51
|
O'Keeffe MB, Norris R, Alashi MA, Aluko RE, FitzGerald RJ. Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
52
|
Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res Int 2017; 100:112-120. [PMID: 28873669 DOI: 10.1016/j.foodres.2017.06.065] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Salmon gelatin (Salmo salar, SG) enzymatic hydrolysates were generated using Alcalase 2.4L, Alcalase 2.4L in combination with Flavourzyme 500L, Corolase PP, Promod 144MG and Brewer's Clarex. The hydrolysate generated with Corolase PP for 1h (SG-C1) had the highest angiotensin converting enzyme (ACE, IC50=0.13±0.05mgmL-1) and dipeptidyl peptidase IV (DPP-IV, IC50=0.08±0.01mgmL-1) inhibitory activities, and oxygen radical absorbance capacity (ORAC, 540.94±9.57μmolTEg-1d.w.). The in vitro bioactivities of SG-C1 were retained following simulated gastrointestinal digestion. Administration of SG and SG-C1 (50mgkg-1 body weight) to spontaneously hypertensive rats (SHR) lowered heart rate along with systolic, diastolic and mean arterial blood pressure. The SG-C1 hydrolysate was fractionated using semi-preparative RP-HPLC and the fraction with highest overall in vitro bioactivity (fraction 25) was analysed by UPLC-MS/MS. Four peptide sequences (Gly-Gly-Pro-Ala-Gly-Pro-Ala-Val, Gly-Pro-Val-Ala, Pro-Pro and Gly-Phe) and two free amino acids (Arg and Tyr) were identified in this fraction. These peptides and free amino acids had potent ACE and DPP-IV inhibitory, and ORAC activities. The results show that SG hydrolysates have potential as multifunctional food ingredients particularly for the management of hypertension.
Collapse
|
53
|
Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases. Mar Drugs 2017; 15:md15030067. [PMID: 28282929 PMCID: PMC5367024 DOI: 10.3390/md15030067] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Non-communicable diseases (NCD) are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer's well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD.
Collapse
|
54
|
Lee SY, Hur SJ. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem 2017; 228:506-517. [PMID: 28317757 DOI: 10.1016/j.foodchem.2017.02.039] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Bioactive peptides from food proteins exert beneficial effects on human health, such as angiotensin-converting enzyme (ACE) inhibition and antihypertensive activity. Several studies have reported that ACE-inhibitory peptides can come from animal products, marine organisms, and plants-derived by hydrolyzing enzymes such as pepsin, chymotrypsin, and trypsin-and microbial enzymes such as alcalase, thermolysin, flavourzyme, and proteinase K. Different ACE-inhibitory effects are closely related with different peptide sequences and molecular weights. Sequences of ACE-inhibitory peptides are composed of hydrophobic (proline) and aliphatic amino acids (isoleucine and leucine) at the N-terminus. As result of this review, we assume that low molecular weight peptides have a greater ACE inhibition because lower molecular weight peptides have a higher absorbency in the body. Therefore, the ACE-inhibitory effect is closely related with the degree of enzymatic hydrolysis and the composition of the peptide sequence.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, Republic of Korea
| | - Sun Jun Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
55
|
Manoharan S, Shuib AS, Abdullah N. STRUCTURAL CHARACTERISTICS AND ANTIHYPERTENSIVE EFFECTS OF ANGIOTENSIN-I-CONVERTING ENZYME INHIBITORY PEPTIDES IN THE RENIN-ANGIOTENSIN AND KALLIKREIN KININ SYSTEMS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017; 14:383-406. [PMID: 28573254 PMCID: PMC5446464 DOI: 10.21010/ajtcam.v14i2.39] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors. METHOD Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar. RESULTS The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa. CONCLUSION The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed.
Collapse
Affiliation(s)
- Sivananthan Manoharan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| | - Adawiyah Suriza Shuib
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
- University of Malaya Centre for Proteomic Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
| | - Noorlidah Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| |
Collapse
|
56
|
Xu JL, Pang JN, Chen FF, Li TJ, Zhao XH. Antihypertensive activities of the plasteins derived from casein hydrolysates in spontaneously hypertensive rats. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1217936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
57
|
Jensen IJ, Mæhre HK. Preclinical and Clinical Studies on Antioxidative, Antihypertensive and Cardioprotective Effect of Marine Proteins and Peptides-A Review. Mar Drugs 2016; 14:md14110211. [PMID: 27869700 PMCID: PMC5128754 DOI: 10.3390/md14110211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
High seafood consumption has traditionally been linked to a reduced risk of cardiovascular diseases, mainly due to the lipid lowering effects of the long chained omega 3 fatty acids. However, fish and seafood are also excellent sources of good quality proteins and emerging documentation show that, upon digestion, these proteins are sources for bioactive peptides with documented favorable physiological effects such as antioxidative, antihypertensive and other cardioprotective effects. This documentation is mainly from in vitro studies, but also animal studies are arising. Evidence from human studies evaluating the positive health effects of marine proteins and peptides are scarce. In one study, a reduction in oxidative stress after intake of cod has been documented and a few human clinical trials have been performed evaluating the effect on blood pressure. The results are, however, inconclusive. The majority of the human clinical trials performed to investigate positive health effects of marine protein and lean fish intake, has focused on blood lipids. While some studies have documented a reduction in triglycerides after intake of lean fish, others have documented no effects.
Collapse
Affiliation(s)
- Ida-Johanne Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Hanne K Mæhre
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
58
|
Angiotensin- I- converting enzyme (ACE) inhibitory peptides from Pacific cod skin gelatin using ultrafiltration membranes. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
59
|
Tian L, Liu J, Ma L, Zhang L, Wang S, Yan E, Zhu H. Isolation and Purification of Antioxidant and ACE-Inhibitory Peptides from Yak (Bos grunniens
) Skin. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Li Tian
- Key Laboratory of Systems Bioengineering; Ministry of Education, Tianjin University; Tianjin 300072 People's Republic of China
- Department of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University; Tianjin 300072 People's Republic of China
| | - Jiaheng Liu
- Key Laboratory of Systems Bioengineering; Ministry of Education, Tianjin University; Tianjin 300072 People's Republic of China
- Department of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University; Tianjin 300072 People's Republic of China
| | - Li Ma
- Key Laboratory of Systems Bioengineering; Ministry of Education, Tianjin University; Tianjin 300072 People's Republic of China
- Department of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University; Tianjin 300072 People's Republic of China
| | - Lei Zhang
- Key Laboratory of Systems Bioengineering; Ministry of Education, Tianjin University; Tianjin 300072 People's Republic of China
- Department of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University; Tianjin 300072 People's Republic of China
| | - Shipeng Wang
- Key Laboratory of Systems Bioengineering; Ministry of Education, Tianjin University; Tianjin 300072 People's Republic of China
- Department of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University; Tianjin 300072 People's Republic of China
| | - Erfu Yan
- Department of Pharmaceutical Sciences; College of Pharmacy, University of Kentucky; Lexington KY 40536
| | - Hongji Zhu
- Key Laboratory of Systems Bioengineering; Ministry of Education, Tianjin University; Tianjin 300072 People's Republic of China
- Department of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
60
|
Moayedi A, Mora L, Aristoy MC, Hashemi M, Safari M, Toldrá F. ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Appl Biochem Biotechnol 2016; 181:48-64. [PMID: 27461540 DOI: 10.1007/s12010-016-2198-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023]
Abstract
The effects of amino acid composition and peptide molecular mass on ACE-inhibitory and antioxidant activities of protein fragments obtained from tomato waste fermented using Bacillus subtilis were evaluated. The addition of B. subtilis increased the relative amounts of aromatic and positively-charged amino acids which have been described to influence the biological activities of peptide fragments. IC50 values of hydrolysates for ACE-inhibitory and 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities were found to be 1.5 and 8.2 mg/mL, respectively. Size-exclusion chromatography (SEC) pattern of the hydrolysate indicated the breakdown of parent proteins to smaller peptides with molecular weights mainly below 1400 Da. MALDI-TOF mass spectrometry analysis revealed that the highest ACE-inhibitory activity was due to peptides showing molecular mass range 500-800 Da, while the most active antioxidant peptides were found to be mainly at the two different peptide weight ranges 500-800 Da and 1200-1500 Da.
Collapse
Affiliation(s)
- Ali Moayedi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Leticia Mora
- Instituto de Agroquimica y Technologia de Alimentos (CSIC), Avenue Agustin Escardino, Paterna, Valencia, Spain
| | - M-Concepción Aristoy
- Instituto de Agroquimica y Technologia de Alimentos (CSIC), Avenue Agustin Escardino, Paterna, Valencia, Spain
| | - Maryam Hashemi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Safari
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.,Center of Excellence for Application of Modern Technology for Producing Functional Foods and Drinks, University of Tehran, Karaj, Iran
| | - Fidel Toldrá
- Instituto de Agroquimica y Technologia de Alimentos (CSIC), Avenue Agustin Escardino, Paterna, Valencia, Spain.
| |
Collapse
|
61
|
Jemil I, Abdelhedi O, Nasri R, Mora L, Marrekchi R, Jamoussi K, ElFeki A, Hajji M, Toldrá F, Nasri M. Hypolipidemic, antiobesity and cardioprotective effects of sardinelle meat flour and its hydrolysates in high-fat and fructose diet fed Wistar rats. Life Sci 2016; 176:54-66. [PMID: 27460865 DOI: 10.1016/j.lfs.2016.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/17/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
AIMS The present study aims to evaluate the antiobesity, hypolipidemic and cardioprotective effects of fermented sardinelle (Sardinella aurita) protein hydrolysates (FSPHs) produced with two proteolytic bacteria, Bacillus subtilis A26 (FSPH-A26) and Bacillus amyloliquefaciens An6 (FSPH-An6). MAIN METHODS Wistar rats were fed during 10weeks a standard laboratory diet, a high caloric diet (HCD) and a HCD coupled with the oral administration of sardinelle meat flour (SMF) or FSPHs. KEY FINDINGS HCD caused hyperlipidemia and increased body weight (BW). The daily oral administration of FSPHs or SMF reduced the total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-c) serum levels, and increased the level of high-density lipoprotein cholesterol (HDL-c). Nevertheless, FSPHs were found to be more efficient than SMF. FSPHs also lowered hepatic TC and TG content and decreased the pancreatic lipase activity. Further, the administration of FSPHs or SMF decreased the BW gain, the food intake and the relative epididymal adipose tissue weight. FSPHs exhibited a potent cardioprotective effect against heart attack, which was demonstrated by returning atherogenic indexes to their normal levels and the conservation of standard histological structure of the heart and aorta. SIGNIFICANCE The overall results indicate that FSPHs contained bioactive peptides which significantly attenuated hyperlipidemia, and might reduce the risk of cardiovascular disease (CVD) in rats fed HCD.
Collapse
Affiliation(s)
- Ines Jemil
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rim Marrekchi
- Laboratory of Biochemistry, CHU Hedi Chaker, Sfax 3029, Tunisia
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU Hedi Chaker, Sfax 3029, Tunisia
| | - Abdelfattah ElFeki
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax (FSS), University of Sfax, P.O. Box 95, Sfax 3052, Tunisia
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| |
Collapse
|
62
|
Chen J, Chen Y, Xia W, Xiong YL, Ye R, Wang H. Grass carp peptides hydrolysed by the combination of Alcalase and Neutrase: Angiotensin-I converting enzyme (ACE) inhibitory activity, antioxidant activities and physicochemical profiles. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.13002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jiwang Chen
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 China
- Hubei Collaborative Innovation Center for Processing of Agricultural Products; Wuhan 430023 China
| | - Yue Chen
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 China
| | - Wenshui Xia
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
| | - Youling L. Xiong
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 China
- Hubei Collaborative Innovation Center for Processing of Agricultural Products; Wuhan 430023 China
| | - Ran Ye
- Department of Biosystems Engineering and Soil Science; University of Tennessee; Knoxville TN 37996-4531 USA
| | - Hongxun Wang
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 China
- Hubei Collaborative Innovation Center for Processing of Agricultural Products; Wuhan 430023 China
| |
Collapse
|
63
|
Lassoued I, Mora L, Nasri R, Aydi M, Toldrá F, Aristoy MC, Barkia A, Nasri M. Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray ( Raja clavata ) muscle. J Proteomics 2015; 128:458-68. [DOI: 10.1016/j.jprot.2015.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/19/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
64
|
de Castro RJS, Sato HH. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 2015; 74:185-198. [PMID: 28411983 DOI: 10.1016/j.foodres.2015.05.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/01/2022]
Abstract
Recent technological advances have created great interest in the use of biologically active peptides. Bioactive peptides can be defined as specific portions of proteins with 2 to 20 amino acids that have desirable biological activities, including antioxidant, anti-hypertensive, antithrombotic, anti-adipogenic, antimicrobial and anti-inflammatory effects. Specific characteristics, including low toxicity and high specificity, make these molecules of particular interest to the food and pharmaceutical industries. This review focuses on the production of bioactive peptides, with special emphasis on fermentation and enzymatic hydrolysis. The combination of different technologies and the use of auxiliary processes are also addressed. A survey of isolation, purification and peptide characterization methods was conducted to identify the major techniques used to determine the structures of bioactive peptides. Finally, the antioxidant, antimicrobial, anti-hypertensive, anti-adipogenic activities and probiotic-bacterial growth-promoting aspects of various peptides are discussed.
Collapse
Affiliation(s)
- Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Hélia Harumi Sato
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
65
|
Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|