51
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
52
|
Sun J, Wu R, Hu B, Jia C, Rong J, Xiong S, Liu R. Effects of Konjac Glucomannan on Oil Absorption and Safety Hazard Factor Formation of Fried Battered Fish Nuggets. Foods 2022; 11:foods11101437. [PMID: 35627009 PMCID: PMC9141061 DOI: 10.3390/foods11101437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the effects of konjac glucomannan (KGM) on oil absorption and the formation of safety hazard factors in fried battered fish nuggets by measuring advanced glycation end products (AGEs) and acrylamide contents. Other physicochemical properties were determined to explore the reason for oil absorption and formation of safety hazard factors. The acrylamide was found mainly in the crust. The addition of 0.8% KGM could significantly reduce the acrylamide content (p < 0.05). For the battered sample, the AGEs content was far lower than the unbattered. The addition of 0.8% KGM could significantly reduce the AGEs content in the inner layer (p < 0.05). The microstructure showed that the sample with 0.8% KGM had the most compact crust. The compact crust reduced oil and malondialdehyde contents. Combined with the other indicators, the inhibitory effect of 0.8% KGM on acrylamide was closely related with the decreased extent of oil oxidation and Maillard reaction in the samples with 0.8% KGM. The inhibitory effect of 0.8% KGM on AGEs might originate from its lower oil content.
Collapse
Affiliation(s)
- Jingwen Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Benlun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (R.W.); (B.H.); (C.J.); (J.R.); (S.X.)
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
53
|
Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine contents in commercial meat products. Food Res Int 2022; 155:111048. [PMID: 35400433 DOI: 10.1016/j.foodres.2022.111048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/13/2023]
|
54
|
Zhou P, Dong S, Zeng M. Formation of Nε-Carboxymethyl-Lysine and Nε-Carboxyethyl-Lysine in Pacific Oyster (Crassostrea gigas) Induced by Thermal Processing Methods. Front Nutr 2022; 9:883789. [PMID: 35495934 PMCID: PMC9051442 DOI: 10.3389/fnut.2022.883789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are important endogenous hazardous substances produced during the thermal processing of foods, which have attracted much attention due to the potential health risks. The current research first investigated the effect of different thermal processing methods (steaming, boiling, sous vide (SV), and sterilizing) on the formation of two typical markers of AGEs, including Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), in Pacific oyster (Crassostrea gigas). The compositions, lipid oxidation, di-carbonyl compounds, and AGEs in 12 kinds of processed oysters were detected, and the Index values (total Z-score) were calculated. The SV treatment at 70°C caused higher processing yield and lower CEL level while sterilizing in oil at 121°C greatly resulted in the formation of CML. The Index value of SV-treated oysters was much lower than steamed, boiled, and sterilized ones. Correlation analysis showed that the CML and CEL levels were positively correlated with fat content, a* and b* value (p < 0.05), and negatively correlated with moisture content and L* value (p < 0.05). Besides, thiobarbituric acid reactive substances had a negative correlation with CML (r = −0.63, p < 0.05) while no significant correlation with CEL (p > 0.05), suggesting that lipid oxidation had a greater effect on the formation of CML but less on the formation of CEL. In summary, SV treatment at 70°C within 15 min was a recommended thermal processing method to reduce the formation of AGEs in oysters.
Collapse
|
55
|
Wei J, Wu Z, Chai T, He F, Chen Y, Dong X, Shi Y. Effect of the combination of low temperature vacuum heating with tea polyphenol on AGEs in sturgeon fillets. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jianling Wei
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Zhengyang Wu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Tingting Chai
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Fanyu He
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Yuewen Chen
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Xiuping Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
| | - Yugang Shi
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| |
Collapse
|
56
|
Liu Q, Wang S, Wang X, Dong S, Zhao Y, Zeng M. The relationship between the formation of advanced glycation end products and quality attributes of fried sturgeon fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Wu R, Jiang Y, Qin R, Shi H, Jia C, Rong J, Liu R. Study of the formation of food hazard factors in fried fish nuggets. Food Chem 2022; 373:131562. [PMID: 34838400 DOI: 10.1016/j.foodchem.2021.131562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/11/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Fried fish nuggets were prepared from grass carp. The effects of frying time (180℃, 4-6 min) and pretreatment on the formation of food hazard factors in fried fish nuggets were investigated. Advanced glycation endproducts (AGEs), acrylamide (AA), 5-hydroxymethyl furfural (5-HMF), benzo (a) pyrene (BaP) and trans fatty acids (TFAs) mainly presented on the surface of fried samples, but only few AGEs were detected in the interior. The extension of frying time promoted lipid oxidation and the formation of food hazard factors. At the same frying time, the contents of AA, 5-HMF, TFAs and fluorescent AGEs in flour-coated fish nuggets were higher than those in direct fried fish nuggets, while the contents of Nε-carboxymethyllysine (CML) and BaP were lower. Overall, CML and BaP were the main food hazard factors of the direct fried samples, AA was the main food hazard factor of the flour-coated fried samples.
Collapse
Affiliation(s)
- Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Yang Jiang
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Ruike Qin
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Haonan Shi
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University/National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
58
|
Jiang J, Zhang M, Luan D, Xu C, Hua C, Zhu Q, Tao N. Quality assessment of ready‐to‐eat Pacific saury (
Cololabis saira
) using microwave‐assisted thermal sterilisation combined with olive oil vacuum impregnation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiale Jiang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 PR China
| | - Mei Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 PR China
| | - Donglei Luan
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 PR China
- Engineering Research Center of Food Thermal‐processing Technology Shanghai Ocean University Shanghai 201306 PR China
| | - Changhua Xu
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 PR China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai 201306 PR China
| | - Chuanxiang Hua
- College of Marine Sciences National Engineering Research Center for Oceanic Fisheries Shanghai Ocean University Shanghai 201306 PR China
| | - Qingcheng Zhu
- College of Marine Sciences National Engineering Research Center for Oceanic Fisheries Shanghai Ocean University Shanghai 201306 PR China
| | - Ningping Tao
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 PR China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai 201306 PR China
| |
Collapse
|
59
|
Papier K, Hartman L, Tong TYN, Key TJ, Knuppel A. Higher Meat Intake Is Associated with Higher Inflammatory Markers, Mostly Due to Adiposity: Results from UK Biobank. J Nutr 2022; 152:183-189. [PMID: 34587250 PMCID: PMC8754571 DOI: 10.1093/jn/nxab314] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND High meat consumption might play a role in promoting low-grade systemic inflammation, but evidence is limited. OBJECTIVES We examined cross-sectional associations of habitual meat consumption with serum C-reactive protein (CRP) and total white blood cell count (WBCC) in British adults. METHODS We included 403,886 men and women (aged 38-73 y) participating in the UK Biobank who provided information on meat intake (via touchscreen questionnaire) and a nonfasting blood sample at recruitment (2006-2010). For a subset of participants (∼5%), an additional blood sample was collected (median 4.4 y later). We used multivariable linear regression models to estimate associations of meat intake (total meat, unprocessed red meat, processed meat, and poultry) with logCRP and logWBCC. RESULTS The difference in the serum CRP (mg/L) for each 50-g/d higher intake for total meat was 11.6% (95% CI: 11.1, 12.0%), for processed meat was 38.3% (95% CI: 36.0, 40.7%), for unprocessed red meat was 14.4% (95% CI: 13.6, 15.1%), and for poultry was 12.8% (95% CI: 12.0, 13.5%). The difference in the WBCC (×10-9L) for each 50 g/d higher intake of total meat was 1.5% (95% CI: 1.4, 1.6%), for processed meat was 6.5% (95% CI: 6.1, 6.9%), for unprocessed red meat was 1.6% (95% CI: 1.4, 1.7%), and for poultry was 1.6% (95% CI: 1.4, 1.7%). All associations were attenuated after adjustment for adiposity; by 67% with BMI (in kg/m2) and by 58% with waist circumference for total meat and CRP, and by 53% and 47%, respectively, for WBCC, although associations remained statistically significant. Findings of sensitivity analyses in 15,420 participants were similar prospectively, except there were no associations between unprocessed red meat and WBCC. CONCLUSIONS Higher meat consumption, particularly of processed meat, was positively associated with inflammatory markers in these British adults; however, the magnitudes of associations are small and predominantly due to higher adiposity.
Collapse
Affiliation(s)
- Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Lilian Hartman
- John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Lincoln College, University of Oxford, Oxford, United Kingdom
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
A comprehensive review of advanced glycosylation end products and N- Nitrosamines in thermally processed meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
61
|
Eggen MD, Glomb MA. Analysis of Glyoxal- and Methylglyoxal-Derived Advanced Glycation End Products during Grilling of Porcine Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15374-15383. [PMID: 34905354 DOI: 10.1021/acs.jafc.1c06835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reaction of the N6-amino group of lysine residues and 1,2-dicarbonyl compounds during Maillard processes leads to advanced glycation end products (AGEs). In the present work, we deliver a comprehensive analysis of changes of carbohydrates, dicarbonyl structures, and 11 AGEs during the grilling of porcine meat patties. While raw meat contained mainly glyoxal-derived N6-carboxymethyl lysine (CML), grilling led to an increase of predominantly methylglyoxal-derived AGEs N6-carboxyethyl lysine (CEL), N6-lactoyl lysine, methylglyoxal lysine dimer (MOLD), and methylglyoxal lysine amide (MOLA). Additionally, we identified and quantitated a novel methylglyoxal-derived amidine compound N1,N2-di-(5-amino-5-carboxypentyl)-2-lactoylamidine (methylglyoxal lysine amide, MGLA) in heated meat. Analysis of carbohydrates suggested that approximately 50% of the methylglyoxal stemmed from the fragmentation of triosephosphates during the heat treatment. Surprisingly, N6-lactoyl lysine was the major AGE, and based on model incubations, we propose that approximately 90% must be explained by the nonenzymatic acylation of lysine through S-lactoylglutathione, which was quantitated for the first time in meat herein.
Collapse
Affiliation(s)
- Michael D Eggen
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
62
|
Hellwig M, Nitschke J, Henle T. Glycation of N-ε-carboxymethyllysine. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe Maillard reaction is traditionally subdivided into three stages that start consecutively and run in parallel. Here, we show that N-ε-carboxymethyllysine (CML), a compound formed in the late stage of the reaction, can undergo a second glycation event at its secondary amino group leading to a new class of Amadori rearrangement products. When N-α-hippuryl-CML was incubated in the presence of reducing sugars such as glucose, galactose, ribose, xylose, maltose, or lactose in solution for 1 h at 75 °C, the compound was degraded by 6–21%, and N-ε-carboxymethyl-N-ε-deoxyketosyl lysine derivatives were formed. Under the same conditions, lysine was 5–10 times more reactive than CML. N-α-hippuryl-N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (hippuryl-CMFL) and N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (CMFL) were synthesized, isolated and characterized by MS/MS and NMR experiments. Depending on the reaction conditions, up to 21% of CMFL can be converted to the furosine analogue N-ε-carboxymethyl-N-ε-furoylmethyl-l-lysine (CM-Fur) during standard acid protein hydrolysis with hydrochloric acid. Incubation of bovine serum albumin (BSA) with glucose for up to 9 weeks at 37 °C revealed the formation of CMFL in the protein as assessed by HPLC–MS/MS in the MRM mode. Under these conditions, ca. 13% of lysine residues had been converted to fructosyllysine, and 0.03% had been converted to CMFL. The detection of glycation products of glycated amino acids (heterogeneous multiple glycation) reveals a novel pathway in the Maillard reaction.
Collapse
|
63
|
Xiao SS, Shi L, Wang PC, Liu X, Fang M, Wu YN, Gong ZY. Determination of Nε-(carboxymethyl)lysine in commercial dairy products in China with liquid chromatography tandem mass spectroscopy. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
64
|
Wang R, Khalifa I, Du X, Li K, Xu Y, Li C. Effects of anthocyanins on β-lactoglobulin glycoxidation: a study of mechanisms and structure-activity relationship. Food Funct 2021; 12:10550-10562. [PMID: 34570142 DOI: 10.1039/d1fo01665b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We elucidated the underlying mechanisms of the anti-glycoxidation effects of five structurally different anthocyanins on glycated-β-lactoglobulin (β-Lg). The results indicated that anthocyanins structurally inhibited the formation of advanced glycation end-products, where petunidin-3-rutinoside-(p-coumaryl)-5-glucoside (Pt-Gl) exerted higher effects than those of others (p < 0.05). Through the three main steps of glycoxidation, anthocyanins trapped intermediate dicarbonyls and blocked some of the glycation sites of β-Lg. UPLC-ESI-Q-TOF-MS characterized that these anthocyanins structurally formed mono- and di-GO/MGO adducts, and Pt-Gl formed adducts with both dicarbonyls. More importantly, Pt-Gl interacted with some of the glycation sites of β-Lg such as Lys100, Lys101, and Arg124. Structurally, it was found that high-molecular weight anthocyanins with coumaric acid acylation seem to be better than others, which was followed by di- and mono-glycoside anthocyanins. Overall, GO/MGO-trapping and β-Lg-anthocyanin binding are revealed as the key mechanisms of the anti-glycoxidation effects of anthocyanins on β-Lg, which could be used as effective glycation inhibitors in protein-rich matrices.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, 13736, Moshtohor, Egypt
| | - Xia Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Products, Ministry of Agriculture, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
65
|
Aglago EK, Mayén AL, Knaze V, Freisling H, Fedirko V, Hughes DJ, Jiao L, Eriksen AK, Tjønneland A, Boutron-Ruault MC, Rothwell JA, Severi G, Kaaks R, Katzke V, Schulze MB, Birukov A, Palli D, Sieri S, Santucci de Magistris M, Tumino R, Ricceri F, Bueno-de-Mesquita B, Derksen JWG, Skeie G, Gram IT, Sandanger T, Quirós JR, Luján-Barroso L, Sánchez MJ, Amiano P, Chirlaque MD, Gurrea AB, Johansson I, Manjer J, Perez-Cornago A, Weiderpass E, Gunter MJ, Heath AK, Schalkwijk CG, Jenab M. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021; 13:3132. [PMID: 34579010 PMCID: PMC8470201 DOI: 10.3390/nu13093132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dietary advanced glycation end-products (dAGEs) have been hypothesized to be associated with a higher risk of colorectal cancer (CRC) by promoting inflammation, metabolic dysfunction, and oxidative stress in the colonic epithelium. However, evidence from prospective cohort studies is scarce and inconclusive. We evaluated CRC risk associated with the intake of dAGEs in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Dietary intakes of three major dAGEs: Nε-carboxy-methyllysine (CML), Nε-carboxyethyllysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated in 450,111 participants (median follow-up = 13 years, with 6162 CRC cases) by matching to a detailed published European food composition database. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of dAGEs with CRC were computed using multivariable-adjusted Cox regression models. Inverse CRC risk associations were observed for CML (HR comparing extreme quintiles: HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00) and MG-H1 (HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00), but not for CEL (HRQ5vs.Q1 = 0.97, 95% CI = 0.89-1.05). The associations did not differ by sex or anatomical location of the tumor. Contrary to the initial hypothesis, our findings suggest an inverse association between dAGEs and CRC risk. More research is required to verify these findings and better differentiate the role of dAGEs from that of endogenously produced AGEs and their precursor compounds in CRC development.
Collapse
Affiliation(s)
- Elom K. Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Viktoria Knaze
- Early Detection, Prevention, and Infections Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Veronika Fedirko
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David J. Hughes
- Cancer Biology and Therapeutics Group (CBT), Conway Institute, School of Biomolecular and Biomedical Science (SBBS), University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (A.K.E.); (A.T.)
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Joseph A. Rothwell
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Gianluca Severi
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, 50121 Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE-ONLUS, 97100 Ragusa, Italy;
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
- Unit of Epidemiology, Regional Health Service ASL TO3, Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Jeroen W. G. Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Torkjel Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | | | - Leila Luján-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology—ICO; and Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute—IDIBELL, L’Hospitalet de Llobregat, Av. Granvia 199-203, 08908 Barcelona, Spain;
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, 20014 Donostia-San Sebastian, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia University, 30003 Murcia, Spain
| | - Aurelio Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Navarra Public Health Institute, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ingegerd Johansson
- Department of Radiation Sciences, Oncology, Umeå University, 907 36 Umeå, Sweden;
| | - Jonas Manjer
- Department of Clinical Sciences, Malmö, Lund University, 221 00 Lund, Sweden;
- Division of Surgery, Malmö, Lund University, 221 00 Lund, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK;
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 HX Maastrich, The Netherlands;
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| |
Collapse
|
66
|
|
67
|
Effects of acetic acid, ethanol, and sodium chloride on the formation of Nε-carboxymethyllysine, Nε-carboxyethyllysine and their precursors in commercially sterilized pork. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01102-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
68
|
Chen G. Dietary N-epsilon-carboxymethyllysine as for a major glycotoxin in foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4931-4949. [PMID: 34378329 DOI: 10.1111/1541-4337.12817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
N-epsilon-carboxymethyllysine (CML), as a potential glycotoxin and general marker for dietary advanced glycation end products (dAGEs), exists in raw food and is formed via various formation routes in food processing such as Maillard reaction between the reducing sugars and amino acids. Although comprehensive cause-effect proof is not available yet, current research suggests a potential risk of chronic diseases such as diabetes is associated with exogenous CML. Thus, CML is causing public health concerns regarding its dietary exposure, but there is a lack of explicit guidance for understanding if it is detrimental to human health. In this review, inconsistent results of dietary CML contributed to chronic disease are discussed, available concentrations of CML in consumed foods are evaluated, measurements for dietary CML and relevant analytic procedures are listed, and the possible mitigation strategies for protecting against CML formation are presented. Finally, the main challenges and future efforts are highlighted. Further studies are needed to extend the dietary CML database in a wide category of foods, apply new identifying methods, elucidate the pathogenic mechanisms, assess its detrimental role in human health, and propose standard guidelines for processed food.
Collapse
Affiliation(s)
- Gengjun Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
69
|
Xue Q, Xue C, Luan D, Wen Y, Bi S, Wei Z, Mou H. Comprehensive investigation into quality of pasteurized Oncorhynchus keta Walbaum fillets and non-thermal effects of microwave. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
70
|
Impact of frozen storage duration of raw pork on the formation of advanced glycation end-products in meatballs. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
71
|
Huang S, Huang M, Dong X. Advanced Glycation End Products in Meat during Processing and Storage: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Suhong Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xiaoli Dong
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
72
|
Zhang N, Zhou Q, Fan D, Xiao J, Zhao Y, Cheng KW, Wang M. Novel roles of hydrocolloids in foods: Inhibition of toxic maillard reaction products formation and attenuation of their harmful effects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
73
|
Li Y, Xue C, Quan W, Qin F, Wang Z, He Z, Zeng M, Chen J. Assessment the influence of salt and polyphosphate on protein oxidation and Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine formation in roasted beef patties. Meat Sci 2021; 177:108489. [PMID: 33714683 DOI: 10.1016/j.meatsci.2021.108489] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
The impact of NaCl and tripolyphosphate (TPP)/pyrophosphate (PP) on protein oxidation and Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) formation in roasted beef patties was investigated. The content of CML and CEL in patties treated with salts was approximately 1.1-1.7 and 1.2-3.2 times higher than that of the control samples, respectively. An increase in salt content caused higher oxidation of tryptophan and protein carbonylation with a decrease in Schiff bases (P < 0.05) and a slight decrease in lipid oxidation (P < 0.05). Significant correlations (P < 0.05) between CML, CEL, and protein oxidation measurements was found. The higher salts content, causing less cooking loss and higher moisture content, significantly correlated (P < 0.05) with CML, CEL content, and protein oxidation of the patties. The increase in CML and CEL content and protein oxidation in roasted patties with salts might be related to the pro-oxidation of salts, and also partly due to the temperature changes caused by the water-holding capacity of salts.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
74
|
Cheng W, Wang X, Zhang Z, Ma L, Liu G, Wang Q, Chen F, Cheng KW. Development of an Isotope Dilution UHPLC-QqQ-MS/MS-Based Method for Simultaneous Determination of Typical Advanced Glycation End Products and Acrylamide in Baked and Fried Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2611-2618. [PMID: 33560839 DOI: 10.1021/acs.jafc.0c07575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a stable isotope dilution ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) method was developed and validated for simultaneous determination of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), and acrylamide (AA) in baked and fried foods. Ground food samples were extracted with acetone followed by two parallel assays. In assay A, a cleanup procedure based on dispersive solid-phase extraction was conducted for AA, free CML, and CEL analysis using the supernatant. In assay B, a multistep process including reduction, protein precipitation, acid hydrolysis, and solid-phase extraction was conducted for bound CML and CEL analysis using precipitation. The developed method was validated in terms of linearity, sensitivity (limit of detection, LOD; limit of quantitation, LOQ), accuracy, and precision. The results showed that the method had a wide linear range (0.25-500 ng/mL for CML and CEL, 0.5-500 ng/mL for AA), low LOD and LOQ (0.47-0.94 and 1.52-1.91 μg/kg, respectively), and good linearity (R2 > 0.999). The recovery test on baby biscuit and French fries samples showed the recovery rates of 90.2-108.3% for CML, 89.0-106.1% for CEL, and 94.5-112.3% for AA with satisfactory precision (relative standard deviation (RSD) < 10%). Finally, the developed method was successfully applied to 11 baked and fried food samples, and total CML, CEL, and AA contents varied in the ranges of 4.07-35.88 mg/kg, 1.99-14.49 mg/kg, and 5.56-506.64 μg/kg, respectively. Therefore, the isotope dilution UHPLC-QqQ-MS/MS method developed herein is promising for routine analysis of CML, CEL, and AA in baked and fried foods.
Collapse
Affiliation(s)
| | | | | | - Lukai Ma
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | | | | |
Collapse
|
75
|
Zhao S, Hu H, Xie J, Shen M. Investigation into the contents of nutrients, Nε-carboxymethyllysine and Nε-carboxyethyllysine in various commercially canned fishes to find the correlation between them. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
76
|
A negative association of dietary advanced glycation end products with obesity and body composition in Iranian adults. Br J Nutr 2021; 125:471-480. [PMID: 32713362 DOI: 10.1017/s0007114520002871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity caused by excessive deposited fat is generally classified as BMI ≥ 30 kg/m2. Research regarding the association between dietary advanced glycation end products (dAGE) and obesity is limited. The aim of the present study was to investigate the association between dAGE and obesity and body composition in Iranian adults. This cross-sectional study included 265 adults aged 18-75 years from Tehran, Iran. dAGE were estimated using a validated semi-quantitative FFQ, according to the published food carboxymethyl lysine-AGE database for 549 routinely consumed food items for the Northeastern American multiethnic urban population, and were reported by dividing total energy intake. Dietary intake, sociodemographic data and physical activity status were collected using validated questionnaires, and anthropometric characteristics were measured. Body composition was assessed by bioelectrical impedance analysis, and obesity was defined based on WHO guidelines. The intake of fat and meat was significantly increased in higher tertiles, compared with the first tertile of dAGE (P < 0·001). No association between dAGE and body composition measures and obesity was observed; however, there was a significant negative association between dAGE and BMI (BMI; P = 0·01), waist circumference (P = 0·01), waist:hip ratio (P = 0·03), fat-free mass (P = 0·02) and muscle mass index (P = 0·01) in non-linear models. In conclusion, higher consumption of dAGE was associated with increased intake of fat and meat and was negatively related to changes in body composition measurements. Therefore, dAGE may connect obesity to diet by energy imbalance.
Collapse
|
77
|
Robust Detection of Advanced Glycation Endproducts in Milk Powder Using Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS). FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01986-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
78
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
79
|
Zhu Z, Fang R, Yang J, Khan IA, Huang J, Huang M. Air frying combined with grape seed extract inhibits N ε-carboxymethyllysine and N ε-carboxyethyllysine by controlling oxidation and glycosylation. Poult Sci 2020; 100:1308-1318. [PMID: 33518088 PMCID: PMC7858175 DOI: 10.1016/j.psj.2020.11.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
Advanced glycation end products (AGE), compounds formed in meat at the advanced stage of Maillard reaction, are easily exposed to thermal processing. Improving cooking condition and adding antioxidants are 2 common ways for AGE reduction. The present work compared the inhibition of grape seed extract (GSE) on levels of free and protein-bound Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in chicken breast under deep-frying and air-frying conditions. Efficiency of 5 concentrations of GSE (0.0, 0.2, 0.5, 0.8, and 1.0 g/kg) in retarding oxidation, glyoxal (GO), methylglyoxal (MGO), lysine (Lys), Maillard reaction degree (A294, A420), and Shiff's base were tested. Results showed that 0.5 g/kg GSE before heating significantly (P < 0.05) reduced AGE in fried breast chicken, whereas excessive supplementation of GSE (0.8 and 1 g/kg) was reverse. Air frying was found significantly (P < 0.05) better than deep frying to reduce the precursor substances (GO, MGO, and Lys) of AGE. In conclusion, GSE-derived polyphenols exhibited different inhibitory effects on oxidation and glycosylation at different concentrations. We found that 0.5 g/kg of GSE combined with air frying was the best recommendation for inhibiting CML and CEL.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Rui Fang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Jing Yang
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Iftikhar Ali Khan
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Jichao Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China; Nanjing Huang Jiaoshou Food Science and Technology Co., Ltd., National R & D Center For Poultry Processing Technology, Nanjing 210095, China.
| |
Collapse
|
80
|
Zhu Z, Fang R, Huang M, Wei Y, Zhou G. Oxidation combined with Maillard reaction induced free and protein-bound Nε-carboxymethyllysine and Nε-carboxyethyllysine formation during braised chicken processing. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
81
|
Zhu Z, Fang R, Ali I, Huang M. Impact of methylglyoxal modification of chicken sarcoplasmic protein emulsions on emulsifying properties, rheological behavior and advanced glycation end products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4208-4216. [PMID: 32378237 DOI: 10.1002/jsfa.10460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Protein modification is used to improve emulsion properties. However, there are limited reports on the effect of methylglyoxal (MGO) modification on emulsifying properties and on the production of advanced glycation end-products (AGEs) in chicken sarcoplasmic protein emulsion (SPE). In this study, MGO solution was dispersed into prepared emulsion (17 mg mL-1 sarcoplasmic-soybean oil (v/v 5:1)) at 0, 0.5, 5, 10, 30 and 50 mmol L-1 concentrations. Emulsifying activity index (EAI), emulsifying stability index (ESI), Z-average diameter, polydispersity index (PDI), zeta potential, rheological behavior (thermal condensation characteristics and fluidity) and AGEs in different concentrations of MGO SPE were measured. In addition, the effect of MGO on the levels of AGEs, lipid and protein oxidation of the emulsion as well as their relationship has also been analyzed. RESULTS Our findings showed that ESI had the lowest value when MGO was added at a concentration of 10 mmol L-1 , while Z-average, PDI, carbonyl and AGEs had the highest value at the same concentration. Also, 10 mmol L-1 MGO played an important role in affecting the rheology of the emulsion. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the presence of myofibrillar proteins (MPs) in SPE was the main reason for the crosslinking of polymers which could be damaged by high concentration of MGO (>10 mmol L-1 ). CONCLUSION Different concentration of MGO showed varying effects on emulsion properties and on the formation of AGEs in chicken SPE. Pearson's correlation analysis concluded that protein oxidation played a significant positive role during MGO modification. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing, China
| | - Rui Fang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing, China
| | - Iftikhar Ali
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
82
|
Sun X, Li X, Tang J, Lai K, Rasco BA, Huang Y. Formation of protein-bound N ε-carboxymethyllysine and N ε-carboxyethyllysine in ground pork during commercial sterilization as affected by the type and concentration of sugars. Food Chem 2020; 336:127706. [PMID: 32768907 DOI: 10.1016/j.foodchem.2020.127706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
This research was aimed to investigate the formation of protein-bound Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in ground pork at 121 °C (5-30 min) as affected by sugars (1-9% w/w, glucose, fructose, lactose, and sucrose).The addition of reducing sugar significantly (P < 0.05) increased the levels of CML and CEL in heat treated pork samples. Even adding 1% of glucose in pork could lead to 3.8 and 4.0 times increase in the formation rate constant (zero-order) of CML and CEL, respectively. In a typical commercial sterilization process (121 °C, 30 min), adding glucose, fructose or lactose in pork resulted in an average increase of 224-581%, 26-276%, and 8-189% CML, and 217-720%, 213%-15.8 times, and 20-150% CEL, respectively, depending on the sugar concentration. Sucrose did not promote the formation of CML and CEL in pork during heating.
Collapse
Affiliation(s)
- Xiaohua Sun
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China; College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Xiangjun Li
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Juming Tang
- Department of Biological System Engineering, Washington State University, Pullman, WA 99164-6120, United States
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Barbara A Rasco
- College of Agriculture and Natural Resources, University of Wyoming, Dept 3354, 1000 E University Ave, Laramie, WY 83071, United States
| | - Yiqun Huang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China.
| |
Collapse
|
83
|
Effect of glycation on the structural modification of β-conglycinin and the formation of advanced glycation end products during the thermal processing of food. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
84
|
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf 2020; 19:2559-2587. [DOI: 10.1111/1541-4337.12593] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|
85
|
Protein-bound N-carboxymethyllysine and N-carboxyethyllysine in raw and heat treated whites and yolks of hen eggs. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
86
|
Lee SY, Yim DG, Lee DY, Kim OY, Kang HJ, Kim HS, Jang A, Park TS, Jin SK, Hur SJ. Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
87
|
Zhu Z, Huang M, Cheng Y, Khan IA, Huang J. A comprehensive review of Nε-carboxymethyllysine and Nε-carboxyethyllysine in thermal processed meat products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
88
|
Hu B, Li L, Hu Y, Zhao D, Li Y, Yang M, Jia A, Chen S, Li B, Zhang X. Development of a novel Maillard reaction-based time-temperature indicator for monitoring the fluorescent AGE content in reheated foods. RSC Adv 2020; 10:10402-10410. [PMID: 35492920 PMCID: PMC9050394 DOI: 10.1039/d0ra01440k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022] Open
Abstract
Dietary advanced glycation end products (AGEs) are formed via the Maillard reaction in foods, especially in reheated foods, and can cause chronic diseases. In this study, a series of Maillard reaction-based time-temperature indicators (TTIs: TTI-1, TTI-2, and TTI-3) were developed with lysine and xylose for monitoring the dynamic formation of fluorescent AGEs in reheated foods. The discoloration kinetics of Maillard reaction-based TTIs and the dynamics of fluorescent AGE formation were explored. Formulas were derived to illustrate the relationship of the color change in the TTIs with time and temperature. The activation energies (E a values) for generating the TTIs were 96.17, 87.98, and 83.55 kJ mol-1, respectively. TTI-1 was the optimal indicator for instant soy milk powder because it showed the lowest activation energy difference in this study. The results show that this series of Maillard reaction-based TTIs can be used to monitor the AGE contents in various reheated foods.
Collapse
Affiliation(s)
- Bei Hu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 China +86-20-8711-3252
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 China +86-20-8711-3252
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology College Road 1 Dongguan 523808 China
| | - Yi Hu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 China +86-20-8711-3252
| | - Di Zhao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 China +86-20-8711-3252
| | - Yuting Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology College Road 1 Dongguan 523808 China
| | - Mingquan Yang
- Guangdong MeiWeiXian Flavoring Foods Ltd. Co. Zhongshan 528437 China
| | - Aijuan Jia
- Guangdong MeiWeiXian Flavoring Foods Ltd. Co. Zhongshan 528437 China
| | - Sui Chen
- Guangdong MeiWeiXian Flavoring Foods Ltd. Co. Zhongshan 528437 China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 China +86-20-8711-3252
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 China +86-20-8711-3252
| |
Collapse
|
89
|
Zhu Z, Fang R, Cheng Y, Khan IA, Huang J, Li B, Huang M. Content of free and protein-binding N ε-carboxymethyllysine and N ε-carboxyethyllysine in different parts of braised chicken. Food Sci Nutr 2020; 8:767-776. [PMID: 32148786 PMCID: PMC7020262 DOI: 10.1002/fsn3.1317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/17/2022] Open
Abstract
In order to illustrate the levels of advanced glycation end products (AGEs) in Chinese traditional braised chicken, the distribution of free and protein-binding Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in four parts of processed chicken including chest (X), leg (T), skin (P), and the mixed whole body (M) was investigated. Our results showed that the content of free CML was 1,186.63-1,795.43 ng/g meat and protein-binding CML was 11,693.91-16,122.90 ng/g meat. Differently, the content of free CEL was 24.81-41.62 ng/g meat and protein-binding CEL was 270.11-385.49 ng/g meat. It was found that the total contents of CML were 31.5-56.8 folds higher than those of CEL. Protein-binding AGEs (CML + CEL) were 6.6-9.9 times higher than those of free AGEs (CML + CEL). Pearson's correlation of AGEs and oxidation in four parts of braised chicken were also investigated, and the results showed that oxidation had a significant effect on levels of CEL; especially, the protein carbonyl was negatively correlated with free CEL (p < .05). TBARs value was significantly positively correlated with protein-binding and total CEL (p < .01). In conclusion, our findings are important for better understanding of the AGEs formation in braised meat.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Nanjing Innovation Center of Meat Products ProcessingJiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Rui Fang
- Nanjing Innovation Center of Meat Products ProcessingJiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yiqun Cheng
- Nanjing Innovation Center of Meat Products ProcessingJiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Iftikhar Ali Khan
- Nanjing Innovation Center of Meat Products ProcessingJiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jichao Huang
- College of EngineeringNanjing Agricultural UniversityNanjingChina
| | - Bin Li
- Science and Technology Cooperation CenterJiyuanChina
| | - Ming Huang
- Nanjing Innovation Center of Meat Products ProcessingJiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
90
|
Khalifa I, Xia D, Dutta K, Peng J, Jia Y, Li C. Mulberry anthocyanins exert anti-AGEs effects by selectively trapping glyoxal and structural-dependently blocking the lysyl residues of β-lactoglobulins. Bioorg Chem 2020; 96:103615. [PMID: 32007726 DOI: 10.1016/j.bioorg.2020.103615] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 02/09/2023]
Abstract
Advanced glycation end-products (AGEs), which instigate many disorders, are mostly mediated by dicarbonyl rearrangements. We studied the corresponding mechanisms of the anti-glycation effects of two anthocyanins purified from mulberry fruits, namely cyanidin 3-glucoside (C3G) and cyanidin 3-rutinoside (C3R), on glycated β-lactoglobulins (β-Lg). Both mulberry anthocyanins (MAs) inhibited the AGEs-formation in a dose-dependent manner, but the effect of C3R was significantly stronger than that of C3G (p < 0.05). MAs inhibited AGEs-formation by selectively trapping dicarbonyls, especially glyoxal. The UPLC-ESI-Q-TOF-MS results characterized that C3R formed mono- and di-glyoxal adducts, where C3G only created di-glyoxal adducts. Additionally, C3R could directly interact with some of the glycation sites of β-Lg. Overall, GO-trapping and β-Lg-MAs covalent/noncovalent binding are disclosed as the key mechanisms of the anti-AGEs activity of MAs on β-Lg, which could be valorised as effectual AGEs inhibitors in proteins-rich matrices.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt
| | - Du Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunal Dutta
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Jinmeng Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
91
|
Xue C, Shi Z, He Z, Wang Z, Qin F, Chen J, Zeng M. Formation of Three Selected AGEs and their Corresponding Intermediates in Aldose- and Ketose-lysine Systems. EFOOD 2020. [DOI: 10.2991/efood.k.200508.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
92
|
Zhu Z, Cheng Y, Huang S, Yao M, Lei Y, Khan IA, Huang M, Zhou X. Formation of Nϵ-Carboxymethyllysine and Nϵ-Carboxyethyllysine in Prepared Chicken Breast by Pan Frying. J Food Prot 2019; 82:2154-2160. [PMID: 31742439 DOI: 10.4315/0362-028x.jfp-19-319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this work was to investigate the effects of pan frying on the formation of two typical advanced glycation end products (AGEs) named Nϵ-carboxymethyllysine (CML) and Nϵ-carboxyethyllysine (CEL) in prepared chicken breast. The marinated chicken breast was pan fried for 1 to 6 min, and then protein, fat, moisture, carbonyl, sulfhydryl, thiobarbituric acid reactive substances, chroma (a*, b*, L*), absorbance at 294 and 420 nm, and AGE (CEL) levels were measured once a minute. Pearson's correlation was determined and indicated that moisture was significantly negatively correlated with Maillard reaction and AGEs (P < 0.05), fat and protein contents were significantly positively correlated with AGEs (P < 0.05), and a* values were positively correlated with Maillard reaction and CEL (P < 0.05). Protein and lipid oxidation played an important role on the correlation of AGEs. In conclusion, Maillard reaction and oxidation reaction are two important factors affecting AGE formation.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yiqun Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Suhong Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingjun Yao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yang Lei
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Iftikhar Ali Khan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinghu Zhou
- Nanjing Huang Jiaoshou Food Science and Technology Co., Ltd., National R&D Center for Poultry Processing Technology, Nanjing 210095, People's Republic of China
| |
Collapse
|
93
|
Formation of advanced glycation endproducts in foods during cooking process and underlying mechanisms: a comprehensive review of experimental studies. Nutr Res Rev 2019; 33:77-89. [PMID: 31699165 DOI: 10.1017/s0954422419000209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation endproducts (AGE) are a group of complex and heterogeneous molecules, sharing some common characteristics such as covalent cross-link formation among proteins, the effect of transforming the colour of food products into yellow-brown colours and fluorescence formation. AGE are linked to many diseases including diabetes, renal diseases, CVD, liver diseases, neuro-degenerative and eye disorders, female reproductive dysfunction, and even cancer. AGE are formed endogenously but are also provided from exogenous sources including diet and tobacco. Western diet, rich in processed and/or heat-treated foods, fat and sugar, increases the exposure to AGE. The foods that contain high levels of fat and protein are generally rich in terms of AGE, and are also prone to AGE formation during cooking compared with carbohydrate-rich foods such as vegetables, fruits, legumes and whole grains. The present article aimed to review the literature about the effects of different cooking methods and conditions on the AGE content of food and AGE formation mechanisms using a comprehensive approach.
Collapse
|
94
|
Zhu Z, Huang S, Khan IA, Cheng Y, Yu Y, Zhang C, Huang J, Huang M, Zhou X. The effect of oxidation and Maillard reaction on formation of Nε -carboxymethyllysine and Nε-carboxyethyllysine in prepared chicken breast. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1636139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zongshuai Zhu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Suhong Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Iftikhar Ali Khan
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiqun Cheng
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yajie Yu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuangchuang Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ming Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinghu Zhou
- National R & D Center For Poultry Processing Technology, Nanjing Huang jiaoshou Food Science and Technology Co., Ltd., Nanjing, China
| |
Collapse
|
95
|
Linghu Z, Karim F, Taghvaei M, Smith JS. Determination of Heterocyclic Amines in Meat Matrices Using Enhanced Matrix Removal‐Lipid Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J Food Sci 2019; 84:1992-2002. [DOI: 10.1111/1750-3841.14674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Ziyi Linghu
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| | - Faris Karim
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| | - Mostafa Taghvaei
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| | - J. Scott Smith
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| |
Collapse
|
96
|
Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins. Int J Biol Macromol 2019; 123:10-19. [DOI: 10.1016/j.ijbiomac.2018.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 11/18/2022]
|
97
|
Wei Q, Liu T, Sun DW. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
98
|
Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: Friend or foe? Exp Gerontol 2018; 117:76-90. [PMID: 30458224 DOI: 10.1016/j.exger.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) are formed in in vivo, and accumulate in tissues and body fluids during ageing. Endogenous AGE-modified proteins show altered structure and function, and may interact with receptor for AGEs (RAGE) resulting in production of reactive oxygen species, inflammatory, atherogenic and diabetogenic responses. AGEs are also formed in thermally processed foods. Studies in rodents document that dietary AGEs are partially absorbed into circulation, and accumulate in different tissues. Knowledge on the health effects of high dietary intake of AGEs is incomplete and contradictory. In this overview we discuss the data from experimental and clinical studies, either those supporting the assumption that restriction of dietary AGEs associated with health benefits, or data suggesting that dietary intake of AGEs associates with positive health outcomes. We polemicize whether the effects of exaggerated intake or restriction of highly thermally processed foods might be straightforward interpreted as the effects of AGEs-rich vs. AGEs-restricted diets. We also underline the lack of studies, and thus a poor knowledge, on the effects of different single chemically defined AGEs administration, concurrent intake of different dietary AGEs, of load with dietary AGEs corresponding to the habitual diet in humans, and on those of dietary AGEs in vulnerable populations, such as infants and particularly elderly.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, Bratislava, Slovakia.
| | - Katarína Brouder Šebeková
- Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
99
|
Nowotny K, Schröter D, Schreiner M, Grune T. Dietary advanced glycation end products and their relevance for human health. Ageing Res Rev 2018; 47:55-66. [PMID: 29969676 DOI: 10.1016/j.arr.2018.06.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022]
Abstract
Due to their bioactivity and harmful potential, advanced glycation end products (AGEs) are discussed to affect human health. AGEs are compounds formed endogenously in the human body andexogenously, especially, in foods while thermal processing. In contrast to endogenous AGEs, dietary AGEs are formed in much higher extent. However, their risk potential is also depending on absorption, distribution, metabolism and elimination. For over 10 years an intense debate on the risk of dietary AGEs on human health is going on. On the one hand, studies provided evidence that dietary AGEs contribute to clinical outcomes. On the other hand, human studies failed to observe any association. Because it was not possible to draw a final conclusion, the call for new interdisciplinary approaches arose. In this review, we will give an overview on the current state of scientific knowledge in this field. In particular, we focus on (I) the occurrence of AGEs in foods and the daily uptake of AGEs, (II) contribution to endogenous levels and (III) the effect on health-/disease-related biomarkers in humans.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - David Schröter
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren e.V. (IGZ), 14979 Grossbeeren, Germany; Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren e.V. (IGZ), 14979 Grossbeeren, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; Institute of Nutrition, University of Potsdam, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany.
| |
Collapse
|
100
|
Mitra B, Lametsch R, Greco I, Ruiz-Carrascal J. Advanced glycation end products, protein crosslinks and post translational modifications in pork subjected to different heat treatments. Meat Sci 2018; 145:415-424. [DOI: 10.1016/j.meatsci.2018.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 11/16/2022]
|