for finding the binding mode of CCC to DNA, too. All of data demonstrated that the curcumin significantly reduced the affinity of Cr3+ to the DNA and the form of Δ-CCC has no interaction with DNA.
Collapse
Affiliation(s)
- Farhad Ahmadi
- a Medicinal Chemistry Department , Faculty of Pharmacy-International Campous, Iran University of Medical Sciences
| | - Teymour Vahedpour
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Faculty of pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Akbar Alizadeh
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
74
|
Vora J, Patel S, Sinha S, Sharma S, Srivastava A, Chhabria M, Shrivastava N. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV. J Biomol Struct Dyn 2018; 37:131-146. [PMID: 29268664 DOI: 10.1080/07391102.2017.1420489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIDS is one of the multifaceted diseases and this underlying complexity hampers its complete cure. The toxicity of existing drugs and emergence of multidrug-resistant virus makes the treatment worse. Development of effective, safe and low-cost anti-HIV drugs is among the top global priority. Exploration of natural resources may give ray of hope to develop new anti-HIV leads. Among the various therapeutic targets for HIV treatment, reverse transcriptase, protease, integrase, GP120, and ribonuclease are the prime focus. In the present study, we predicted potential plant-derived natural molecules for HIV treatment using computational approach, i.e. molecular docking, quantitative structure activity relationship (QSAR), and ADMET studies. Receptor-ligand binding studies were performed using three different software for precise prediction - Discovery studio 4.0, Schrodinger and Molegrow virtual docker. Docking scores revealed that Mulberrosides, Anolignans, Curcumin and Chebulic acid are promising candidates that bind with multi targets of HIV, while Neo-andrographolide, Nimbolide and Punigluconin were target-specific candidates. Subsequently, QSAR was performed using biologically proved compounds which predicted the biological activity of compounds. We identified Anolignans, Curcumin, Mulberrosides, Chebulic acid and Neo-andrographolide as potential natural molecules for HIV treatment from results of molecular docking and 3D-QSAR. In silico ADMET studies showed drug-likeness of these lead molecules. Structure similarities of identified lead molecules were compared with identified marketed drugs by superimposing both the molecules. Using in silico studies, we have identified few best fit molecules of natural origin against identified targets which may give new drugs to combat HIV infection after wet lab validation.
Collapse
Affiliation(s)
- Jaykant Vora
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India.,b Department of Life science, School of Science , Gujarat University , Ahmedabad , Gujarat , India
| | - Shivani Patel
- c Department of Pharmaceutical Chemistry , L.M. College of Pharmacy , Navrangpura, Ahmedabad , Gujarat , India
| | - Sonam Sinha
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| | - Sonal Sharma
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| | - Anshu Srivastava
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| | - Mahesh Chhabria
- c Department of Pharmaceutical Chemistry , L.M. College of Pharmacy , Navrangpura, Ahmedabad , Gujarat , India
| | - Neeta Shrivastava
- a Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Ahmedabad , Gujarat , India
| |
Collapse
|
75
|
|
76
|
Suresh K, Nangia A. Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm 2018. [DOI: 10.1039/c8ce00469b] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable improvements in the pharmacokinetics and high bioavailability of curcumin polymorphs, amorphous, cocrystals, eutectics, and coamorphous solids are discussed. The importance of pharmaceutical solids in the advanced formulation development of herbal and bioactive molecule curcumin is presented.
Collapse
Affiliation(s)
- Kuthuru Suresh
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | - Ashwini Nangia
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
- CSIR-National Chemical Laboratory
| |
Collapse
|
77
|
Guil-Guerrero J, Ramos L, Zúñiga Paredes J, Carlosama-Yépez M, Moreno C, Ruales P. Effects of turmeric rhizome powder and curcumin in poultry production. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/78511/2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
78
|
Antiviral potential of natural compounds against influenza virus hemagglutinin. Comput Biol Chem 2017; 71:207-218. [PMID: 29149637 DOI: 10.1016/j.compbiolchem.2017.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
Influenza virus of different subtypes H1N1, H2N2, H3N2 and H5N1 cause many human pandemic deaths and threatening the people worldwide. The Hemagglutinin (HA) protein mediates viral attachment to host receptors act as an attractive target. The sixteen natural compounds have been chosen to target the HA protein. Molecular docking studies have been performed to find binding affinity of the compounds. Out of the sixteen, three compounds CI, CII and CIII found to posses a higher binding affinity. The molecular dynamics (MD) simulation has been performed to study the structural, dynamical properties for the nine different complexes CI, CII, CIII bound with H1, H2, H3 proteins and the results were compared. The molecular mechanics Poission-Boltzmann surface area (MM-PBSA) method is used to compare the binding free energy, its different energy components and per residue binding contribution. The H1 subtype shows higher binding preference for all the curcumin derivatives than H2 and H3. The binding capability of protein subtypes with curcumin derivatives and the binding affinity of curcumin compounds are in the order H1>H2>H3 and CI>CII>CIII respectively. The two -O-CH3- groups present in the CI compound help to have strong binding with HA protein than CII and CIII. The van der Waals interaction energy plays a significant role for binding in all the complexes. The hydrogen bonding interactions were monitored throughout the MD simulation. The conserved region (153-155) and the helix region (193-194) of H1, H2, H3 protein subtypes are found to possess higher binding susceptibility for binding of the curcumin derivatives.
Collapse
|
79
|
Markov AV, Sen'kova AV, Warszycki D, Salomatina OV, Salakhutdinov NF, Zenkova MA, Logashenko EB. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Sci Rep 2017; 7:13968. [PMID: 29070858 PMCID: PMC5656677 DOI: 10.1038/s41598-017-14029-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic influenza viruses pose a serious public health threat to humans. Although vaccines are available, new antivirals are needed to efficiently control disease progression and virus transmission due to the emergence of drug-resistant viral strains. In this study, we describe the anti-viral properties of Soloxolone methyl (SM) (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, a chemical derivative of glycyrrhetinic acid) against the flu virus. Anti-flu efficacy studies revealed that SM exhibits antiviral activity against the H1N1 influenza A virus in a dose-dependent manner causing a more than 10-fold decrease in virus titer and a reduction in the expression of NP and M2 viral proteins. In a time-of-addition study, SM was found to act at an early stage of infection to exhibit an inhibitory effect on both the attachment step and virus uptake into cells. Also, in infected cells SM downregulates the expression of the inflammatory cytokines IL-6 and TNF-α. In infected mice, SM administered intranasally prior to and after infection significantly decreases virus titers in the lung and prevents post-challenge pneumonia. Together, these results suggest that Soloxolone methyl might serve as an effective therapeutic agent to manage influenza outbreaks and virus-associated complications, and further preclinical and clinical investigation may be warranted.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Alexandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Dawid Warszycki
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna street, Kraków, 31-343, Poland
| | - Oksana V Salomatina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Evgeniya B Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
80
|
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. ASIAN PAC J TROP MED 2017; 10:871-876. [PMID: 29080615 DOI: 10.1016/j.apjtm.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus (H5N1). METHODS Crude extracts of Andrographis paniculata, Curcuma longa (C. longa), Gynostemma pentaphyllum, Kaempferia parviflora (K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin-Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection. RESULTS The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants, C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-α and IFN-β mRNA expressions, suggesting their roles in the inhibition of H5N1 virus replication. CONCLUSIONS To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
Collapse
Affiliation(s)
- Benjaporn Sornpet
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teerapong Potha
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
81
|
Synthesis and In Vitro Anti-Influenza Virus Evaluation of Novel Sialic Acid (C-5 and C-9)-Pentacyclic Triterpene Derivatives. Molecules 2017. [PMID: 28640212 PMCID: PMC6152041 DOI: 10.3390/molecules22071018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug resistant variants of the influenza virus has led to a great need to identify novel and effective antiviral agents. In our previous study, a series of sialic acid (C-2 and C-4)-pentacyclic triterpene conjugates have been synthesized, and a five-fold more potent antiviral activity was observed when sialic acid was conjugated with pentacyclic triterpene via C-4 than C-2. It was here that we further reported the synthesis and anti-influenza activity of novel sialic acid (C-5 and C-9)-pentacyclic triterpene conjugates. Their structures were confirmed by ESI-HRMS, 1H-NMR, and 13C-NMR spectroscopic analyses. Two conjugates (26 and 42) showed strong cytotoxicity to MDCK cells in the CellTiter-Glo assay at a concentration of 100 μM. However, they showed no significant cytotoxicity to HL-60, Hela, and A549 cell lines in MTT assay under the concentration of 10 μM (except compound 42 showed weak cytotoxicity to HL-60 cell line (10 μM, ~53%)). Compounds 20, 28, 36, and 44 displayed weak potency to influenza A/WSN/33 (H1N1) virus (100 μM, ~20–30%), and no significant anti-influenza activity was found for the other conjugates. The data suggested that both the C-5 acetylamide and C-9 hydroxy of sialic acid were important for its binding with hemagglutinin during viral entry into host cells, while C-4 and C-2 hydroxy were not critical for the binding process and could be replaced with hydrophobic moieties. The research presented herein had significant implications for the design of novel antiviral inhibitors based on a sialic acid scaffold.
Collapse
|
82
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
83
|
Baldino L, Cardea S, Reverchon E. Biodegradable membranes loaded with curcumin to be used as engineered independent devices in active packaging. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
84
|
Al-Wabli RI, Sakr TMMH, Khedr MA, Selim AA, El-Rahman MAEMA, Zaghary WA. Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m. Chem Cent J 2016; 10:73. [PMID: 27994638 PMCID: PMC5125034 DOI: 10.1186/s13065-016-0220-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Background One of the most popular techniques for cancer detection is the nuclear medicine technique. The present research focuses on Platelet-12-lipoxygenase (P-12-LOX) as a promising target for treating and radio-imaging tumor tissues. Curcumin was reported to inhibit this enzyme via binding to its active site. Results A novel curcumin derivative was successfully synthesized and characterized with yield of 74%. It was radiolabeled with the diagnostic radioisotope technetium-99m with 84% radiochemical yield and in vitro stability up to 6 h. The biodistribution studies in tumor bearing mice confirmed the high affinity predicted by the docking results with a free binding energy value of (ΔG −50.10 kcal/mol) and affinity (13.64 pki) showing high accumulation in solid tumor with target/non-target ratio >6. Conclusion The newly synthesized curcumin derivative, as a result of a computational study on platelet-12 lipoxygenase, showed its excellent free binding energy (∆G −50.10 kcal/mol) and high affinity (13.64 pKi). It could be an excellent radio-imaging agent that targeting tumor cells via targeting of P-12-LOX.This novel curcumin derivative was successfully synthesized and radiolabeled with technetium-99m and biologically evaluated in tumor bearing mice that showed high accumulation in solid tumor with target/non-target ratio >6 confirming the affinity predicted by the docking results. Predicted binding mode of a new curcumin derivative in complex with 12-LOX active site. b Curcumin itself in the 12-LOX active site biological distribution of 99mTc-curcumin derivative complex in solid tumor bearing Albino mice ![]()
Collapse
Affiliation(s)
- Reem Ibrahim Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | | | - Mohammed Abdou Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795 Egypt
| | - Adly Abdallah Selim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | | | - Wafaa Abdou Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795 Egypt
| |
Collapse
|
85
|
Wang C, Chen X, Hu S, Bai X. Development of a novel stirrerliquid/solid microextraction method for the separation and enrichment of trace levels of active compounds in traditional Chinese medicine. J Sep Sci 2016; 39:4290-4298. [DOI: 10.1002/jssc.201600605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Caiyun Wang
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Xuan Chen
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Shuang Hu
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Xiaohong Bai
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| |
Collapse
|
86
|
Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. ACTA ACUST UNITED AC 2016; 68:1481-1500. [PMID: 27747859 DOI: 10.1111/jphp.12611] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. KEY FINDINGS Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. SUMMARY Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness.
Collapse
Affiliation(s)
- Soumitra Shome
- Departments of Botany and Biotechnology, Karimganj College, Karimganj, Assam, India.,Department of Life Science and Bioinformatics, Assam University, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Assam, India
| | | | | | | |
Collapse
|
87
|
Santezi C, Tanomaru JM, Bagnato VS, Júnior OBO, Dovigo LN. Potential of curcumin-mediated photodynamic inactivation to reduce oral colonization. Photodiagnosis Photodyn Ther 2016; 15:46-52. [DOI: 10.1016/j.pdpdt.2016.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
88
|
Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv 2016; 34:813-826. [DOI: 10.1016/j.biotechadv.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
89
|
Umar S, Shah MAA, Munir MT, Yaqoob M, Fiaz M, Anjum S, Kaboudi K, Bouzouaia M, Younus M, Nisa Q, Iqbal M, Umar W. RETRACTED: Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys. Poult Sci 2016; 95:1513-1520. [PMID: 26944958 DOI: 10.3382/ps/pew069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/14/2016] [Indexed: 07/19/2024] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). The authors retract the above paper due to: 1) conflict of interest among the authors; and 2) addition of coauthor Dr. Muhammad Younus without his knowledge or permission. The authors apologize for these two grave mistakes.
Collapse
Affiliation(s)
- S Umar
- Faculty of Veterinary & Animal Sciences, University of Arid Agriculture, Rawalpindi, Pakistan.
| | - M A A Shah
- Faculty of Veterinary & Animal Sciences, University of Arid Agriculture, Rawalpindi, Pakistan
| | - M T Munir
- Faculty of Veterinary & Animal Sciences, University of Arid Agriculture, Rawalpindi, Pakistan
| | - M Yaqoob
- Faculty of Veterinary & Animal Sciences, University of Arid Agriculture, Rawalpindi, Pakistan
| | - M Fiaz
- Faculty of Veterinary & Animal Sciences, University of Arid Agriculture, Rawalpindi, Pakistan
| | - S Anjum
- Faculty of Veterinary & Animal Sciences, University of Arid Agriculture, Rawalpindi, Pakistan
| | - K Kaboudi
- Department of Poultry Farming and Pathology, National Veterinary School Sidi Thabet, Tunisia
| | - M Bouzouaia
- Department of Poultry Farming and Pathology, National Veterinary School Sidi Thabet, Tunisia
| | - M Younus
- College of Veterinary & Animal Sciences Jhang, Pakistan
| | - Q Nisa
- University of Veterinary & Animal Sciences Lahore Pakistan
| | - M Iqbal
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan
| | - W Umar
- University of Agriculture Faisalabad Pakistan
| |
Collapse
|
90
|
Han X, Shi Y, Si L, Fan Z, Wang H, Xu R, Jiao P, Meng K, Tian Z, Zhou X, Jin H, Wu X, Chen H, Zhang Y, Zhang L, Xiao S, Zhou D. Design, synthesis and biological activity evaluation of novel conjugated sialic acid and pentacyclic triterpene derivatives as anti-influenza entry inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00292g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A total of 24 novel sialic acid–pentacyclic triterpene conjugates were synthesized and evaluated as anti-influenza virus entry inhibitors.
Collapse
|
91
|
Flores DJ, Lee LH, Adams SD. Inhibition of Curcumin-Treated Herpes Simplex Virus 1 and 2 in Vero Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.64027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection. Antimicrob Agents Chemother 2015; 60:1902-6. [PMID: 26711748 DOI: 10.1128/aac.02055-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development.
Collapse
|
93
|
Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2015; 14:57-80. [PMID: 26567957 DOI: 10.1586/14787210.2016.1120670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.
Collapse
Affiliation(s)
| | - Hamid Reza Sodagari
- b Young Researchers and Elite Club , Karaj Branch, Islamic Azad University , Karaj , Iran
| | - Mohammad Hosein Farzaei
- c Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- e Medicinal Plants Research Center , Institute of Medicinal Plants, ACECR , Karaj , Iran.,f International Campus, ICTUMS, Tehran University of Medical Sciences , Tehran , Iran
| | - Maziar Gooshe
- g Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- h Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,i Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,j Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
94
|
Bhunchu S, Rojsitthisak P, Rojsitthisak P. Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
95
|
Awogbindin IO, Olaleye DO, Farombi EO. Kolaviron Improves Morbidity and Suppresses Mortality by Mitigating Oxido-Inflammation in BALB/c Mice Infected with Influenza Virus. Viral Immunol 2015. [PMID: 26200137 DOI: 10.1089/vim.2015.0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAV) induce cytokine storm and host's intracellular redox imbalance to ensure continuous replication and survival, leading to severe immunopathology and death. The unpredictability of broad-spectrum vaccines, the emergence of drug-resistant and/or more virulent strains, the prevalence of the amantadane-resistant IAV, and the prohibitive cost of available drugs especially in resource-poor countries necessitate exploring drugs with novel action mechanisms as anti-influenza agents. This study presents the protective role of kolaviron (KV), a natural antioxidant and anti-inflammatory agent from Garcinia kola seeds, on BALB/c mice challenged with influenza A/Perth/H3N2/16/09 (Pr/H3N2) virus. KV at 400 mg/kg was administered orally to groups of BALB/c mice for 3 days, 3 h, and 1 h prior to infection with 1LD50 or 3LD50 (14-day study) and 5LD50 (6-day study) Pr/H3N2. Pr/H3N2 in the lungs was detected by hemagglutination assay, while oxidative stress and inflammatory biomarkers were assayed in both lungs and liver. Infected mice treated with KV progressively increased in weight with minimal mortality. Single-dose administration of KV at 1 h or 3 h before viral challenge and 3 days pretreatment improved lung aeration and reduced lung consolidation as well as inflammatory cells infiltration in a way that had minimal impact on viral clearance, but attenuated myeloperoxidase activity and nitric oxide production via priming of reduced glutathione levels, thus enhancing the preservation of function in the lungs and liver. This study suggests that KV may be effective for delaying the development of clinical symptoms of influenza virus, and this may be through a mechanism unrelated to those deployed by the existing anti-influenza drugs but closely associated to its antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
| | - David O Olaleye
- 2 Department of Virology, College of Medicine, University of Ibadan , Ibadan, Nigeria
| | | |
Collapse
|
96
|
Sathishkumar P, Hemalatha S, Arulkumar M, Ravikumar R, Yusoff ARM, Hadibarata T, Palvannan T. Curcuminoid Extraction from Turmeric (C
urcuma Longa
L.): Efficacy of Bromine-Modified Curcuminoids Against Food Spoilage Flora. J Food Biochem 2015. [DOI: 10.1111/jfbc.12133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Palanivel Sathishkumar
- Institute of Environmental and Water Resource Management (IPASA); Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | | | - Mani Arulkumar
- Department of Biochemistry; Periyar University; Salem 636 011 Tamil Nadu India
| | - Rajagounder Ravikumar
- Department of Agroforestry; Forest College and Research Institute; Mettupalayam Tamil Nadu India
| | - Abdull Rahim Mohd Yusoff
- Institute of Environmental and Water Resource Management (IPASA); Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Tony Hadibarata
- Institute of Environmental and Water Resource Management (IPASA); Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | | |
Collapse
|
97
|
Chen X, Si L, Liu D, Proksch P, Zhang L, Zhou D, Lin W. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur J Med Chem 2015; 93:182-95. [PMID: 25681711 DOI: 10.1016/j.ejmech.2015.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
A class of prenylated indole diketopiperazine alkaloids including 15 new compounds namely rubrumlines A-O obtained from marine-derived fungus Eurotium rubrum, were tested against influenza A/WSN/33 virus. Neoechinulin B (18) exerted potent inhibition against H1N1 virus infected in MDCK cells, and is able to inhibit a panel of influenza virus strains including amantadine- and oseltamivir-resistant clinical isolates. Mechanism of action studies indicated that neoechinulin B binds to influenza envelope hemagglutinin, disrupting its interaction with the sialic acid receptor and the attachment of viruses to host cells. In addition, neoechinulin B was still efficient in inhibiting influenza A/WSN/33 virus propagation even after a fifth passage. The high potency and broad-spectrum activities against influenza viruses with less drug resistance make neoechinulin B as a new lead for the development of potential inhibitor of influenza viruses.
Collapse
Affiliation(s)
- Xueqing Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Peter Proksch
- Institute für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb.26.23, 40225 Düsseldorf, Germany
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
98
|
Smith AJ, Oertle J, Prato D. Multiple Actions of Curcumin Including Anticancer, Anti-Inflammatory, Antimicrobial and Enhancement via Cyclodextrin. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.63029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 2014; 20:185-205. [PMID: 25547723 PMCID: PMC6272158 DOI: 10.3390/molecules20010185] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| | - Lokesh Deb
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| |
Collapse
|
100
|
Lv Y, Lei N, Wang D, An Z, Li G, Han F, Liu H, Liu L. Protective effect of curcumin against cytomegalovirus infection in Balb/c mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1140-1147. [PMID: 24802527 DOI: 10.1016/j.etap.2014.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Curcumin has been found to suppress the activity of human cytomegalovirus (HCMV) in vitro, whereas its protective effects against HCMV infection in vivo remain unclear. In this study, we aimed to investigate the protective effects of curcumin against HCMV infection in Balb/c mice. Mice were randomly divided into the control, model, model+ganciclovir (positive control), and model+high-dose, model+middle-dose, and model+low-dose curcumin groups. In the model groups, each mouse was given HCMV by tail injection intravenously. Positive control animals were given ganciclovir. Animals in the curcumin treatment groups were given different concentrations of curcumin. The anti-HCMV activities of ganciclovir and curcumin were assessed by serological examination and pathology. Ganciclovir and curcumin treatment reduced the HCMV IgM level and HCMV DNA load; decreased the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), and lactate dehydrogenase (LDH) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) generation in infected mice. These treatments also suppressed malondialdehyde (MDA) content and upregulated superoxide dismutase (SOD) and glutathione (GSH) levels. In addition, both treatments prevented pathological changes of the lung, kidney, liver, and heart tissues in infected mice. Our findings indicate that curcumin protected Balb/c mice against HCMV infection possibly by its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ning Lei
- General Hospital of the Second Artillery, Beijing 100088, PR China
| | - Dan Wang
- General Hospital of the Second Artillery, Beijing 100088, PR China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Guangrun Li
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|